
Modular Session Types for Objects

Simon J. Gay

University of Glasgow

Nils Gesbert

Grenoble INP – Ensimag

António Ravara

Universidade Nova de Lisboa

Vasco T. Vasconcelos

Universidade de Lisboa

May 27, 2011

Abstract

Session types allow communication protocols to be specified type-theoretically so that
protocol implementations can be verified by static type checking. We extend previous work on
session types for distributed object-oriented languages in three ways. (1) We attach a session
type to a class definition, to specify the possible sequences of method calls. (2) We allow
a session type (protocol) implementation to be modularized, i.e. partitioned into separately-
callable methods. (3) We treat session-typed communication channels as objects, integrating
their session types with the session types of classes. The result is an elegant unification of
communication channels and their session types, distributed object-oriented programming,
and a form of typestate supporting non-uniform objects, i.e. objects that dynamically change
the set of available methods. We define syntax, operational semantics, a sound type system,
and a sound and complete type checking algorithm for a small distributed class-based object-
oriented language with structural subtyping. Static typing guarantees that both sequences of
messages on channels, and sequences of method calls on objects, conform to type-theoretic
specifications, thus ensuring type-safety. The language includes expected features of session
types, such as delegation, and expected features of object-oriented programming, such as
encapsulation of local state. The main ideas presented herein have been implemented as a
prototype, extending Java 1.4.

1 Introduction

Session types [60, 37] allow communication protocols to be specified type-theoretically, so that
protocol implementations can be verified by static type checking. The underlying assumption is
that we have a concurrent or distributed system with bi-directional point-to-point communication
channels. A session type describes the protocol that should be followed on a particular channel;
that is to say, it defines the permitted sequences, types and directions of messages. For example,
the session type S = ! [Int] . ? [Bool] . end specifies that an integer must be sent and then a boolean
must be received, and there is no further communication. More generally, branching and repetition
can also be specified. A session type can be regarded as a finite-state automaton whose transitions
are annotated with types and directions, and whose language defines the protocol.

Session types were originally formulated for languages closely based on process calculus. Since
then, the idea has been applied to functional languages [32, 49, 62, 54, 33], component-based object
systems [61], object-oriented languages [[25]; [24, 22, 23]; [39, 13]], operating system services [26]
and more general service-oriented systems [14]. Session types have also been generalized from
two-party to multi-party systems [8, 36], although in the present paper we will only consider the
two-party case.

We are interested in combining session-typed channels and object-oriented programming. The
references above can be divided into two groups. The approach of Dezani-Ciancaglini et al. is for
a class to define sessions instead of methods. Invoking a session on an object creates a channel
which is used for communication between two blocks of code: the body of the session, and a
co-body defined by the invoker of the session. A session is therefore a generalization of a method,
in which there can be an extended dialogue between caller and callee instead of a single exchange
of parameters and result. The structure of this dialogue is defined by a session type.

1

The SJ (Session Java) language developed by Hu is a less radical extension of the object-
oriented paradigm. Channels, described by session types, are essentially the same as those in
the original work based on process calculus. Program code is located in methods, as usual, and
can create channels, communicate on them, and pass them as messages. SJ has a well-developed
implementation and has been applied to a range of situations, and more recently has been extended
to support event-driven programming. However, SJ has one notable restriction: a channel cannot
be stored in a field. This means that a channel, once created, must be either completely used, or
else delegated, within the same method. It is not possible for a session to be split into methods
that can be called separately.

In previous work [30] we proposed a new approach to combining session-typed communication
channels and distributed object-oriented programming. Our approach extends earlier work and
allows increased programming flexibility. We adopted the principle that it should be possible to
store a channel in a field of an object and allow the object’s methods to use the field like any other;
we then followed the consequences of this idea. For example, consider a field containing a channel
of type S above, and suppose that method m sends the integer and method n receives the boolean.
Because the session type of the channel requires the send to occur first, it follows that m must
be called before n. We therefore need to work with non-uniform objects, in which the availability
of methods depends on the state of the object: method n is not available until after method m
has been called. In order to develop a static type system for object-oriented programming with
session-typed channels, we use a form of typestate [59] that we have previously presented under
the name of dynamic interfaces [63]. In this type system, the availability of a class’s methods
(i.e., the possible sequences of method calls) is specified in a style that itself resembles a form of
session type, giving a pleasing commonality of notation at both the channel and class levels.

The result of this combination of ideas is a language that allows a very natural integration
of programming with session-based channels and with non-uniform objects. In particular, the
implementation of a session can be modularized by dividing it into separate methods that can be
called in turn. This is not possible in SJ [39], the most closely related approach to combining
sessions and objects. We believe that we have achieved a smooth and elegant combination of three
important high-level abstractions: the object-oriented abstraction for structuring computation
and data, the typestate abstraction for structuring state-dependent method availability, and the
session abstraction for structuring communication.

In the present paper we formalize a core distributed class-based object-oriented language with
a static type system that combines session-typed channels and a form of typestate. The formal
language differs from that introduced in our previous work [30] by using structural rather than
nominal types. This allows several simplifications of the type system. We have also simplified the
semantics, and revised and extended the presentation. We prove that static typing guarantees two
runtime safety properties: first, that the sequence of method calls on every non-uniform object
follows the specification of its class’s session type; second, as a consequence (because channel
operations are implemented as method calls), that the sequence of messages on every channel
follows the specification of its session type. This paper includes full statements and proofs of type
safety, in contrast to the abbreviated presentation in our conference paper. We also formalize a
type checking algorithm and prove its correctness, again with a revised and expanded presentation
in comparison with the conference paper.

There is a substantial literature of related work, which we discuss in detail in Section 9. Very
briefly, the contributions of our paper are the following.

• In contrast to other work on session types for object-oriented languages, we do not require
a channel to be created and completely used (or delegated) within a single method. Several
methods can operate on the same channel, thus allowing effective encapsulation of channels
in objects, while retaining the usual object-oriented development practice. This is made
possible by our integration of channels and non-uniform objects. This contribution was the
main motivation for our work.

• In contrast to other typestate systems, we use a global specification of method availability,
inspired by session types, as part of a class definition. This replaces pre- and post-condition
annotations on method definitions, except in the particular case of recursive methods.

2

1// S t y l e 1 : method s i g n a t u r e s wi th t h e i r d e f i n i t i o n s
2c l a s s F i l e {
3s e s s i on I n i t
4where I n i t = {open : 〈OK: Open , ERROR: I n i t 〉}
5Open = {hasNext : 〈TRUE: Read , FALSE : C lose 〉 , c l o s e : I n i t }
6Read = { read : Open , c l o s e : I n i t }
7Close = { c l o s e : I n i t }
8{OK, ERROR} open (S t r i n g f i l e name) { . . . }
9{TRUE, FALSE} hasNext () { . . . }

10S t r i n g read () { . . . }
11Nul l c l o s e () { . . . }
12}
13
14// S t y l e 2 : method s i g n a t u r e s i n the s e s s i o n type
15c l a s s F i l e {
16s e s s i on I n i t
17where I n i t = { {OK, ERROR} open (S t r i n g) : 〈OK: Open , ERROR: I n i t 〉}
18Open = { {TRUE, FALSE} hasNext () : 〈TRUE: Read , FALSE : C lose 〉 ,
19Nul l c l o s e () : I n i t }
20Read = { S t r i n g read () : Open , Nul l c l o s e () : I n i t }
21Close = {Nul l c l o s e () : I n i t }
22open (f i l e name) { . . . }
23hasNext () { . . . }
24r ead () { . . . }
25c l o s e () { . . . }
26}

Figure 1: A class describing a file in some API, defined in two styles

• When an object’s typestate depends on the result (in an enumerated type) of a method call,
meaning that the result must be case-analyzed before using the object further, we do not
force the case-analysis to be done immediately by using a combined “switch-call” primitive.
Instead, the method result can be stored in a field and the case-analysis can happen at any
subsequent point. Although this feature significantly increases the complexity of the formal
system and could be omitted for simplicity, it supports a natural programming style and
gives more options to future programming language designers.

• Our structural definition of subtyping provides a flexible treatment of relationships between
typestates, without requiring a large inheritance hierarchy to be defined.

The remainder of the paper is structured as follows. In Section 2 we illustrate the concept of
dynamic interfaces by means of a sequential example. In Section 3 we formalize a core sequential
language and in Section 4 we describe some extensions. In Section 5 we extend the sequential
example to a distributed setting and in Section 6 we extend the formal language to a core dis-
tributed language. In Section 7 we state and prove the key properties of the type system. In
Section 8 we present a type checking algorithm and prove its soundness and completeness, and
describe a prototype implementation of a programming language based on the ideas of the paper.
Section 9 contains a more extensive discussion of related work; Section 10 outlines future work
and concludes.

2 A Sequential Example

A file is a natural example of an object for which the availability of its operations depends on its
state. The file must first be opened, then it can be read repeatedly, and finally it must be closed.
Before reading from the file, a test must be carried out in order to determine whether or not any
data is present. The file can be closed at any time.

There is a variety of terminology for objects of this kind. [57] refer to them as non-uniform.
We have previously used the term dynamic interface [63] to indicate that the interface, i.e. the set
of available operations, changes with time. The term typestate [59] is also well established.

Figure 1 defines the class File , which we imagine to be part of an API for using a file system.
The definition does not include method bodies, as these would typically be implemented natively

3

I

O

R

TRUE

C

FALSE

hasNext

OK

open

read
close

ERROR

close

Figure 2: Diagrammatic representation of the session type of class File in Figure 1

by the file system. What it does contain is method signatures and, crucially, a session type
definition which specifies the availability of methods. We will refer to a skeleton class definition of
this kind as an interface, using the term informally to mean that method definitions are omitted.

The figure shows the same definition written in two styles. Style 1 writes method signatures
as part of the method definitions, as is normal in many programming languages, and writes only
method names in the session type. Style 2 writes the method signatures in the session type and
not as part of the method definitions. Style 2 is closer to the formal language that we will define
in Section 3, while Style 1 is sometimes less verbose. The detailed explanation of this example,
below, refers to Style 1.

Line 3 declares the initial session type Init for the class. This and other session types are
defined on lines 4–7. We will explain them in detail; they are abstract states of objects, indicating
which methods are available in a given state and which is the state after calling a method. In
a session type, the constructor {...} , which we call branch, indicates that certain methods are
available. In this example, Init declares the availability of one method (open), states Open and
Read allow for two methods each, and state Close for a single method (close). For technical
convenience, the presence of data is tested by calling the method hasNext, in the style of a Java
iterator, rather than by calling an endOfFile method. If desired, method hasNext could also be
included in state Read.

The constructor 〈 ... 〉, which we call variant, indicates that a method returns a value from an
enumeration, and that the subsequent state (session type) depends on the result. For example,
from state Init the only available method is open, and it returns a value from an enumeration
comprising the constants (or labels) OK and ERROR. If the result is OK then the next state is
Open; if the result is ERROR then the state remains Init . It is also possible for a session type to
be the empty set of methods, meaning that no methods are available; this feature is not used in
the present example, but would indicate the end of an object’s useful life.

The session type can be regarded as a finite state automaton whose transitions correspond to
method calls and results. This is illustrated in Figure 2.

Lines 8–11 define the signatures of four methods. We have already explained that their defini-
tions are omitted; however, we will soon see an example of a full class definition including method
definitions.

Our language does not include constructor methods as a special category, but the method open
must be called first and can therefore be regarded as doing initialisation that might be included in
a constructor. Notice that open has the filename as a parameter. Unlike a typical file system API,
creating an object of class File does not associate it with a particular file; instead this happens
when open is called.

4

1c l a s s F i l eR eade r {
2s e s s i on { i n i t : { r ead : F i n a l }}
3where F i n a l = { t oS t r i n g : F i n a l }
4
5f i l e ; t e x t ;
6
7Nul l i n i t () {
8f i l e = new F i l e () ;
9t e x t = "" ; // Ev a l ua t e s to n u l l

10}
11Nul l r ead (S t r i n g f i l e name) {
12switch (f i l e . open (f i l e name)) {
13case ERROR:
14n u l l ;
15case OK:
16whi le (f . hasNext ())
17t e x t = t e x t + f i l e . r ead () ;
18f i l e . c l o s e () ; // Returns n u l l
19}
20}
21S t r i n g t o S t r i n g () { t e x t ; }
22}

Figure 3: A client that reads from a File

The reader might expect a declaration void close () rather than Null close (); for simplicity, we
do not address procedures in this paper, instead working with the type Null inhabited by a single
value, null. Methods open and hasNext return a constant from an enumeration: OK or ERROR for
method open, and TRUE or FALSE for method hasNext. Enumerations are simply sets of labels,
and do not need to be declared with names.

Figure 3 defines (using Style 1) the class FileReader, which uses an object of class File .
FileReader has a session type of its own, defined on lines 2–3. It specifies that methods must
be called in the sequence init , read, toString , toString , Line 5 defines the fields of FileReader.
The formal language does not require a type declaration for fields, since fields always start with
type Null, and are initialised to value null. Lines 7–10 define the method init , which has initial-
isation behaviour typical of a constructor. Lines 12–19 illustrate the switch construct. In this
particular case the switch is on the result of a method call. One of the distinctive features of
our language is that it is possible, instead, to store the result of the method call in a field and
later switch on the field; we will explain this in detail later. This contrasts with, for example,
Sing# [26], in which the call/switch idiom is the only possibility. The while loop (lines 16–17) is
similar in the sense that the result of file .hasNext() must be tested in order to find out whether
the loop can continue, calling file .read(), or must terminate. Line 21 defines the method toString
which simply accesses a field.

Clearly, correctness of this code requires that the sequence of method calls on field file within
class FileReader matches the available methods in the session type of class File , and that the
appropriate switch or while loops are performed when prescribed by session types of the form
〈 ... 〉 in class File . Our static type system, defined in Section 3, enables this consistency to be
checked at compile-time. In order to check statically that an object with a dynamic interface such
as file is used correctly, our type system treats the reference linearly so that aliases to it cannot
be created. This restriction is not a problem for a simple example such as this one, but there is a
considerable literature devoted to more flexible approaches to unique ownership. We discuss this
issue further in Sections 9 and 10.

In order to support separate compilation we require only the interface of a class, including
the session type and the signature of each method. The exact information required by our type
system is in Figure 4; here it is very convenient to use Style 2, with the method signatures in
the session types, and drop the method definitions completely. Our formal language uses session
types of this form, meaning that an interface is simply a session type. For example, in order to
typecheck classes that are clients of FileReader, we only need its interface, as defined in Figure 4.
Similarly, to typecheck class FileReader, which is a client of File , it suffices to use the interface for

5

1c l a s s F i l e {
2s e s s i on I n i t
3where I n i t = {{OK,ERROR} open (S t r i n g f) : 〈OK: Open , ERROR: {} 〉}
4Open = {{TRUE, FALSE} hasNext () : 〈TRUE: Read , FALSE : C lose 〉 ,
5Nul l c l o s e () : {}}
6Read = { S t r i n g read () : Open , Nul l c l o s e () : {}}
7Close = {Nul l c l o s e () : {}}
8}
9

10c l a s s F i l eR eade r {
11s e s s i on {Nul l i n i t () : {Nul l r ead (S t r i n g f i l e name) : F i n a l }}
12where F i n a l = { S t r i n g t o S t r i n g () : F i n a l }
13}
14
15c l a s s Fi leReadToEnd {
16s e s s i on I n i t
17where I n i t = {{OK,ERROR} open (S t r i n g f) : 〈OK: Open , ERROR: {} 〉}
18Open = {{TRUE, FALSE} hasNext () : 〈TRUE: Read , FALSE : C lose 〉}
19Read = { S t r i n g read () : Open}
20Close = {Nul l c l o s e () : {}}
21}

Figure 4: Interfaces for classes File , FileReader and FileReadToEnd

class File in the same figure, thus effectively supporting typing clients of classes containing native
methods.

Figure 4 also defines the interface for a class FileReadToEnd. This class has the same method
definitions as File , but the close method is not available until all of the data has been read.
According to the subtyping relation defined in Section 3.3, state Init of File is a subtype of
state Init of FileReadToEnd, which we express as File . Init <: FileReadToEnd.Init. Subtyping
guarantees safe substitution: an object of type File . Init can be used whenever an object of type
FileReadToEnd.Init is expected, by forgetting that close is available in more states. As it happens,
FileReader reads all of the data from its File object and could use a FileReadToEnd instead.

3 A Core Sequential Language

We now present the formal syntax, operational semantics, and type system of a core sequential
language. As usual, the formal language makes a number of simplifications with respect to the
more practical syntax used in the examples in Section 2.

• All objects are non-uniform, with session types, and are treated strictly linearly by the type
system. A practical language would also need standard objects, treated non-linearly. Adding
them to the type system, orthogonally to linear objects, is straightforward but complicates
and obscures the typing rules.

• Every method has exactly one parameter. This does not affect expressivity, as multiple pa-
rameters can be passed within an object, and a dummy parameter can be added if necessary:
we consider a method call of the form f.m() as an abbreviation for f.m(null). It is easy to
generalize the definitions to allow arbitrary numbers of parameters, but again at the expense
of complicating the typing rules.

• Field access and assignment are defined in terms of a swap operation f ↔ e which puts
the value of e into the field f and evaluates to the former content of f . This operation is
formally convenient because, due to strict linearity, extracting the value of a field also requires
updating its value to null. The normal assignment operation f = e is an abbreviation for
f ↔ e; null (where the sequence operator explicitly discards the former content of f) and
field access as the standalone expression f is an abbreviation for f ↔ null.

• The formal system only uses Style 2, with method signatures appearing in session types and
only there. This simplifies the treatment of subtyping and, when we consider a distributed

6

Class dec D ::= class C {S; ~f ; ~M}

Label sets E ::= {l, . . . , l}

Types T ::= Null | S | E | linkthis

Method dec M ::= m(x) {e}

Values v ::= null | l

Paths r ::= this

Expressions e ::= v | f.m(e) | x | e; e | switch (e) {l : el}l∈E | f ↔ e | new C()

Class session types S ::= {T ′

i mi(Ti) : Si}i∈I | 〈l : Sl〉l∈E | X | µX.S

Figure 5: Top level syntax

Types T ::= . . . | link f | C[F]

Field types F ::= {Ti fi}i∈I | 〈l : Fl〉l∈E

Values v ::= . . . | o

Paths r ::= o | r.f

Expressions e ::= . . . | return e

Object records R ::= C[{fi = vi}i∈I]

Heaps h ::= ε | h, {o = R}

States s ::= (h ∗ r; e)

Contexts E ::= [_] | E; e | switch (E) {l : el}l∈E | return E | f ↔ E | f.m(E)

The productions for types, values and expressions extend those in Figure 5. Session types may never contain types
of the form link f , even in the extended syntax.

Figure 6: Extended syntax, used only in the type system and semantics

language, of channels. It also supports a form of overloading, allowing a method to have
different signatures at different points in the same session type.

• When a method is followed by a variant session type, the return type of the method is the
special type linkthis rather than the set of labels from the variant.

Our prototype implementation, described briefly at the end of Section 8, does not make these
simplifications and its syntax is closer to that of Section 2.

3.1 Syntax

We separate the syntax into the top-level language (Figure 5) and the extensions required by the
type system and operational semantics (Figure 6). Identifiers C, m, f and l are taken from disjoint
countable sets representing names of classes, methods, fields and labels respectively. The vector
arrow indicates a sequence of zero or more elements of the syntactic class it is above. Similarly,
constructs indexed by a set denote a finite sequence. We use E to specifically denote finite sets of
labels l, whereas I is any finite indexing set.

Field names always refer to fields of the current object; there is no qualified field specification
o.f . In other words, all fields are private. Method call is only available on a field, not an arbitrary
expression. This is because calling a method changes the session type of the object on which the
method is called, and in order for the type system to record this change, the object must be in a
specified location (field).

A program consists of a sequence of class declarations D. In the core language, types in a
top-level program only occur in the session part of a class declaration: no type is declared for
fields because they can vary at run-time and are always initially null, and method declarations are
also typeless, as explained earlier.

A session type S corresponds to a view of an object from outside. It shows which methods can
be called, and their signatures, but the fields are not visible. We refer to {T ′

i mi(Ti) : Si}i∈I as a
branch type and to 〈l : Sl〉l∈E as a variant type. Session type end abbreviates the empty branch
type {}. The core language does not include named session types, or the session and where clauses

7

from the examples; we just work with recursive session type expressions of the form µX.S, which
are required to be contractive, i.e. containing no subexpression of the form µX1.· · ·µXn.X1. The
µ operator is a binder, giving rise, in the standard way, to notions of bound and free variables
and alpha-equivalence. A type is closed if it includes no free variables. We denote by T {U/X} the
capture-avoiding substitution of U for X in T .

Value types which can occur either as parameter or return type for a method are: Null which
has the single value null, a session type S which is the type of an object, or an enumerated type
E which is an arbitrary finite set of labels l. Additionally, the specific return type linkthis is used
for method occurrences after which the resulting session type is a variant, and means that the
method result will be the tag of the variant (hence linked to this variantly-typed object). The
set of possible labels appears in the variant construct of the session type, so it is not necessary
to specify it in the return type of the method. However, in the example code, the set of labels is
written instead of linkthis, so that the method signature shows the return type in the usual way.

The type system, which we will describe later, enforces the following restrictions on session
types: the immediate components of a variant type are always branch types, and the session type
in a class declaration is always a branch. This is because a variant type is used only to represent
the effect of method calls and the dependency between a method result and the subsequent session
type, so it only makes sense immediately within a branch type.

Figure 6 defines additional syntax that is needed for the formal system but is not used in top-
level programs. This includes some expressions that arise from the operational semantics, some
extra forms of type that are used in the proof of type preservation in order to type expressions
arising from the operational semantics, and syntax for the heap.

The first addition is the type link f . When a field f is given a variant type, the corresponding
tag, which in our language is a separate value, has type link f . It is not possible for these tags to
be returned from a method or passed as parameters, hence they cannot appear in the declarations
and are not part of the syntax of programs. There is also an alternative form of object type, C[F],
which has a field typing instead of a session type. It represents the view of an object from within
its own class and is used when typing method definitions. A field typing F can either be a record
type associating one type to each field of the object or a variant field typing 〈l : Fl〉l∈E , indexed
by the values of an enumerated set E, similar to a variant session type.

The other additions are used to define the operational semantics. A heap h maps object
identifiers o, taken from yet another countable set of names, to object records R. We write
dom(h) for the set of object identifiers in h. The identifiers are values, which may occur in
expressions. The operation h, {o = R} represents adding a record for identifier o to the heap h
and we consider it to be associative and commutative, that is, h is essentially an unordered set
of bindings. It is only defined if o 6∈ dom(h). Paths r represent locations in the heap. A path
consists of a top-level object identifier followed by an arbitrary number of field specifications. We
use the following notation to interpret paths relative to a given heap.

Definition 3.1 (Heap locations)

• If R = C[{fi = vi}i∈I], we define R.fi = vi (for all i) and R.class = C. For any value v and
any j ∈ I, we also define R{fj 7→ v} = C[{fi = v′i}i∈I] where v′i = vi for i 6= j and v′j = v.

• If h = (h′, {o = R}), we define h(o) = R, and for any field f of R, h{o.f 7→ v} = (h′, {o =
R{f 7→ v}}).

• If r = r′.f and h(r′).f = o, then we also define h(r) = h(o) and h{r.f ′ 7→ v} = h{o.f ′ 7→ v}.

• In any other case, these operations are not defined. Note in particular that h(r) is not defined
if r is a path that exists in h but does not point to an object identifier.

There is a new form of expression, return e, which is used to represent an ongoing method call.
Finally, a state consists of a heap and an expression, and the operational semantics will be

defined as a reduction relation on states; E are evaluation contexts in the style of Wright and
Felleisen [64], used in the definition of reduction.

The semantic and typing rules we will present next are implicitly parameterized by the set of
declarations D which constitute the program. It is assumed that the whole set is available at any

8

(R-Seq) (h ∗ r; v; e) −→ (h ∗ r; e)

(R-Return) (h ∗ r.f ; return v) −→ (h ∗ r; v)
m(x) {e} ∈ h(r.f).class

(R-Call)
(h ∗ r; f.m(v)) −→ (h ∗ r.f ; return e{v/x})

l0 ∈ E
(R-Switch)

(h ∗ r; switch (l0) {l : el}l∈E) −→ (h ∗ r; el0)

h(r).f = v
(R-Swap)

(h ∗ r; f ↔ v′) −→ (h{r.f 7→ v′} ∗ r; v)

o 6∈ dom(h) C.fields = ~f
(R-New)

(h ∗ r; new C()) −→ (h, {o = C[~f =
−→
null]} ∗ r; o)

(h ∗ r; e) −→ (h′ ∗ r′; e′)
(R-Context)

(h ∗ r; E[e]) −→ (h′ ∗ r′; E[e′])

Figure 7: Reduction rules for states

point1 and that any class is declared only once. We do not require the sets of method or field names
to be disjoint from one class to another. We will use the following notation: if class C {S; ~f ; ~M} is
one of the declarations, C.session means S and C.fields means ~f , and if m(x) {e} ∈ ~M then C.m
is e.

3.2 Operational Semantics

Figure 7 defines an operational semantics on states (h ∗ r; e) consisting of a heap, a path in the
heap indicating the current object, and an expression. All rules have the implicit premise that
the expressions appearing in them must be defined. For example, f ↔ v only reduces if h(r) is
an object record containing a field named f . An example of reduction, together with typing, is
presented in Figure 12 and discussed at the end of the present section.

The current object path r is used to resolve field references appearing in the expression e.
Except in the case of R-Context, e is always a part of a partially reduced method body, and r
shows the location in the heap of the object on which the method was called. The current object
path behaves like a call stack: as shown in R-Call, when a method call on a field f (relative to
the current object located at r) is entered, the object in r.f becomes the current object; this is
indicated by changing the path to r.f . Additionally, the method body, with the actual parameter
substituted for the formal parameter, is wrapped in a return expression and replaces the method
call. When the body has reduced to a value, this value is unwrapped by R-Return which also
pops the field specification f from the path, recovering the previous current object r. R-New
creates a new object in the heap, with null fields. R-Swap updates the value of a field and reduces
to its former value.

R-Switch is standard. R-Seq discards the result of the first part of a sequential composition.
R-Context is the usual rule for reduction in contexts.

To complete the definition of the semantics we need to define the initial state. The idea is to
designate a particular method m of a particular class C as the main method, which is called in
order to begin execution. The most convenient way to express this is to have an initial heap that
contains an object of class C, which is also chosen as the current object, and an initial expression
e which is the body of m. The initial state is therefore

(top = C[C.fields = ~null] ∗ top; e).

Strictly speaking, method m must have a parameter x; we take x to be of type Null and assume
that it does not occur in e.

Alternatively, if we want the initial expression to be a call of m, then remembering that a
method call must be on a field we have to introduce another object, of a dummy class D, with a
field containing the object of class C on which m is called:

(top = D[f = c], c = C[C.fields = ~null] ∗ top; f.m(null)).

1This is assumed for simplicity, but it is easy to check that when typing a toplevel program, the body of
a method or class is never used outside that particular method or class — hence respecting encapsulation and
allowing separate checking and compilation. The only information needed is a session declaration for every class
being instantiated. Conversely, the semantic rules do not need any type information and, in particular, completely
ignore session declarations.

9

∀i ∈ I, Ti <: T ′

i
(S-Record)

{Ti fi}i∈I <: {T ′

i fi}i∈I

E ⊆ E′ ∀l ∈ E,Fl <: F ′

l
(S-Variant)

〈l : Fl〉l∈E <: 〈l : F ′

l
〉l∈E′

F <: F ′

(S-Field)
C[F] <: C[F ′]

Figure 8: Subtyping rules for fields

3.3 Subtyping

Two kinds of types in the top-level core language are subject to subtyping: enumerated types and
session types. The internal language also has field typings; subtyping on them is derived from
subtyping on top-level types by the rules in Figure 8.

Subtyping for enumerated types is simply set inclusion: E <: E′ if and only if E ⊆ E′. We refer
to subtyping for session types as the sub-session relation. Because session types can be recursive,
the sub-session relation is defined coinductively, by defining necessary conditions it must satisfy
and taking the largest relation satisfying them. The definition involves checking compatibility
between different method signatures, which itself is dependent on the whole subtyping relation.
We proceed as follows: given a candidate sub-session relation R, we define an R-compatibility
relation between types and between method signatures which uses R as a sub-session relation. We
then use R-compatibility in the structural conditions that R must satisfy in order to effectively
be a sub-session relation.

Let S denote the set of contractive, closed session types. We deal with recursive types using
the following unfold operator:

Definition 3.2 (Unfolding) The operator unfold is defined inductively on S by unfold(µX.S) =
unfold(S{(µX.S)/X}) and unfold(S) = S if S is not of the form µX.S. Since the types in S are
contractive, this definition is well-founded.

We now define the two compatibility relations we need.

Definition 3.3 (R-Compatibility (Types)) Let R be a binary relation on S. We say that type
T is R-compatible with type T ′ if one of the following conditions is true.

1. T = T ′

2. T and T ′ are enumerated types and T ⊆ T ′

3. T, T ′ ∈ S and (T, T ′) ∈ R.

Definition 3.4 (R-Compatibility (Signatures)) Let R be a binary relation on S. Let σ =
U m(T) : S and σ′ = U ′ m(T ′) : S′ be components of branch types, both for the same method
name m, i.e. method signatures with subsequent session types. We say that σ is R-compatible with
σ′ if T ′ is R-compatible with T and either:

1. U is R-compatible with U ′ and (S, S′) ∈ R, or

2. U is an enumerated type E, U ′ = linkthis and (〈l : S〉l∈E , S
′) ∈ R.

The compatibility relation on method signatures is, as expected, covariant in the return type
and the subsequent session type and contravariant in the parameter type, but with one addition:
if a method has an enumerated return type E and subsequent session type S, then it can always
be used as if it had a return type of linkthis and were followed by the uniform variant session type
〈l : S〉l∈E . Indeed, both signatures mean that the method can return any label in E and will
always leave the object in state S. However, subtyping is in one direction only because usage of
labels with a link type is more restricted; for example, they cannot be discarded.

We can now state the necessary conditions for a sub-session relation.

Definition 3.5 (Sub-session) Let R be a binary relation on S. We say that R is a sub-session
relation if (S, S′) ∈ R implies:

1. If unfold(S) = {Ui mi(Ti) : Si}i∈I then unfold(S′) is of the form {U ′
j mj(T

′
j) : S

′
j}j∈J with

J ⊆ I, and for all j ∈ J , Uj mj(Tj) : Sj is R-compatible with U ′
j mj(T

′
j) : S

′
j.

10

2. If unfold(S) = 〈l : Sl〉l∈E then unfold(S′) is of the form 〈l : S′
l〉l∈E′ with E ⊆ E′ and for all

l ∈ E, (Sl, S
′
l) ∈ R.

For the sake of simplicity we will now, when we refer to this definition later on, make the unfolding
step implicit by assuming, without loss of generality, that neither S nor S′ is of the form µX.S′′.

Lemma 3.6 The union of several sub-session relations is a sub-session relation.

Proof. Let R =
⋃

i∈I Ri, where the Ri are sub-session relations. Let (S, S′) ∈ R. Then there is j
in I such that (S, S′) ∈ Rj . This implies that (S, S′) satisfies the conditions in Definition 3.5 with
respect to Rj . Just notice that, because Rj ⊆ R, the conditions are satisfied with respect to R
as well — in particular, Rj -compatibility implies R-compatibility. Indeed, the conditions for R
only differ from those for Rj by requiring particular pairs of session types to be in R rather than
in Rj , so they are looser.

We now define the subtyping relation <: on session types to be the largest sub-session relation,
i.e. the union of all sub-session relations. The subtyping relation on general top-level types is just
<:-compatibility.

Subtyping on session types means that either both are branches or both are variants. In the
former case, the supertype must allow fewer methods and their signatures must be compatible;
in the latter case, the supertype must allow more labels and the common cases must be in the
subtyping relation. Like the definition of subtyping for channel session types [31], the type that
allows a choice to be made (the branch type here, the ⊕ type in [31]) has contravariant subtyping
in the set of choices.

The following lemma shows that the necessary conditions of Definition 3.5 are also sufficient
in the case of <:.

Lemma 3.7 1. Let S = {Ui mi(Ti) : Si}i∈I and S′ = {U ′
j mj(T

′
j) : S

′
j}j∈J with J ⊆ I. If for

all j ∈ J , Uj mj(Tj) : Sj is <:-compatible with U ′
j mj(T

′
j) : S

′
j, then S <: S′.

2. Let S = 〈l : Sl〉l∈E and S′ = 〈l : S′
l〉l∈E′ with E ⊆ E′. If for all l in E we have Sl <: S′

l,
then S <: S′.

Proof. The relation <: ∪{(S, S′)} is a sub-session relation.
Finally, we prove that this subtyping relation provides a preorder on types.

Proposition 3.8 The subtyping relation is reflexive and transitive.

Proof. First note that session types can only be related by subtyping to other session types; the
same applies to enumerated types and, in the internal system, field typings. Since the relation
for enumerated types is just set inclusion, we already know the result for it. We now prove the
properties for session types; the fact that they hold for field typings is then a straightforward
consequence.

For reflexivity, just notice that the diagonal relation {(S, S) | S ∈ S} is a sub-session relation,
hence included in <:.

For transitivity, what we need to prove is that the relation R = {(S, S′) | ∃S′′, S <: S′′∧S′′ <:
S′} is a sub-session relation. Let (S, S′) ∈ R and let S′′ be as given by the definition of R.

In case (1) where we have S = {Ui mi(Ti) : Si}i∈I , we know that:

• S′′ = {U ′′
j mj(T

′′
j) : S′′

j }j∈J with J ⊆ I, and for all j ∈ J , σj = Ui mi(Ti) : Sj is <:-
compatible with σ′′

j = U ′′
j mj(T

′′
j) : S

′′
j .

• Therefore, S′ is of the form {U ′
k mk(T

′
k) : S′

k}k∈K with K ⊆ J , and for all k ∈ K, σ′′
k is

<:-compatible with σ′
k = U ′

k mk(T
′
k) : S

′
k.

Straightforwardly K ⊆ I. For every k in K, we have to prove that σk is R-compatible with σ′
k. We

deduce it from the two <:-compatibilities we know by looking into the definition of compatibility
point by point:

• We have T ′′
k <: Tk and T ′

k <: T ′′
k . Either these types are all session types, and then

(T ′
k, Tk) ∈ R by definition of R, or none of them is and we have T ′

k <: Tk by transitivity of
subtyping on base types. In both cases, T ′

k is R-compatible with Tk.

11

• We also have either:

– Uk <: U ′′
k , U ′′

k <: U ′
k, Sk <: S′′

k and S′′
k <: S′

k. In this case, the former two conditions
imply, similarly to the above, that Uk is R-compatible with U ′

k. The latter two imply
(Sk, S

′
k) ∈ R.

– Or Uk is an enumerated type E, U ′′
k = U ′

k = linkthis, 〈l : Sk〉l∈E <: S′′
k and S′′

k <: S′
k.

Then we have (〈l : Sk〉l∈E , S
′
k) ∈ R, which is all we need.

– Or, finally, Uk is an enumerated type E, U ′′
k is an enumerated type E′′ such that

E ⊆ E′′, Sk <: S′′
k and 〈l : S′′

k 〉l∈E′′ <: S′
k. Then from Sk <: S′′

k and E ⊆ E′′ we
deduce, using case (2) of Lemma 3.7, 〈l : Sk〉l∈E <: 〈l : S′′

k 〉l∈E′′ . We thus have, again,
(〈l : Sk〉l∈E , S

′
k) ∈ R which is the required condition.

In case (2) where we have S = 〈l : Sl〉l∈E , we obtain S′′ = 〈l : S′′
l 〉l∈E′′ and S′ = 〈l : S′

l〉l∈E′ ,
with E ⊆ E′′ ⊆ E′ and for any l in E, Sl <: S′′

l and S′′
l <: S′

l , which imply by definition of R
that (Sl, S

′
l) is in R.

Definition 3.9 (Type equivalence) We define equivalence of session types S and S′ as S <: S′

and S′ <: S. This corresponds precisely to S and S′ having the same infinite unfoldings (up
to the ordering of cases in branches and variants). Henceforth types are understood up to type
equivalence, so that, for example, in any mathematical context, types µX.S and S{(µX.S)/X} can
be used interchangeably, effectively adopting the equi-recursive approach [53, Chapter 21].

3.4 Type System

We introduce a static type system whose purpose is to ensure that typable programs satisfy a
number of safety properties. As usual, we make use of a type preservation theorem, which states
that reduction of a typable expression produces another typable expression. Therefore the type
system is formulated not only for top-level expressions but for the states (i.e. (heap, expression)
pairs) on which the reduction relation is defined.

An important feature of the type system is that the method definitions within a particular
class are not checked independently, but are analyzed in the order specified by the session type of
the class. In Figure 9, rule T-Class (last rule) uses a consistency relation between field typings
and session types, defined in Section 3.4.2. This relation in turn uses the typing judgement for
expressions, which is defined by the other rules in Figure 9.

In the following sections we describe the type system in several stages.

3.4.1 Typing expressions

The typing judgement for expressions is Γ ∗ r ⊲ e : T ⊳ Γ′ ∗ r′. In such a judgement, Γ is a type
environment that maps object identifiers and parameter names to types, and r is the path to the
current object in Γ. The expression e and its type T appear in the central part of the judgement.
The Γ′ and r′ on the right hand side show the change, if any, that e causes in the type environment
and current object path. There are several reasons for Γ′ to differ from Γ; the most important is
that if e contains a method call on object o then the difference between Γ and Γ′ shows that the
session type of o changes. Any difference between r and r′ means that e contains return; in that
case, r and r′ represent the call stack during and after a method call.

When typing an expression as part of a top-level program, the typing judgement has the
particular form this : C[F], V ∗ this ⊲ e : T ⊳ this : C[F ′], V ′ ∗ this. Here the only object reference
in the type environment is this, symbolically representing the object in which e occurs as part of
a method body. The rest of the environment, V , has the form x : U where U is the type of the
parameter of the method (hence a top-level type). The initial type of this is the internal type
C[F], where F is a field typing; the final type is C[F ′], as e may change the types of the fields
(for example, by calling methods on them). The final parameter typing V ′ is either the same as
V , if the parameter has a non-linear type, or empty, if the parameter has a linear type and is
consumed by e. The path to the current object is this on both the left hand side and the right
hand side of the judgement; that is the only possibility, because this is the only object reference
in the environment; also, because e is a top-level expression, it does not contain return, which is
the only expression that can change the current object path.

12

(T-Null) Γ ∗ r ⊲ null : Null ⊳ Γ ∗ r (T-Label) Γ ∗ r ⊲ l : {l} ⊳ Γ ∗ r

(T-New) Γ ∗ r ⊲ new C() : C.session ⊳ Γ ∗ r (T-LinVar) Γ, x : S ∗ r ⊲ x : S ⊳ Γ ∗ r

T is not an object type
(T-Var)

Γ, x : T ∗ r ⊲ x : T ⊳ Γ, x : T ∗ r

Γ ∗ r ⊲ e : T ⊳ Γ′ ∗ r′ Γ′(r′.f) = T ′ T 6= linkthis T ′ is not a variant
(T-Swap)

Γ ∗ r ⊲ f ↔ e : T ′ ⊳ Γ′{r′.f 7→ T} ∗ r′

Γ ∗ r ⊲ e : T ′

j ⊳ Γ′ ∗ r′ Γ′(r′.f) = {Ti mi(T ′

i) : Si}i∈I

j ∈ I T = link f if Tj = linkthis, T = Tj otherwise
(T-Call)

Γ ∗ r ⊲ f.mj(e) : T ⊳ Γ′{r′.f 7→ Sj} ∗ r′

Γ ∗ r ⊲ e : T ⊳ Γ′ ∗ r′ Γ′ ∗ r′ ⊲ e′ : T ′ ⊳ Γ′′ ∗ r′ T 6= link _ or linkthis
(T-Seq)

Γ ∗ r ⊲ e; e′ : T ′ ⊳ Γ′′ ∗ r′

Γ ∗ r ⊲ e : E′ ⊳ Γ′ ∗ r′ E′ ⊆ E ∀l ∈ E′,Γ′ ∗ r′ ⊲ el : T ⊳ Γ′′ ∗ r′
(T-Switch)

Γ ∗ r ⊲ switch (e) {l : el}l∈E : T ⊳ Γ′′ ∗ r′

Γ ∗ r ⊲ e : link f ⊳ Γ′ ∗ r′ Γ′(r′.f) = 〈l : Sl〉l∈E′

E′ ⊆ E ∀l ∈ E′,Γ′{r′.f 7→ Sl} ∗ r′ ⊲ el : T ⊳ Γ′′ ∗ r′
(T-SwitchLink)

Γ ∗ r ⊲ switch (e) {l : el}l∈E : T ⊳ Γ′′ ∗ r′

Γ ∗ r ⊲ e : E ⊳ Γ′ ∗ r′ Γ′(r′) = C[F ′] F ′ is a record
(T-VarF)

Γ ∗ r ⊲ e : linkthis ⊳ Γ′{r′ 7→ C[〈l : F ′〉l∈E]} ∗ r′

Γ ∗ r ⊲ e : T ⊳ Γ′ ∗ r′ T <: T ′

(T-Sub)
Γ ∗ r ⊲ e : T ′ ⊳ Γ′ ∗ r′

Γ ∗ r ⊲ e : T ⊳ Γ′ ∗ r′ Γ′ <: Γ′′

(T-SubEnv)
Γ ∗ r ⊲ e : T ⊳ Γ′′ ∗ r′

−−→
Null ~f ⊢ C : S

(T-Class)
⊢ class C {S; ~f ; ~M}

Figure 9: Typing rules for the top level language

We define notation for interpreting paths relative to type environments, analogously to Defi-
nition 3.1 for heaps.

Definition 3.10 (Locations in environments)

• If Γ = Γ′, o : T then we define Γ(o) = T and Γ{o 7→ T ′} = Γ′, o : T ′

• Inductively, if r = r′.f , and if Γ(r′) = C[F] where F is a record field typing containing f ,
then Γ(r) is defined as F (f) and Γ{r 7→ T ′} as Γ{r′ 7→ C[F{f 7→ T ′}]}.

• In any other case, these operations are not defined. In particular, if Γ(r′) is defined but is a
session type, then Γ(r′.f) is not defined for any f .

A pair Γ ∗ r only makes sense if Γ(r) is defined and is of the form C[F].
We extend subtyping to a relation on type environments, as follows.

Definition 3.11 (Environment subtyping) Γ <: Γ′ if for every α ∈ dom(Γ′), where α is
either a parameter or an object identifier, we have α ∈ dom(Γ) and Γ(α) <: Γ′(α).

Essentially Γ <: Γ′ if Γ is more precise (contains more information) than Γ′: it contains types for
everything in Γ′ (and possibly more) and those types are more specific.

3.4.2 Consistency between field typings and session types

There are two possible forms for the type of an object. One is a session type S, which describes
the view of the object from outside, i.e. from the perspective of code in other classes. The session
type specifies which methods may be called, but does not reveal information about the fields. The
other form, C[F], contains a field typing F , and describes the internal view of the object, i.e. from
the perspective of code in its own methods. Consider a sequence of method calls in a particular
class. There are two senses in which it may be considered correct or incorrect. (1) In the sense
that it is allowed, or not allowed, by the session type of the class. (2) In the sense that the field
typings before and after each method call follow each other in a connected way. In order to type

13

a class definition, these two senses of correctness must be consistent according to the following
coinductive definition.

Definition 3.12 Let C be a class and let R be a relation between field typings F and session
types S. We say that R is a C-consistency relation if (F, S) ∈ R implies:

1. If S = {Ti mi(T
′
i) : Si}i∈I, then F is not a variant and for all i in I, there is a definition

mi(xi) {ei} in the declaration of class C such that we have this : C[F], xi : T
′
i ∗ this ⊲ ei :

Ti ⊳ this : C[Fi] ∗ this with Fi such that (Fi, Si) ∈ R.

2. If S = 〈l : Sl〉l∈E , then F = 〈l : Fl〉l∈E′ with E′ ⊆ E and for all l in E′ we have (Fl, Sl) ∈ R.

The definition implies that a method with return type linkthis must be followed by a variant
session type, for the following reason. Suppose that in clause (1), some Ti is linkthis. The only
way for ei to have type linkthis is by using rule T-VarF, which implies that Fi must be a variant
field typing. The condition (Fi, Si) ∈ R implies, by clause (1), that Si is a variant.

Lemma 3.13 The union of several C-consistency relations is a C-consistency relation.

Proof. Similar to (but simpler than) the proof of Lemma 3.6. For any class C, we define the
relation F ⊢ C : S between field typings F and session types S to be the largest C-consistency
relation, i.e. the union of all C-consistency relations.

The relation F ⊢ C : S represents the fact that an object of class C with internal (private)
field typing F can be safely viewed from outside as having type S. The second point accounts for
correspondence between variant types. The main point is the first: if the object’s fields have type
F and its session type allows a certain method to be called, then it means that the method body is
typable with an initial field typing of F and the declared type for the parameter. Furthermore, the
type of the expression must match the declared return type and the final type of the fields must
be compatible with the subsequent session type. The parameter may or may not be consumed by
the method, but T-SubEnv at the end of Figure 9 allows discarding it silently in any case, hence
its absence from the final environment.

The rule T-Class, last rule in Figure 9, checks that the initial session type of a class is
consistent with the initial Null field typing. It refers to the above definition of consistency, which
itself refers to typing judgements built using the other rules in the figure.

3.4.3 Typing rules for top-level expressions

The typing rules for top-level expressions (the syntax in Figure 5) are in Figure 9. T-Null and
T-Label type constants. A label is given a singleton enumerated type, which is the smallest type
it can have, but subsumption can be used to increase its type. T-New types a new object, giving
it the initial session type from the class declaration. T-LinVar and T-Var are used to access a
method’s parameter, removing it from the environment if it has an object type (which is linear).
For simplicity, this is the only way to use a parameter. In particular, we do not allow calling
methods directly on parameters: to call a method on a parameter, it must first be assigned to a
field. T-Swap types the combined read-write field access operation, exchanging the types of the
field and expression. There are two restrictions on its use. T is not allowed to be linkthis, because
that would mean creating a variant field typing and hiding the tag instead of returning it from a
method. This implies that Γ′(r′) is not a variant, because the only rule that could produce one is
T-VarF, which would also give T = linkthis; hence Γ′(r′.f) is defined. Also, T ′ is not allowed to
be a variant, because in that case removing the contents of f would invalidate the link type that
points to it.

T-Call checks that field f has a session type that allows method mj to be called. The type
of the parameter is checked as usual, and the final type environment is updated to contain the
new session type of the object in f . If the return type of the method is linkthis, it means that the
value returned is a label describing the state of this object; since the object is in f , it is changed
into link f . Because the return type appears in the session type and is therefore expressed in the
top-level syntax, it cannot already be of the form link f .

T-Seq accounts for the effects of the first expression on the environment and checks that a
label is not discarded, which would leave the associated variant unusable.

14

r 6= o. ~f
(T-Ref)

Γ, o : T ∗ r ⊲ o : T ⊳ Γ ∗ r

Γ ∗ r ⊲ e : E ⊳ Γ′ ∗ r′ Γ′(r′.f) = S S is a branch
(T-VarS)

Γ ∗ r ⊲ e : link f ⊳ Γ′{r′.f 7→ 〈l : S〉l∈E} ∗ r′

Γ ∗ r ⊲ e : T ⊳ Γ′ ∗ r′.f Γ′(r′.f) = C[F] F ⊢ C : S

T 6= link _ T ′ = link f if T = linkthis, T ′ = T otherwise
(T-Return)

Γ ∗ r ⊲ return e : T ′ ⊳ Γ′{r′.f 7→ S} ∗ r′

Figure 10: Typing rules for expressions in the internal language

T-Switch types a switch whose expression e does not have a link type. All relevant branches
are required to have the same type and final environment, and the whole switch expression inherits
them. A typical example is if the branches just contain different labels: in that case they are given
singleton types by T-Label and then T-Sub is used to give all of them the same enumerated
type. If the type E′ of the parameter expression is strictly smaller than the set E of case labels
in the switch expression, branches corresponding to the extra cases are ignored.

T-SwitchLink is the only rule for deconstructing variants. It types a switch, similarly to
the previous one, but the type of e must be a link to a field f with a variant session type. The
relevant branches are then typed with initial environments containing the different case types for
f according to the value of the label. As before, they must all have the same type and final
environment, and if the switch expression defines extra branches for labels which do not appear
in the variant type of f , they are ignored.

T-VarF constructs a variant field typing for the current object. Here E is typically, but not
necessarily, a singleton type, and e is typically a literal label. The field typing before applying
the rule must be a record as nested variants are not permitted, and the rule transforms it into a
variant with identical cases for all labels in E. It can then be extended to a variant with arbitrary
other cases using rule T-SubEnv. This rule is used for methods leading to variant session types,
which, as Definition 3.12 implies, must finish with a variant field typing. As a simple example,
consider the following expression, which could end a method body in some class D:

switch (e) {TRUE : f ↔ new C();OK,FALSE : f ↔ null;ERROR}

If S is the declared session type of class C, we have, using rules T-Swap, T-Label and T-Seq,
the following judgements (T is just the initial type of f):

this : D[T f] ∗ this ⊲ f ↔ new C();OK : {OK} ⊳ this : D[S f] ∗ this

and
this : D[T f] ∗ this ⊲ f ↔ null;ERROR : {ERROR} ⊳ this : D[Null f] ∗ this.

Then T-VarF can be applied to both these judgements, giving both expressions the same type
linkthis, and giving at the same time to this, in the final environment, the variant types D[〈OK :
{S f}〉] and D[〈ERROR : {Null f}〉] respectively. These two types are both subtypes of the
combined variant D[〈OK : {S f},ERROR : {Null f}〉] and T-SubEnv can thus be applied to both
judgements to increase the final type of this to this common supertype. It is then possible to
use T-Switch to type the whole expression. Note that the final type of the expression is always
linkthis: as T-VarF is the only rule for constructing variants, this is the only possible return type
for a method leading to a variant.

T-Sub is a standard subsumption rule, and T-SubEnv allows subsumption in the final en-
vironment. The main use of the latter rule, as illustrated above, is to enable the branches of a
switch to be given the same final environments.

3.4.4 Typing rules for internal expressions, heaps and states

The type system described so far is all we need to type check class declarations and hence programs,
which are sequences of class declarations. In order to describe the runtime consequences of well-
typedness, we now introduce an extended set of typing rules for expressions that occur only at
runtime (Figure 10) and for program states including heaps (Figure 11).

Runtime expressions may contain object identifiers, typed by T-Ref. In this rule, the current
object path r must not be within o, meaning that the current object or any object containing

15

(T-Hempty) ⊢ ε : ∅
⊢ h : Γ Γ, o : C[{Null fi}16i6n] ∗ o ⊲ f1 ↔ v1; . . .; fn ↔ vn : Null ⊳ Γ′ ∗ o

(T-Hadd)
⊢ h, {o = C[{fi = vi}16i6n]} : Γ′

⊢ h : Γ, o : C[F] F ⊢ C : S
(T-Hide)

⊢ h : Γ, o : S

⊢ h : Γ Γ ∗ r ⊲ e : T ⊳ Γ′ ∗ r′
(T-State)

Γ ⊲ (h ∗ r; e) : T ⊳ Γ′ ∗ r′

Figure 11: Typing rules for states

it cannot be used within an expression. This is part of the linear control of objects: somewhere
there must be a reference to the object at r, in order for a method to have been called on that
object, which is what gives rise to the evaluation of an expression whose current object path is
r. So obtaining another reference to the object at r, within the active expression, would violate
linearity.

Another new rule is T-VarS, which constructs a variant session type for a field of the current
object. At the top level, the only expression capable of constructing a variant session type is a
method call, but once the method call has reduced into something else this rule is necessary for
type preservation.

The last additional rule for expressions is T-Return, which types a return expression repre-
senting an ongoing method call. The subexpression e represents an intermediate state in a method
of object r′.f . As such, it is typed with final current object r′.f and a final environment where
the type of r′.f is of the form C[F], representing an inside view of the object, where the fields
are visible. This rule then steps out of the object, hides its fields and changes its type into the
outside view of a session type, which must be consistent with the internal type (F ⊢ C : S). The
particular case where T is linkthis is the same as in T-Call. T is not allowed to already be of
the form link f ′ since it would break encapsulation (f ′ would refer to a field of r′.f which is not
known outside of the object).

An important point is that the only expression that changes the current object is return.
Several rules besides T-Return can inherit in the conclusion a change of current object from a
subexpression in a premise, but they do not add further changes. Thus the final current object
path is always a prefix of the initial one, and the number of field specifications removed is equal
to the number of returns contained in the expression. Also note that the second part of a sequence
and the branches of a switch are not reduction contexts; therefore, they should not contain return

and are not allowed by the rules to change the current object.

As we saw in Section 3.2, a runtime state consists of a heap, a current object path, and a
runtime expression. Figure 11 describes how these parts are related by typing: a typing judgement
for the expression gives one for the state provided the current object is the same and the initial
environment reflects the content of the heap; this last constraint is represented by the judgement
⊢ h : Γ. Such a judgement is constructed starting from the axiom T-HEmpty which types an
empty heap and adding objects into the heap one by one with rule T-HAdd, converting their
types into sessions using T-Hide as needed. As T-HAdd is the only rule that adds to Γ, we have
the property that ⊢ h : Γ implies that every identifier in Γ also appears in h.

T-HAdd essentially says that adding a new object with given field values to the heap affects
the environment in the same way as an expression that starts from an empty object and puts the
values into the fields one by one. The most important feature of this rule is that whenever a vi
is an object identifier, the typing derivation for the expression has to use T-Ref, which implies
both that the initial environment contains vi and that the final one, which represents the type of
the extended heap, does not. This means that a type environment corresponding to a heap never
contains entries for object identifiers that appear in fields of other objects, and it also implies that
a heap with multiple references to the same object is not typable. The numbering of the fields in
the rightmost premise is arbitrary, meaning it must not be interpreted as requiring the sequence
of swaps to be done in any particular order; all possible orders are valid instances of the premise.
This is important if the type of the object being added is to contain links and variants: suppose
that field f contains an object o and field g a label l; it must be possible to attribute a variant
type to f and the type link f to g, but this can only be done as a result of typing the sequence of
swaps if f ↔ o occurs before g ↔ l.

16

o : C[C′[{mi : Si}i∈I] f, T g] ∗ o ⊲ g ↔ f.mj(); switch (g ↔ null) {l : el}l∈E

↓ (R-Call)
o : C[C′[F] f, T g] ∗ o.f ⊲ g ↔ return e; switch (g ↔ null) {l : el}l∈E

↓ ∗
o : C[C′[Fl0] f, T g] ∗ o.f ⊲ g ↔ return l0; switch (g ↔ null) {l : el}l∈E

↓ (R-Return)
o : C[C′[Sl0] f, T g] ∗ o ⊲ g ↔ l0; switch (g ↔ null) {l : el}l∈E

↓ (R-Swap,R-Seq)
o : C[C′[〈l : Sl〉l∈E] f, (link f) g] ∗ o ⊲ switch (g ↔ null) {l : el}l∈E

↓ (R-Swap)
o : C[C′[Sl0] f,Null g] ∗ o ⊲ switch (l0) {l : el}l∈E

↓ (R-Switch)
o : C[C′[Sl0] f,Null g] ∗ o ⊲ el0

Figure 12: Example of the interplay between method call, switch and link types. The heap and
the rightmost typing environment are omitted.

3.5 Example of reduction and typing

Figure 12 illustrates the operational semantics and the way in which the environment used to type
an expression changes as the expression reduces (see Theorem 3.18 on page 19).

The initial expression is
g = f.mj(); switch (g) {l : el}l∈E

where for simplicity we have ignored the parameter of mj . This expression is an abbreviation for

g ↔ f.mj(); null; switch (g ↔ null) {l : el}l∈E

which we simplify to
g ↔ f.mj(); switch (g ↔ null) {l : el}l∈E

The initial typing environment is

o : C[C′[{mi : Si}i∈I] f, T g]

with o as the current object, where Sj = 〈l : Sl〉l∈E . The body of method mj is e with the typing

this : C′[F] ∗ this ⊲ e : linkthis ⊳ this : C′[〈l : Fl〉l∈E] ∗ this

and we assume that mj returns l0 ∈ E. According to Definition 3.12 and the typing of the
declaration of class C′ we have Fl0 ⊢ C′ : Sl0 and F ⊢ C′ : {mi : Si}i∈I .

The figure shows the environment in which each expression is typed; the environment changes
as reduction proceeds, for several reasons explained below. The typing of an expression is Γ ⊲

e : T ⊳ Γ′ but we only show Γ because Γ′ does not change and T is not the interesting part of
this example. We also omit the heap, showing the typing of expressions instead of states. Calling
f.mj() changes the type of field f to C′[F] because we are now inside the object; the current
object path changes from o to o.f . As e reduces to l0 the type of f may change, finally becoming
C′[Fl0] so that it has the component of the variant field typing 〈l : Fl〉l∈E corresponding to l0. The
reduction by R-Return changes the type of f to C′[Sl0] because we are now outside the object
again, but the type is still the component of a variant typing corresponding to l0. At this point f
is popped from the current object path. The swap changes the type of f again, to C′[〈l : Sl〉l∈E],
which is C′[Sj], the type we were expecting after the method call. At this point the information
about which component of the variant typing we have is stored in o.g, the field the label was
swapped into: the type of the expression f.mj() is link f , which appears as the type of o.g after
the swap is executed. When extracting the value of g in order to switch on it, the type link f
disappears from the environment and becomes the type of the subexpression g ↔ null, at the same
time resolving the variant type of f according to the particular enumerated value l0.

17

3.6 Typing the initial state

Recall the discussion of the initial state for execution of a program, from the end of Section 3.2.
The initial state is (top = C[C.fields = ~null] ∗ top; e) where class C has a designated main method
m with body e. In order to type this initial state, we require that m is immediately available in
C.session, and assume that the program is typable, i.e. that rule T-Class is applicable to every
class definition. If C.fields = ~f then the hypothesis of T-Class is

−−→
Null ~f ⊢ C : C.session; this

is what the type checking algorithm defined in Section 8 checks. The definition of F ⊢ C : S

gives this : C[
−−→
Null ~f], x : Null ∗ this ⊲ e : T ⊳ this : C[F] ∗ this for some field typing F . The type

T is irrelevant. Lemma 7.10 (Substitution), to be proved later, gives top : C[
−−→
Null ~f] ∗ top ⊲ e :

T ⊳ top : C[F] ∗ top, as we assumed that e{null/x} = e. Straightforward use of T-HEmpty and
T-HAdd gives ⊢ top = C[C.fields = ~null] : top : C[

−−→
Null ~f] and then T-State gives a typing for the

initial state.

3.7 Properties of the type system

The main results in this sequential setting are standard: type preservation under reduction (also
known as Subject Reduction) and absence of stuck states for well-typed programs. Furthermore,
the system also enjoys of a conformance property: all executions of well-typed programs follow
what is specified by the classes’ session types.

3.7.1 Soundness of subtyping

In this section we prove that the subtyping relation is sound with respect to the type system, in
the sense that it preserves not only typing judgements but also consistency between field typings
and session typings, reflecting the safe substitution property.

Lemma 3.14 If Γ ∗ r ⊲ e : T ⊳ Γ′ ∗ r′ and Γ′′ <: Γ, then Γ′′ ∗ r ⊲ e : T ⊳ Γ′ ∗ r′.

Proof. Straightforward induction on the derivation.

Proposition 3.15 (soundness of subtyping for fields) If F ⊢ C : S and F ′ <: F then F ′ ⊢
C : S.

Proof. Straightforward using Lemma 3.14.
Before proving the case where subtyping is on the right, we first remark that, similarly to

sub-session, the necessary conditions in the definition of C-consistency (Definition 3.12) become
sufficient once we consider the largest relation:

Lemma 3.16 Let C be a class and F a field typing for that class.

1. Suppose F is not a variant, and suppose there is a set of method definitions {mi(xi) {ei}}i∈I

in the declaration of class C such that, for all i, we have this : C[F], xi : T
′
i ∗ this ⊲ ei : Ti ⊳

this : C[Fi] ∗ this with Fi ⊢ C : Si. Then F ⊢ C : {Ti mi(T
′
i) : Si}i∈I holds.

2. Suppose F = 〈l : Fl〉l∈E′ and let (Sl)l∈E be a family of session types such that E′ ⊆ E and
Fl ⊢ C : Sl for all l ∈ E′. Then F ⊢ C : 〈l : Sl〉l∈E holds.

Proof. Let S be either {Ti mi(T
′
i) : Si}i∈I or 〈l : Sl〉l∈E depending on the case. Just notice that

(• ⊢ C : •) ∪ {(F, S)} is a C-consistency relation.

Proposition 3.17 (soundness of subtyping for sessions) If F ⊢ C : S and S <: S′ then
F ⊢ C : S′.

Proof. For any class C, we define the following relation:

RC = {(F, S′) | ∃S, F ⊢ C : S and S <: S′}

and prove that it is a C-consistency relation (Definition 3.12). Let (F, S′) ∈ RC , and let S be as
given by the definition of the relation. We have two cases depending on the form of S′ (branch or
variant).

18

The first one is S′ = {U ′
j mj(T

′
j) : S′

j}j∈J . Then S <: S′ means (Definition 3.5) that we
have: S = {Ui mi(Ti) : Si}i∈I with J ⊆ I and for all j ∈ J , Uj mj(Tj) : Sj is <:-compatible
with U ′

j mj(T
′
j) : S

′
j . Let j ∈ J , we know from F ⊢ C : S that C contains a method declaration

mj(x) {e} such that the following judgement:

x : Tj , this : C[F] ∗ this ⊲ e : Uj ⊳ this : C[Fj] ∗ this

holds, with Fj ⊢ C : Sj . <:-compatibility between the two signatures of mj (Definition 3.4) gives
us, first, T ′

j <: Tj , which allows us to apply Lemma 3.14 to this judgement and replace Tj by T ′
j

in it, and second, either:

1. Uj <: U ′
j and Sj <: S′

j . The former allows us to use T-Sub to replace Uj by U ′
j in the typing

judgement for e, fulfilling the first condition in the definition of C-consistency. The latter,
together with Fj ⊢ C : Sj , implies (Fj , S

′
j) ∈ RC , fulfilling the second one.

2. Uj is an enumerated type E, U ′
j = linkthis and 〈l : Sj〉l∈E <: S′

j . In this case we first apply
T-VarF to the judgement, yielding:

x : T ′
j , this : C[F] ∗ this ⊲ e : linkthis ⊳ this : C[〈l : Fj〉l∈E] ∗ this.

From Fj ⊢ C : Sj we deduce 〈l : Fj〉l∈E ⊢ C : 〈l : Sj〉l∈E using Lemma 3.16, and conclude
(〈l : Fj〉l∈E , S

′
j) ∈ RC .

In the second case, where S′ = 〈l : S′
l〉l∈E′ , then S = 〈l : Sl〉l∈E with E ⊆ E′ and ∀l ∈ E, Sl <:

S′
l . From F ⊢ C : S we know that F = 〈l : Fl〉l∈E′′ with E′′ ⊆ E and Fl ⊢ C : Sl for any l in E′′.

Just notice that E′′ ⊆ E′ and (Fl, S
′
l) ∈ RC for any l in E′′.

3.7.2 Type preservation

Theorem 3.18 (Subject Reduction) Let D be a set of well-typed declarations, that is, such
that for every class declaration D in D we have ⊢ D.

If, in a context parameterised by D, we have Γ ∗ r ⊲ (h ∗ r; e) : T ⊳ Γ′ ∗ r′, and if (h∗r; e) −→
(h′ ∗ r′′; e′), then there exists Γ′′ such that Γ′′ ∗ r′′ ⊲ (h′ ∗ r′′; e′) : T ⊳ Γ′ ∗ r′.

Proof. This theorem is a particular case of Theorem 7.16 which will be proved in Section 7.

3.7.3 Type safety

Theorem 3.19 (No Stuck Expressions) Let D be a set of well-typed declarations, that is, such
that for every class declaration D in D we have ⊢ D.

If, in a context parameterised by D, we have Γ ∗ r ⊲ (h ∗ r; e) : T ⊳ Γ′ ∗ r′, then either e is a
value or there exists (h′ ∗ r′′; e′) such that (h ∗ r; e) −→ (h′ ∗ r′′; e′).

Proof. This theorem is also a consequence of Theorem 7.16, so we postpone its proof until Section
7.

3.7.4 Conformance

We show that, in well-typed programs, a sequence of method calls (interleaved with their respective
return labels) of a given class is a path of its session type. In order to state this property precisely,
we introduce a few definitions.

Definition 3.20 (Call trace) A call trace is a sequence m1l1m2l2 . . .mnln in which each mi is
a method name and each li may be absent or, if present, is a label.

Definition 3.21 (LTS on session types) Define a labelled transition relation on class session
types by the following rules. α stands for m or l.

j ∈ I

{T ′
i mi(Ti) : Si}i∈I

mj

−→ Sj

l0 ∈ E

〈l : Sl〉l∈E
l0−→ Sl0

S is not a variant

S
l

−→ S

S{µX.S/X}
α

−→ S′

µX.S
α

−→ S′

19

Definition 3.22 (Call trace mapping) A call trace mapping for a heap h is a function tr from
dom(h) to call traces.

Definition 3.23 (Validity of mappings) A call trace mapping tr for a heap h is valid if for

every entry o = C[. . .] in h, we have C.session
tr(o)

−→∗. An element in a call trace which does not
allow the corresponding session type to reduce is a type error. (Thus a call trace is valid if and
only if it does not contain type errors).

Definition 3.24 If tr is a call trace mapping for a heap h then we define tr(h, r) for references
r such that h(r) is defined, as follows:

tr(h, o) = tr(o)

tr(h, r.f) = tr(h(r).f)

Definition 3.25 (Original reduction rule) If (h ∗ r; e) −→ (h′ ∗ r′; e′) then the derivation of
this reduction consists of a number of applications of R-Context, preceded by another rule which
forms a unique leaf node in the derivation. We say that the rule at the leaf node is the original
reduction rule for the reduction, or that the reduction originates from this rule.

Definition 3.26 (Extension of call traces) Suppose tr is a call trace mapping for h and (h ∗
r; e) −→ (h′ ∗ r′; e′). Define a call trace mapping tr

′ for h′ as follows:

• If the reduction originates from R-Call with method m and field f then tr
′ = tr{h(r.f) 7→

tr(h(r.f))m}.

• If the reduction originates from R-Return with value v, and v is a label l, then tr
′ =

tr{h(r) 7→ tr(h(r))l}.

• If the reduction originates from R-New and the fresh object is o then tr
′ = tr{o 7→ ε}.

• Otherwise, tr ′ = tr .

The conformance property is the following: in a sequence of reductions starting from the initial
state of a well-typed program, the call traces built using the extension mechanism defined above
are valid throughout the sequence. We need a couple of lemmas to properly relate call traces and
typings in the case of variant types.

Lemma 3.27 If ⊢ h : Γ, then Γ does not contain type linkthis or any variant field typing.

Proof. It suffices to show that rule T-VarF cannot be used in the derivation of ⊢ h : Γ, since it
is the only rule that introduces linkthis or variant field typings.

This rule can only be used on an expression of enumerated type, and the only place where such
an expression can occur in the derivation of ⊢ h : Γ is as the right member of a swap in the second
premise of T-Hadd (the swap expression itself has type Null because of the initial environment).
It corresponds to the first premise of T-Swap. However, the third premise of T-Swap forbids
that the type of the expression be linkthis, hence T-VarF cannot be used there.

Lemma 3.28 (Variant consistency) If ⊢ h : Γ and Γ(r) = 〈l : Sl〉l∈E, then:

1. r is of the form r′.f

2. there exists f ′ such that Γ(r′.f ′) = link f and h(r′.f ′) ∈ E.

Proof. Consider how a variant session type can be introduced in the derivation of ⊢ h : Γ. Because
of Lemma 3.27, it cannot be a consequence of T-Hide: indeed, F ⊢ C : S where S is a variant
can only hold if F is a variant as well. Thus the only possibility is T-VarS, and it can only occur
when typing one of the values in the right premise of T-Hadd. (1) follows from the fact that
T-VarS acts on a field of the current object. Then T-SubEnv can be applied but the original
label T-VarS was applied to is still in the final E. (2) follows from the structure of the derivation:
the label T-VarS is applied to is then swapped into a field of the same object.

20

Top-level syntax (add to Figure 5):
e ::= . . . | while (e) {e}

Reduction rule (add to Figure 7):

(R-While) (h ∗ r; while (e) {e′}) −→ (h ∗ r; switch (e) {True : e′;while (e) {e′},False : null})

Top-level typing rules (add to Figure 9):

Γ ∗ r ⊲ e : {True,False} ⊳ Γ′ ∗ r′ Γ′ ∗ r′ ⊲ e′ : Null ⊳ Γ ∗ r
(T-While)

Γ ∗ r ⊲ while (e) {e′} : Null ⊳ Γ′ ∗ r′

Γ ∗ r ⊲ e : link f ⊳ Γ′ ∗ r′ Γ′(r′.f) = 〈True : STrue,False : SFalse〉
Γ′{r′.f 7→ STrue} ∗ r′ ⊲ e′ : Null ⊳ Γ ∗ r

(T-WhileLink)
Γ ∗ r ⊲ while (e) {e′} : Null ⊳ Γ′{r′.f 7→ SFalse} ∗ r′

Figure 13: Rules for while

Definition 3.29 (Actual session type) Let Γ and h be such that ⊢ h : Γ. For any r in Γ such
that Γ(r) is a session type S, we define S′, the actual session type of r in h according to Γ, as
follows:

• If S is a branch then S′ = S.

• If S is a variant 〈l : Sl〉l∈E , then S′ = Sh(r′.f ′), where r′ and f ′ are as given by Lemma 3.28.

Definition 3.30 (Consistency of call traces) Let tr be a call trace mapping for a heap h and
let Γ be a type environment such that ⊢ h : Γ. We say that tr is consistent with Γ if for every r

in Γ with actual session type S we have class(h(r)).session
tr(h,r)

−→∗ S.

Theorem 3.31 (Conformance) Suppose we are in a context parameterised by a set of well-typed
declarations.

Let (h1 ∗ r1; e1) be a program state together with a valid call trace mapping tr1, and suppose
that (h1 ∗ r1; e1) −→ · · · −→ (hn ∗ rn; en) is a reduction sequence such that r1 is a prefix of all
ri. Definition 3.26 gives a corresponding sequence of call traces tr i.

If there exists Γ such that tr1 is consistent with Γ and Γ ∗ r1 ⊲ (h1 ∗ r1; e1) : T ⊳ Γ′ ∗ r′ then
for all i, tr i is valid.

Proof. Postponed, again, to Section 7 as it makes use of the proof of Theorem 7.16 which will
be proved there.

Corollary 3.32 Given a well-typed program, starting from the initial state described at the end
of Section 3.2 with the initial call trace mapping {top 7→ m}, and given a reduction sequence
from there, the call trace mappings obtained by Definition 3.26 following the reductions are valid
throughout the sequence.

Proof. We just have to see that:

1. the initial call trace mapping is valid, as the main method m is required to appear in the
initial session type of the main class;

2. it is also consistent with the initial typing given in Section 3.6, as the initial Γ contains no
session type;

3. the initial current object path is reduced to an object identifier and, therefore, stays a prefix
of the current object path throughout any reduction sequence.�

4 Extensions to the Sequential Language

This section describes some extensions of the core language presented in the previous section.

21

Top-level syntax (add to Figure 5) :

M ::= . . . | req F ens F for T m(T x) {e}

e ::= . . . | m(e)

Reduction rule (add to Figure 7):

req _ ens _ for _ m(_ x) {e} ∈ h(r).class
(R-SelfCall)

(h ∗ r; m(v)) −→ (h ∗ r; e{v/x})

Top-level typing rules (add or replace in Figure 9):

Γ ∗ r ⊲C e : T ⊳ Γ′ ∗ r′ Γ′(r′) = C[F] req F ens F ′ for T ′ m(T x) {e} ∈ C
(T-SelfCall)

Γ ∗ r ⊲C m(e) : T ′ ⊳ Γ′{r′ 7→ C[F ′]} ∗ r′

this : C[F], x : T ′ ∗ this ⊲C e : T ⊳ this : C[F ′], x : T ′′ ∗ this F ′ 6= 〈_〉
(T-AnnotMeth)

⊢C req F ens F ′ for T m(T ′ x) {e}

−−→
Null ~f ⊢ C : S ∀M ∈ ~M. (M has req/ens ⇒ ⊢C M)

(T-Class)
⊢ class C {S; ~f ; ~M}

Figure 14: Rules for recursive methods and other self-calls

4.1 While Loops

The language can easily be extended to include while loops, by adding the rules in Figure 13. The
reduction rule defines while recursively in terms of switch. There are two typing rules, derived
from T-Switch and T-SwitchLink. The first deals with a straightforward while loop that has
no interaction with session types, and the second deals with the more interesting case in which
the condition of the loop is linked to the session type of an object.

4.2 Self-Calls and Recursive Methods

The rules in Figure 14 extend the language to include self-calls (method calls on this). This
extension also supports recursive calls, which are necessarily self-calls. Self-calls do not check or
advance the session type, and a method that is only self-called does not appear in the session type.
A method that is self-called and called from outside appears in the session type, and calls from
outside do check and advance the session type. The reason why it is safe to not check the session
type for self-calls is that the effect of the self-call on the field typing is included in the effect of the
method that calls it. All of the necessary checking of session types is done because of the original
outside call that eventually leads to the self-call.

Because they are not in the session type, self-called methods must be explicitly annotated
with their initial (req) and final (ens) field typings. The annotations are used to type self-calls
(T-SelfCall) and method definitions (T-AnnotMeth). The result type and parameter type
are also specified as part of the method definition, again because the method is not in the session
type.

If a method is in the session type then its body is checked by the first hypothesis of T-Class,
but the annotations (if present) are ignored except when they are needed to check recursive calls.
If a method has an annotation then its body is checked by the second hypothesis of T-Class. If
both conditions apply then the body is checked twice. An implementation could optimize this.

An annotated method cannot produce a variant field typing or have a link type, because
T-SwitchLink can only analyze a variant session type, not a variant field typing.

4.3 Shared Types and Base Types

The formal language described in this paper has a very strict linear type system. It is straight-
forward to add non-linear classes as an orthogonal extension: they would not have session types
and their instances would be shared objects, treated in a completely standard way. Our prototype
implementation, described in Section 8.4, includes them, but including them in the formalisation
would only complicate the typing rules.

22

1Fi l eReadCh = &{OPEN: ? S t r i n g .⊕{OK: OpenCh , ERROR: Fi l eReadCh } , QUIT : End}
2OpenCh = &{HASNEXT: ⊕{TRUE: CanReadCh , FALSE : MustCloseCh} , CLOSE : Fi l eReadCh }
3MustCloseCh = &{CLOSE : Fi l eReadCh }
4CanReadCh = &{READ: ! S t r i n g . OpenCh , CLOSE : Fi l eReadCh }

Figure 15: Remote file server version 1: channel session type (server side)

More interesting, and more challenging, is the possibility of introducing a more refined approach
to aliasing and ownership, for example along the lines of the systems discussed in Section 9. We
intend to investigate this in the future.

Base types such as int are also straightforward to add, and would be treated non-linearly.

4.4 Nominal Subtyping

The formal language uses a structural type system in which class names are only used in order
to obtain their session types; method availability is determined solely by the session type, and
method signatures are also in the session type. In particular, the subtyping relation is purely
structural and makes no reference to class names. It is straightforward to adapt the language
to include features associated with nominal subtyping, such as an explicitly declared inheritance
hierarchy for classes with inheritance and overriding of method definitions. In this case, if class C
is declared to inherit from class D, and both define session types (alternatively, C might inherit
its session type from D), then the condition C.session <: D.session would be required in order for
the definition of C to be accepted.

5 A Distributed Example

We now present an example of a distributed system, illustrating the way in which our language
unifies session-typed channels and more general typestate. The scenario is a file server, which
clients can communicate with via a channel. The file server uses a local file, represented by a
File object as defined in Section 2, and responds to requests such as OPEN and HASNEXT on
the channel. On the client side, the remote file is represented by an object of class RemoteFile,
whose interface is similar to File . In this “stub” object, methods such as open are implemented
by communicating with the file server.

The channel between the client and the server has a session type in the standard sense, which
defines a communication protocol. In our language, each endpoint of the channel is represented
by an object of class Chan, with a class session type derived from the channel session type. This
class session type also expresses the definition of the communication protocol, by specifying when
the methods send and receive are available.

For the purpose of this example, we imagine that the communication protocol (channel session
type) is defined by the provider of the file server, while the class session type of RemoteFile is defined
by the implementor of a file system API. We therefore present two versions of the example: one in
which the channel session type, and the class session type of RemoteFile, have the same structure;
and one in which they have different structures.

5.1 Distributed Example Version 1

Figure 15 defines a channel session type for interaction between a file server and a client. The type
of the server’s endpoint is shown, and the type FileReadCh is the starting point of the protocol.
The type constructor & means that the server offers a choice, in this case between OPEN and
QUIT; the client makes a choice by sending one of these labels. If OPEN is selected, the server
receives (constructor ?) a String and then (the . constructor means sequencing) the constructor ⊕
indicates that the server can choose either OK or ERROR. The remaining definitions are read in
the same way; note that End means termination of the protocol. The type of the client’s endpoint
is dual, meaning that receive (?) and send (!) are exchanged, as are offer (&) and select (⊕).
When the server offers a choice, the client must make a choice, and vice versa.

23

1F i l eRead_c l = { Nul l send ({OPEN}) : {Nul l send (S t r i n g) : {{OK, ERROR} r e c e i v e () :
2〈OK: Open_cl ,
3ERROR: F i l eRead_c l 〉 }} ,
4Nul l send ({QUIT }) : {}}
5where

6Open_cl = {Nul l send ({HASNEXT}) : {{TRUE, FALSE} r e c e i v e () :
7〈TRUE: CanRead_cl , FALSE : MustClose_cl 〉 } ,
8Nul l send ({CLOSE }) : F i l eRead_c l }
9MustClose_cl = { Nul l send ({CLOSE }) : F i l eRead_c l }

10CanRead_cl = {Nul l send ({READ}) : { S t r i n g r e c e i v e () : Open_cl } ,
11Nul l send ({CLOSE }) : F i l eRead_c l }

1Fi l eRead_s = {{OPEN, QUIT} r e c e i v e () : 〈OPEN: { S t r i n g r e c e i v e () :
2{Nul l send ({OK}) : Open_s ,
3Nul l send ({ERROR}) : F i l eRead_s } ,
4QUIT : {} 〉 }
5where

6Open_s = {{HASNEXT, CLOSE} r e c e i v e () :
7〈HASNEXT: {Nul l send ({TRUE}) : CanRead_s ,
8Nul l send ({FALSE }) : MustClose_s } ,
9CLOSE : Fi l eRead_s 〉 }

10MustClose_s = {{CLOSE} r e c e i v e () : 〈CLOSE : Fi l eRead_s 〉}
11CanRead_s = {{READ, CLOSE} r e c e i v e () : 〈READ: {Nul l send (S t r i n g) : Open_s } ,
12CLOSE : Fi l eRead_s 〉}

Figure 16: Remote file server version 1: client and server class session types generated from channel
session type FileReadCh

1c l a s s RemoteFi l e {
2s e s s i on { connect : I n i t }
3where I n i t = {open : 〈OK: Open , ERROR: I n i t 〉 }
4Open = {hasNext : 〈TRUE: Read , FALSE : C lose 〉 , c l o s e : I n i t }
5Read = { read : Open , c l o s e : I n i t }
6Close = { c l o s e : I n i t }
7
8channe l ;
9

10Nul l connect (〈 Fi l eReadCh 〉 s e r v e r) {
11channe l = s e r v e r . request () ;
12}
13{OK,ERROR} open (S t r i n g name) {
14channe l . send (OPEN) ;
15channe l . send (name) ;
16switch (channe l . r e c e i v e ()) {
17OK: OK;
18ERROR: ERROR;
19}
20}
21{TRUE, FALSE} hasNext () {
22channe l . send (HAS_NEXT) ;
23switch (channe l . r e c e i v e ()) {
24TRUE: TRUE;
25FALSE : FALSE ;
26}
27}
28S t r i n g read () {
29channe l . send (READ) ;
30channe l . r e c e i v e () ;
31}
32Nul l c l o s e () {
33channe l . send (CLOSE) ;
34}
35}

Figure 17: Remote file server version 1: client side stub

24

1c l a s s F i l e S e r v e r {
2s e s s i on { Nul l main (〈 Fi l eReadCh 〉 po r t) : {} }
3
4channe l ; f i l e ;
5
6Nul l main (〈 Fi l eRead_c 〉 po r t) {
7f i l e = new F i l e () ;
8channe l = po r t . accept () ;
9f i l e R e a d () ;

10}
11req Fi l eRead_s channe l , I n i t f i l e
12ens {} channe l , I n i t f i l e
13Nul l f i l e R e a d () {
14switch (channe l . r e c e i v e ()) {
15OPEN:
16switch (f i l e . open (channe l . r e c e i v e ())) {
17OK: open () ;
18ERROR: f i l e R e a d () ;
19}
20QUIT : n u l l ;
21}
22}
23req Open_s channe l , Open f i l e
24ens {} channe l , I n i t f i l e
25Nul l open () {
26switch (channe l . r e c e i v e ()) {
27HASNEXT:
28switch (f i l e . hasNext ()) {
29TRUE: channe l . send (TRUE) ; canRead () ;
30FALSE : channe l . send (FALSE) ; mustClose () ;
31}
32CLOSE : f i l e . c l o s e () ; f i l e R e a d () ;
33}
34req MustClose_s channe l , C l o se f i l e
35ens {} channe l , I n i t f i l e
36Nul l mustClose () {
37switch (channe l . r e c e i v e ()) {
38CLOSE : f i l e . c l o s e () ; f i l e R e a d () ;
39}
40}
41req CanRead_s channe l , Read f i l e
42ens {} channe l , I n i t f i l e
43Nul l canRead () {
44switch (channe l . r e c e i v e ()) {
45READ: channe l . send (f i l e . r ead ()) ; open () ;
46CLOSE : f i l e . c l o s e () ; f i l e R e a d () ;
47}
48}
49}

Figure 18: Remote file server version 1: server code

The structure of the channel session type is similar to that of the class session type of File
from Section 2, in the sense that HASNEXT is used to discover whether or not data can be read.

We regard each endpoint of a channel as an object with send and receive methods. For every
channel session type there is a corresponding class session type that specifies the availability and
signatures of send and receive. The general translation is defined in Section 6, Figure 25. For the
particular case of FileReadCh, the client and server class session types are as defined in Figure 16
(using Style 2 since the signatures vary and there is no associated class declaration).

Selecting one option from a range (⊕) corresponds to availability of send with a range of
signatures, each with a parameter type representing one of the possible labels; here we are taking
advantage of overloading, disambiguated by parameter type. Offering a choice (&) corresponds
to a receive in which the subsequent session depends on the label that is received. Sending and
receiving data correspond straightforwardly to send and receive with appropriate signatures.

25

1F i l eChanne l = &{OPEN: ? S t r i n g .⊕{OK: CanRead , ERROR: F i l eChanne l } , QUIT : End}
2CanRead = &{READ: ⊕{EOF : F i l eChanne l , DATA: ! S t r i n g . CanRead } , CLOSE : F i l eChanne l }

Figure 19: Remote file server version 2: channel session type (server side)

1Cl i entCh = { Nul l send ({OPEN}) : {Nul l send (S t r i n g) : {{OK, ERROR} r e c e i v e () :
2〈OK: CanRead_cl ,
3ERROR: C l i en tCh 〉 }} ,
4Nul l send ({QUIT }) : {}}
5where CanRead_cl = {Nul l send ({READ}) : {{EOF , DATA} r e c e i v e () :
6〈EOF : C l i en tCh ,
7DATA: { S t r i n g r e c e i v e () : CanRead_cl } 〉 } ,
8Nul l send ({CLOSE}) : C l i en tCh }

1ServerCh = {{OPEN, QUIT} r e c e i v e () : 〈OPEN: { S t r i n g r e c e i v e () :
2{Nul l send ({OK}) : CanRead_cl ,
3Nul l send ({ERROR}) : ServerCh }} ,
4QUIT : {} 〉}
5where CanRead_cl = {{READ, CLOSE} r e c e i v e () :
6〈READ: {Nul l send ({EOF}) : ServerCh ,
7Nul l send ({DATA)} : { Nul l send (S t r i n g) : CanRead_cl }} ,
8CLOSE : ServerCh 〉 }

Figure 20: Remote file server version 2: client and server class session types generated from channel
session type FileChannel

Figure 17 defines the class RemoteFile, which acts as a local proxy for a remote file server. Its
interface is similar to that of the class File from Section 2; the only difference is that RemoteFile
has an additional method connect, which must be called in order to establish a connection to
the file server. The types RemoteFile. Init and File . Init are equivalent (Definition 3.9): each is a
subtype of the other, and they can be used interchangeably.

The methods of RemoteFile are implemented by communicating over a channel to a file server.
The connect method has a parameter of type 〈FileReadCh〉. A value of this type represents an
access point, analogous to a URL, on which a connection can be requested by calling the request

method (line 11); the resulting channel endpoint has type FileRead_cl.

The remaining methods communicate on the channel, and thus advance the type of the field
channel. The similarity of structure between the channel session type FileReadCh and the class
session type Init is reflected in the simple definitions of the methods, which just copy information
between their parameters and results and the channel. There is one point of interest in relation
to the close method. It occurs three times in the class session type, and according to our type
system, its body is type checked once for each occurrence. Each time, the initial type environment
in which the body is checked has a different type for the channel field: Open_cl, MustClose_cl or
CanRead_cl. Type checking is successful because all of these types allow send({CLOSE}).

Figure 18 defines the class FileServer , which accesses a local file system and uses the server
endpoint of a channel of type FileReadCh. The session type of this class contains the single method
main, with a parameter of type 〈FileReadCh〉. We imagine this main method to be the top-level
entry point of a stand-alone application, with the parameter value (the access point or URL for
the server) being provided when the application is launched. The server uses accept to listen
for connection requests, and when a connection is made, it obtains a channel endpoint of type
FileRead_s.

The remaining methods of FileServer are mutually recursive in a pattern that matches the
structure of FileRead_s. The methods are self-called, and do not appear in the class session type;
instead, they are annotated with pre- and post-conditions on the types of the fields channel and
file . The direct correspondence between the structure of the channel session type and the class
session type of File is again reflected in the code, for example on lines 29 and 30 where the result
of calling hasNext on file directly answers the HASNEXT query on channel.

26

1c l a s s RemoteFi l e {
2s e s s i on { connect : I n i t }
3where I n i t = {open : 〈OK: Open , ERROR: I n i t 〉}
4Open = {hasNext : 〈TRUE: Read , FALSE : C lose 〉 , c l o s e : I n i t }
5Read = { read : Open , c l o s e : I n i t }
6Close = { c l o s e : I n i t }
7
8channe l ; s t a t e ;
9

10Nul l connect (〈 F i l eChanne l 〉 c) {
11channe l = c . request () ;
12}
13{OK,ERROR} open (S t r i n g name) {
14channe l . send (OPEN) ;
15channe l . send (name) ;
16switch (channe l . r e c e i v e ()) {
17OK: s t a t e = READ; OK;
18ERROR: ERROR;
19}
20}
21{TRUE, FALSE} hasNext () {
22channe l . send (READ) ;
23switch (channe l . r e c e i v e ()) {
24EOF : s t a t e = EOF ; FALSE ;
25DATA: s t a t e = DATA; TRUE;
26}
27}
28S t r i n g read () {
29s t a t e = READ;
30channe l . r e c e i v e () ;
31}
32Nul l c l o s e () {
33switch (s t a t e) {
34EOF : n u l l ;
35READ: channe l . send (CLOSE) ;
36DATA: channe l . r e c e i v e () ; channe l . send (CLOSE) ;
37}
38}
39}

Figure 21: Remote file server version 2: client side stub

5.2 Distributed Example Version 2

This version has a different channel session type, FileChannel, defined in Figure 19, which does not
match the class session type FileRead. The difference is that there is no HASNEXT option; instead,
the READ option is always available. If there is no more data then EOF is returned in response
to READ; alternatively, DATA is returned, followed by the desired data. The corresponding class
session types for the client and server endpoints are defined in Figure 20.

The implementation of RemoteFile must now mediate between the different structures of the
class session type FileRead and the channel session type FileChannel. The new definition is in
Figure 21. The main point is that the definition of the close method must depend on the state of
the channel. For example, if close is called immediately after a call of hasNext that returns TRUE,
then the channel session type requires data to be read before CLOSE can be sent. We therefore
introduce the field state , which stores a value of the enumerated type {EOF, READ, DATA}. This
field represents the state of the channel (equivalently, the session type of the channel field): EOF
corresponds to ClientCh, READ corresponds to CanRead, and DATA corresponds to the point after
the DATA label in CanRead. The definition of close contains a switch on state , with appropriate
behaviour for each possible value. It is also possible for state to be null, but this only occurs
before open has been called, and at this point close is not available.

In order to type check this example we take advantage of the fact that the body of the close
method is repeatedly checked, according to its occurrence in the class session type. The value of
state always corresponds to the state of channel. This correspondence is not represented in the
type system — that would require some form of dependent type — but whenever the body of close

27

1c l a s s F i l e S e r v e r {
2s e s s i on {main : {}}
3
4channe l ; f i l e ;
5
6Nul l main (〈 F i l eChanne l 〉 c) {
7f i l e = new F i l e () ;
8channe l = c . accept () ;
9s e r v e rCh () ;

10}
11req ServerCh channe l , I n i t f i l e
12ens {} channe l , I n i t f i l e
13Nul l s e r v e rCh () {
14switch (channe l . r e c e i v e ()) {
15OPEN:
16switch (f i l e . open (channe l . r e c e i v e ())) {
17OK: canRead () ;
18ERROR: s e r v e rCh () ;
19}
20QUIT : n u l l ;
21}
22}
23req CanRead_s channe l , Open f i l e
24ens {} channe l , I n i t f i l e
25Nul l canRead () {
26switch (channe l . r e c e i v e ()) {
27READ:
28switch (f i l e . hasNext ()) {
29TRUE: channe l . send (DATA) ; channe l . send (f i l e . r ead ()) ;
30canRead () ;
31FALSE : channe l . send (EOF) ; f i l e . c l o s e () ; s e r v e rCh () ;
32}
33CLOSE : f i l e . c l o s e () ; s e r v e rCh () ;
34}
35}

Figure 22: Remote file server version 2: server code

is type checked, the type of channel is compatible with the value of state , and so typechecking
succeeds. More precisely, each possible value of state corresponds to a different singleton type
for state (typing rule T-Label), and rule T-Switch only checks the branches that correspond
to possible values in the enumerated type of the condition. So each time the body of close is
type checked, only one branch (because the type of state is a singleton) of the switch is checked,
corresponding to the value of state for that occurrence of close .

6 A Core Distributed Language

We now define the core of the distributed language illustrated in Section 5. For the top-level lan-
guage, the only additions are the access points and their types 〈T 〉, channel session types and their
translation to class session types, and the spawn primitive. However, there are significant changes
to the internal language, in order to introduce a layer of concurrently executing components that
communicate on channels.

6.1 Syntax

Figure 23 defines the new syntax. The types of access points are top-level declarations. Of the
new values, access points n can appear in top-level programs, but channel endpoints c± are part
of the internal language. The spawn primitive was not used in the example in Section 5, but
its behaviour is to start a new thread executing the specified method on a new instance of the
specified class. Although a parameter is required as in any method call, for simplicity the type
system restricts the parameter’s type to be Null in this case, so that there is only one form of
inter-thread communication. The syntax of channel session types Σ is included so that the types

28

Declarations D ::= . . . | access 〈Σ〉 n

Values v ::= . . . | c+ | c− | n

Expressions e ::= . . . | spawn C.m(e)

Contexts E ::= . . . | spawn C.m(E)

Channel session types Σ ::= end | X | µX.Σ | ? [T] . Σ | ! [T] . Σ

| & {l : Σl}l∈E | ⊕ {l : Σl}l∈E

States s ::= . . . | s || s | (νc) s

Figure 23: Additional syntax for channels and states

Structural congruence:

s1 ‖ s2 ≡ s2 ‖ s1 s1 ‖ (s2 ‖ s3) ≡ (s1 ‖ s2) ‖ s3 (E-Comm,E-Assoc)

s1 ‖ (νc)s2 ≡ (νc)(s1 ‖ s2) if c+, c− not free in s1 (E-Scope)

Reduction rules:

h(r).f = n h′(r′).f ′ = n c fresh
(R-Init)

(h ∗ r; E[f.accept()]) || (h′ ∗ r′; E ′[f ′.request()]) −→ (νc)
(

(h ∗ r; E[c+]) || (h′ ∗ r′; E ′[c−])
)

h(r).f = cp h′(r′).f ′ = cp v 6∈ O
(R-ComBase)

(h ∗ r; E[f.send(v)]) || (h′ ∗ r′; E ′[f ′.receive()]) −→ (h ∗ r; E[null]) || (h′ ∗ r′; E ′[v])

h(r).f = cp h′(r′).f ′ = cp ϕ ∈ Inj(dom(h ↓ o),O \ dom(h′))
(R-ComObj)

(h ∗ r; E[f.send(o)]) || (h′ ∗ r′; E ′[f ′.receive()]) −→
(h ↑ o ∗ r; E[null]) || (h′ + ϕ(h ↓ o) ∗ r′; E ′[ϕ(o)])

o fresh C.fields = ~f m(x) {e} ∈ C
(R-Spawn)

(h ∗ r; E[spawn C.m(v)]) −→ (h ∗ r; E[null]) || (o = C[~f = ~null] ∗ o; e{null/x})

s −→ s′
(R-Par)

s || s′′ −→ s′ || s′′
s ≡ s′ s′ −→ s′′ s′′ ≡ s′′′

(R-Str)
s −→ s′′′

s −→ s′
(R-NewChan)

(νc) s −→ (νc) s′

Top-level typing rules:

Γ ∗ r ⊲ e : Null ⊳ Γ′ ∗ r′ C.session = {_ m(Null) : _; . . .}
(T-Spawn)

Γ ∗ r ⊲ spawn C.m(e) : Null ⊳ Γ′ ∗ r′

access 〈Σ〉 n
(T-Name)

Γ ∗ r ⊲ n : J〈Σ〉K ⊳ Γ ∗ r

Figure 24: Reduction and top-level typing rules for concurrency and channels

of access points can be declared. The syntax of states is extended to include parallel composition
and a channel binder νc, which binds both c+ and c− in the style of [33]. In a parallel composition,
the states are exactly states from the semantics of the sequential language; in particular, each one
has its own heap. This means that spawn generates a new heap as well as a new executing method
body. Communication between parallel expressions is only via channels.

The syntax extensions do not include request, accept, send and receive, as they are treated as
method names.

6.2 Semantics

Figure 24 defines the reduction rules for the distributed language, as well as the top-level typing
rules. The reduction rules make use of a pi-calculus style structural congruence relation, again
following [33]. It is the smallest congruence (with respect to parallel and binding) that is also
closed under the given rules.

Rule R-Init defines interaction between accept and request, which creates a fresh channel c
and substitutes one endpoint into each expression.

29

There are two rules for communication, involving interaction between send and receive. Rule
R-ComBase is for communication of non-objects and rule R-ComObj is for communication of
objects. R-ComBase expresses a straightforward transfer of a value, while R-ComObj also
transfers part of the heap corresponding to the contents of a transferred object. In R-ComObj,
ϕ is an arbitrary renaming function which associates to every identifier in dom(h) an identifier
not in dom(h′). This rule can easily be made deterministic in practice by using a total ordering
on identifiers and a mechanism to generate fresh ones.

R-Spawn creates a new parallel state whose heap contains a single instance of the specified
class. As discussed above, communication between threads is only through channels in order to
keep the formal system a reasonable size; therefore, no data is transmitted to the new thread and
the body of the method being spawned always has its parameter replaced by the literal null. The
type system will ensure that v = null, so that this semantics makes sense. The remaining rules
are standard.

Returning to R-ComObj, there is some additional notation associated with identifying the
part of the heap that must be transferred; we now define it. First, write O for the set of all object
identifiers.

Definition 6.1 Let h be a heap. For any entry o = C[{fi = vi}i∈I] in h, we define the children
of o in h to be the set of all vi which are object identifiers: childrenh(o) = {vi | i ∈ I} ∩ O.

We say that an object identifier o in dom(h) is a root in h if there is no o′ in dom(h) such
that o ∈ childrenh(o

′). We note roots(h) the set of roots in h.

We say that h is complete if for any o in dom(h) we have childrenh(o) ⊆ dom(h).

If h is complete, we define the descendants of o in h to be the smallest set containing o and the
children of any object it contains. Formally, let children0h(o) = {o} and for i > 1, childrenih(o) =

⋃

ω∈children
i−1

h
(o)

childrenh(ω). Then desch(o) =
⋃

i∈N

childrenih(o).

Definition 6.2 (Heap separation) Let h be a complete heap and o a root of h. We define h ↓ o
to be the sub-heap obtained by restricting h to the descendants of o, and h ↑ o to be the sub-heap
obtained by removing from h the descendants of o. Note that h ↓ o is complete and has the property
that o is its only root.

Definition 6.3 (Additional notation) • Let h be a heap and let ϕ be a function from O to
O. We denote by ϕ(h) the result of applying ϕ to all object identifiers in h, including inside
object records.

• We denote by Inj(A,B) the set of injective functions from A to B.

• We denote by + the disjoint union of heaps or environments, i.e. the operation h + h′ is
defined by merging h and h′ if their domains are disjoint and undefined otherwise.

6.3 Type System

The type system treats send, receive, request and accept as method calls on objects whose session
types are defined by the translations in Figure 25. A channel endpoint with (channel) session
type Σ is treated as an object with (class) session type JΣK. The type constructor & (offer) is
translated into a receive method with return type linkthis in order to capture the relationship
between the received label and the subsequent type. The type constructor ⊕ (select) is translated
into a collection of send methods with different parameter types, each being a singleton type for
the corresponding label.

In a similar but much simpler way, an access type 〈Σ〉 is translated into a (class) session type
that allows both request and accept to be called repeatedly and at any time. These two methods
need to return dual channel endpoints, which requires the following definition.

30

Given a channel session type Σ, define a class session type JΣK as follows.

JendK = {}

JXK = X

JµX.ΣK = µX.JΣK

J? [T] . ΣK = {T receive(Null) : JΣK}

J ! [T] . ΣK = {Null send(T) : JΣK}

J& {l : Σl}l∈EK = {linkthis receive(Null) : 〈l : JΣlK〉l∈E}

J⊕{l : Σl}l∈EK = {Null send({l}) : JΣlK}l∈E

In the type system, a channel endpoint with session type Σ is treated as an object with type JΣK. Calls of send

and receive are typed as standard method calls.

Given an access type 〈Σ〉, define a class session type J〈Σ〉K by

J〈Σ〉K = µX.{JΣK request(Null) : X, JΣK accept(Null) : X}.

In the type system, an access point with type 〈Σ〉 is treated as an object with type J〈Σ〉K. Calls of request and
accept are typed as standard method calls.

Figure 25: Object types for channels and access points

These rules add to or replace the rules in Figure 11.

(T-Chan) Γ, cp : T ∗ r ⊲ cp : T ⊳ Γ ∗ r (T-Hempty) Θ ⊢ ε : JΘK

Θ ⊢ h : Γ Γ, o : C[{Null fi}16i6n] ∗ o ⊲ f1 ↔ v1; . . .; fn ↔ vn : Null ⊳ Γ′ ∗ o
(T-Hadd)

Θ ⊢ h, {o = C[{fi = vi}16i6n]} : Γ′

Θ ⊢ h : Γ, o : C[F] F ⊢ C : S
(T-Hide)

Θ ⊢ h : Γ, o : C[S]

Θ ⊢ h : Γ Γ ∗ r ⊲ e : T ⊳ Γ′ ∗ r′
(T-State)

Θ;Γ ⊲ (h ∗ r; e) : T ⊳ Γ′ ∗ r′

Θ; Γ ⊲ (h ∗ r; e) : T ⊳ Γ′ ∗ r′
(T-Thread)

Θ ⊢ (h ∗ r; e)

Θ ⊢ s Θ′ ⊢ s′
(T-Par)

Θ+Θ′ ⊢ s || s′

Θ, c+ : Σ, c− : Σ ⊢ s
(T-NewChan)

Θ ⊢ (νc) s

Figure 26: Internal typing rules for the distributed language

Definition 6.4 (Dual channel type) The dual type Σ of a channel session type Σ is defined
inductively as follows:

end = end

X = X

µX.Σ = µX.Σ

! [T] . Σ = ? [T] . Σ

⊕{l : Σl}l∈E = &
{

l : Σl

}

l∈E

together with symmetric cases so that Σ = Σ. It is sufficient to use this inductive definition,
rather than a coinductive definition [31], because we have adopted the equi-recursive convention
(Definition 3.9).

By convention, request returns a channel endpoint of type JΣK and accept returns an endpoint of
type JΣK.

Because access points n are global constants, they can be used repeatedly even though their
session types are linear; there is no restriction to a single occurrence of a given name.

The only new typing rules for the top-level language are in Figure 24. T-Spawn allows a
method to be used in a spawn expression if it is available in the initial session type of the specified
class. T-Name obtains the type of an access point from its declaration, and assigns an object
type according to the translation described above.

Figure 26 contains typing rules for the internal language with the concurrency extensions.
Rules with the same names as rules in Figure 11 are replacements.

31

Rule T-Chan takes the type of a channel endpoint from the typing environment. The remain-
ing rules involve a new typing environment Θ, which maps channel endpoints to channel session
types Σ; these are indeed channel session types, not their translations into class session types.
T-HAdd, T-Hide and T-State are just the corresponding rules from Figure 11 with Θ added.
In T-HEmpty the notation JΘK means that the translation from channel session types to class
session types is applied to the type of each channel endpoint. In combination with T-State,
this means that the typing of expressions uses class session types for channel endpoints; the T in
T-Chan is a class session type.

T-Thread lifts a typed state to a typed concurrent component, preserving only the channel
typing Θ, which is used in T-Par and T-NewChan. In T-Par, Θ + Θ′ means union, with
the assumption that Θ and Θ′ have disjoint domains. T-NewChan requires the complementary
endpoints of each channel to have dual session types.

6.4 Subtyping

We have two subtyping relations between channel session types: Σ <: Σ′ as defined in [31], and
JΣK <: JΣ′K as defined in this paper. To avoid a detour into the definition of Σ <: Σ′, we state
the following result without proof.

Proposition 6.5 Σ <: Σ′ ⇒ JΣK <: JΣ′K.

Interestingly, the converse is not true, as subtyping between translations of channel session
types is a larger relation. For example:

• for all Σ, JΣK <: JendK

• if E is an enumeration then J? [E] . ΣK <: J& {l : Σ}l∈EK

• J⊕{l : Σ}K = J ! [{l}] .ΣK and therefore by transitivity any translated ⊕ type is a subtype of
all the corresponding individual translated send types.

This suggests the possibility, in the context of [31], of generalizing the subtyping relation
between channel session types by considering branch/select labels as values in an enumerated
type. We do not explore this idea further in the present paper.

7 results

The key results concerning the distributed language supporting self-calls are, again, Subject-
Reduction, Type Safety, and Conformance. Notice that we can no longer guarantee the absence
of stuck states for all well-typed programs, as one endpoint of a channel may try to send when
the other endpoint is not available to receive.

7.1 Properties of typing derivations

This subsection is mostly a collection of lemmas which will be used to prove the main theorems
in the following ones. They draw various useful consequences from the fact that a program state
is well-typed. Their proofs can be found in Appendix 10.

We define chans(h) as the set of channel endpoints appearing in object records in h. We
define chans(Γ) and objs(Γ) as the sets of, respectively, channel endpoints and object identifiers in
dom(Γ). We have dom(Γ) = chans(Γ) ∪ objs(Γ).

Lemma 7.1 Suppose Θ ⊢ h : Γ. Then (a) h is complete, (b) chans(Γ) ⊆ dom(Θ) \ chans(h) and
(c) objs(Γ) ⊆ roots(h).

Lemma 7.2 (Rearrangement of typing derivations for expressions) Suppose we have
Γ ∗ r ⊲ e : T ⊳ Γ′ ∗ r′. Then there exists a typing derivation for this judgement in which:

1. T-Sub only occurs at the very end, just before T-Switch or T-SwitchLink as the last
rule in the derivation for each of the branches, or just before T-Call as the last rule in the
derivation for the parameter;

32

2. T-SubEnv only occurs immediately before T-Sub in the first three cases and does not occur
at all in the fourth, i.e. T-Call.

Lemma 7.3 (Rearrangement of typing derivations for heaps) Suppose Θ ⊢ h : Γ holds.
Let o be an arbitrary root of h. Then there exists a typing derivation for it such that:

1. T-Sub is never used;

2. T-SubEnv is used at most once, as the last rule leading to the right premise of the last
occurrence of T-Hadd;

3. every occurrence of T-Hide follows immediately the occurrence of T-Hadd concerning the
same object identifier;

4. the occurrence of T-Hadd concerning an identifier o′ is always immediately preceded (on
the left premise) by the occurrences of T-Hadd/T-Hide concerning the descendants of o′;

5. the first root added is o.

Lemma 7.4 (Splitting of the heap) Suppose Θ ⊢ h : Γ, o : T . Let Θ1 = Θ \ chans(h ↓ o) and
let Θ2 be Θ restricted to chans(h ↓ o). Then we have: Θ1 ⊢ (h ↑ o) : Γ and Θ2 ⊢ (h ↓ o) : o : T .

Lemma 7.5 (Merging of heaps) Suppose Θ ⊢ h : Γ and Θ′ ⊢ h′ : Γ′ with dom(h)∩dom(h′) = ∅
and dom(Θ) ∩ dom(Θ′) = ∅. Then we have Θ+Θ′ ⊢ h+ h′ : Γ + Γ′.

These two lemmas show, if we apply them repeatedly, that a typing derivation for a heap can
be considered as a set of separate typing derivations leading to each root of the heap. This will
allow us in particular to show results for particular cases where a heap has only one root and
generalize them.

Lemma 7.6 Suppose Θ ⊢ h : o : S. Let ϕ be an injective function from dom(h) to O. Then we
have Θ ⊢ ϕ(h) : ϕ(o) : S.

Lemma 7.7 (Opening) If Θ ⊢ h : Γ, if Γ(r) is a branch session type S and if h(r) is an object
identifier o, then we know from Lemma 7.1 that h contains an entry for o. Let C be the class of
this entry, then there exists a field typing F for C such that Θ ⊢ h : Γ{r 7→ C[F]} and F ⊢ C : S.

Lemma 7.8 (Closing) If Θ ⊢ h : Γ and Γ(r) = C[F] and F ⊢ C : S, then Θ ⊢ h : Γ{r 7→ S}.

Lemma 7.9 (modification of the heap) Suppose that we have Θ ⊢ h : Γ and Γ ∗ r ⊲ v′ :
T ′ ⊳ Γ′ ∗ r, and that Γ′(r.f) = T where T is not a variant. Let v = h(r).f . The modified heap
h{r.f 7→ v′} can be typed as follows:

1. if v is an object identifier or a channel endpoint, then:

Θ ⊢ h{r.f 7→ v′} : Γ′{r.f 7→ T ′}, v : T

2. if v is not an object or channel and T is not a link type, then:

Θ ⊢ h{r.f 7→ v′} : Γ′{r.f 7→ T ′}

3. if v = l0 and T = link f ′, then:

• Γ′(r.f ′) = 〈l : Sl〉l∈E for some E such that l0 ∈ E and some set of branch session types
Sl. Note that this implies f 6= f ′.

• Θ ⊢ h{r.f 7→ v′} : Γ′{r.f 7→ T ′}{r.f ′ 7→ Sl0}

Lemma 7.10 (Substitution) If this : C[F], x : T ′ ∗ this ⊲ e : T ⊳ this : C[F ′] ∗ this, and if
Γ(r) = C[F], then:

33

1. if T ′ is a base type (i.e. neither an object type nor a link) and v is a literal value of that
type, or if v is an access point name declared with type 〈Σ〉 and J〈Σ〉K <: T ′, we have:

Γ ∗ r ⊲ e{v/x} : T ⊳ Γ{r 7→ C[F ′]} ∗ r.

2. if T ′ is an object type and v is an object identifier or a channel endpoint, we have:

Γ, v : T ′ ∗ r ⊲ e{v/x} : T ⊳ Γ{r 7→ C[F ′]} ∗ r.

Lemma 7.11 (Typability of Subterms) If D is a derivation of Γ ∗ r ⊲ E(e) : T ⊳ Γ′ ∗ r′ then
there exist Γ1, r1 and U such that D has a subderivation D′ concluding Γ ∗ r ⊲ e : U ⊳ Γ1 ∗ r1
and the position of D′ in D corresponds to the position of the hole in E.

Lemma 7.12 (Replacement) If

1. D is a derivation of Γ ∗ r ⊲ E(e) : T ⊳ Γ′ ∗ r′

2. D′ is a subderivation of D concluding Γ ∗ r ⊲ e : U ⊳ Γ1 ∗ r1

3. the position of D′ in D corresponds to the position of the hole in E

4. Γ′′ ∗ r′′ ⊲ e′ : U ⊳ Γ1 ∗ r1

then Γ′′ ∗ r′′ ⊲ E(e′) : T ⊳ Γ′ ∗ r′.

7.2 Type preservation

We use ⊢ s as an abbreviation for ∅ ⊢ s; this represents well-typedness of a closed configuration.
We have the following result:

Theorem 7.13 (Subject Reduction) If, in a context parameterised by a set of well-typed dec-
larations, we have ⊢ s and s −→ s′, then ⊢ s′.

This global result is a consequence of a subject reduction theorem for a single thread, which is
similar but not identical to what we stated as Theorem 3.18 (which will be a particular case). The
reason it is not identical is that we need to prove that the type of an expression is preserved not
only when this expression reduces on its own but also when it communicates with another thread.
In order to state precisely this thread-wise type preservation theorem, we introduce a labelled
transition system for threads. Transition labels can be: τ indicating internal reduction, cp ! [v] or
cp ? [v] indicating that the non-object value v is sent or received on channel cp, cp ! [h] or cp ? [h],
where h is a heap with a single root o, indicating that the object o (together with its content)
is sent or received on channel cp, n[cp] indicating that the channel endpoint cp is received from
access point n, or, finally, C.m() indicating that the thread spawns another one using method m
of class C.

Definition 7.14 (Labelled transition system) We define a labelled transition system for threads
by the following rules:

(h ∗ r; e) −→ (h′ ∗ r′; e′)
(Tr-Red)

(h ∗ r; e)
τ

−→ (h′ ∗ r′; e′)

h(r).f = cp v 6∈ O
(Tr-Send)

(h ∗ r; E [f.send(v)])
cp ![v]
−→ (h ∗ r; E [null])

h(r).f = cp
(Tr-SendObj)

(h ∗ r; E [f.send(o)])
cp ![h↓o]
−→ (h ↑ o ∗ r; E [null])

h(r).f = cp v 6∈ O
(Tr-Receive)

(h ∗ r; E [f.receive()])
cp ?[v]
−→ (h ∗ r; E [v])

h(r).f = cp roots(h′) = {o} dom(h) ∩ dom(h′) = ∅
(Tr-RcvObj)

(h ∗ r; E [f.receive()])
cp ?[h′]
−→ (h+ h′ ∗ r; E [o])

34

h(r).f = n
(Tr-Accept)

(h ∗ r; E [f.accept()])
n[c+]
−→ (h ∗ r; E [c+])

h(r).f = n
(Tr-Request)

(h ∗ r; E [f.request()])
n[c−]
−→ (h ∗ r; E [c−])

(Tr-Spawn) (h ∗ r; E [spawn C.m(v)])
C.m()
−→ (h ∗ r; E [null])

Note that both τ and C.m() correspond to the thread being able to reduce on its own. An important
feature of this transition relation is that the only case where several different transitions are possible
from a given state is receive. In all cases including receive, the right-hand state is fully determined
by the left-hand one and the transition label.

Definition 7.15 A similar transition relation, with the same set of labels, is defined on channel
environments Θ as follows:

Θ
τ

−→ Θ Θ
C.m()
−→ Θ

n.protocol = 〈Σ〉 ∀p, cp 6∈ dom(Θ)

Θ
n[c+]
−→ Θ, c+ : Σ

n.protocol = 〈Σ〉 ∀p, cp 6∈ dom(Θ)

Θ
n[c−]
−→ Θ, c− : Σ

JΣ′K <: T

Θ, cp : ! [T] .Σ, c′p
′

: Σ′
cp !

[

c′p
′
]

−→ Θ, cp : Σ

JΣ′K <: T

Θ, cp : ? [T] .Σ
cp ?

[

c′p
′
]

−→ Θ, cp : Σ, c′p
′

: Σ′

∅ ⊲ v : T ⊳ ∅

Θ, cp : ! [T] .Σ
cp ![v]
−→ Θ, cp : Σ

∅ ⊲ v : T ⊳ ∅

Θ, cp : ? [T] .Σ
cp ?[v]
−→ Θ, cp : Σ

l0 ∈ E

Θ, cp : ⊕{l : Σl}l∈E

cp ![l0]
−→ Θ, cp : Σl0

l0 ∈ E

Θ, cp : & {l : Σl}l∈E

cp ?[l0]
−→ Θ, cp : Σl0

Θ1 ⊢ h : o : S dom(Θ1) ⊆ chans(h)

Θ1 +Θ2, c
p : ! [S] .Σ

cp ! [h]
−→ Θ2, c

p : Σ

Θ′ ⊢ h : o : S dom(Θ′) ⊆ chans(h) dom(Θ) ∩ dom(Θ′) = ∅

Θ, cp : ? [S] .Σ
cp ?[h]
−→ Θ+Θ′, cp : Σ

Where we use ∅ ⊲ v : T ⊳ ∅ as an abbreviation for dummy : C[] ∗ dummy ⊲ v : T ⊳

dummy : C[] ∗ dummy — meaning that v is a literal value (or access point name) of type T .

We can now state our thread-wise type preservation theorem.

Theorem 7.16 (Thread-wise progress and type preservation) Let D be a set of well-typed
declarations, that is, such that for every class declaration D in D we have ⊢ D. In a context
parameterised by D, suppose we have Θ;Γ ⊲ (h ∗ r; e) : T ⊳ Γ′ ∗ r′.

Then either e is a value or there exists a transition label λ such that we have (h ∗ r; e)
λ

−→
(h′ ∗ r′′; e′) for some h′, r′′ and e′.

Furthermore, if λ is such that Θ
λ

−→ Θ′ for some Θ′ then there exists Γ′′ such that Θ′; Γ′′ ⊲

(h′ ∗ r′′; e′) : T ⊳ Γ′ ∗ r′ holds.

Theorem 3.18 is the particular case where λ = τ .

Corollary 7.17 (Theorem 3.19) If D contains no name declaration and Θ is empty, then there
exists s′ such that (h ∗ r; e) −→ s′.

35

Proof.[(Corollary)] In that particular case, Θ ⊢ h : Γ implies that the heap cannot contain any n
or cp, hence λ can only be τ or of the form C.m().

Proof.[(Theorem)] We always use typing derivations where subsumption steps only occur at the
positions described in Lemma 7.2. Furthermore, it is sufficient to consider only cases where sub-
sumption does not occur at the end: indeed, if it does occur, then we can add a similar subsumption
step to the new judgement. The hypothesis in the theorem that Θ;Γ ⊲ (h ∗ r; e) : T ⊳ Γ′ ∗ r′

holds is necessarily a result of T-State and therefore is equivalent to the two hypotheses Θ ⊢ h : Γ
and Γ ∗ r ⊲ e : T ⊳ Γ′ ∗ r′, which we will sometimes refer to directly.

We prove the theorem by induction on the structure of e with respect to contexts, and present
the inductive case first:

If e is of the form E [e1] where e1 is not a value and E is not just [_] then Lemma 7.11 tells us that
Γ ∗ r ⊲ e1 : U ⊳ Γ1 ∗ r1 appears in the typing derivation of Γ ∗ r ⊲ e : T ⊳ Γ′ ∗ r′ for some U , r1
and Γ1. From there we can apply T-State and derive Θ;Γ ⊲ (h ∗ r; e1) : U ⊳ Γ1 ∗ r1. This allows

us to use the induction hypothesis and get λ, e2, r
′′ and h′ such that (h ∗ r; e1)

λ
−→ (h′ ∗ r′′; e2).

Then we straightforwardly have e
λ

−→ E [e2], either by applying R-Context if λ is τ or by

replacing the context in the transition rule if it is something else. Now if λ is such that Θ
λ

−→ Θ′

then the induction hypothesis2 also gives us Γ′′ such that Θ′; Γ′′ ⊲ (h′ ∗ r′′; e2) : U ⊳ Γ1 ∗ r1 holds.
From this we get, by reading T-State upwards, Θ′ ⊢ h′ : Γ′′ and Γ′′ ∗ r′′ ⊲ e2 : U ⊳ Γ1 ∗ r1. We
use Lemma 7.12 with the latter in order to obtain Γ′′ ∗ r′′ ⊲ E [e2] : T ⊳ Γ′ ∗ r′ and conclude with
T-State.

The base cases are if e is of the form E [v] with E elementary (i.e. not of the form E [E ′] with
E ′ 6= [_]) and if it is not of the form E [e1] at all. We list them below.

• If e is a value, there is nothing to prove.

• e cannot be a variable. Indeed, Θ ⊢ h : Γ implies that dom(Γ) contains only object identifiers
and channel endpoints. Therefore, Γ ∗ r ⊲ e : T ⊳ Γ′ ∗ r′ cannot be a conclusion of T-Var
or T-LinVar, thus e is not a variable.

• e = v; e′. Then the expression reduces by R-Seq and the initial derivation is as follows:

Θ ⊢ h : Γ (a)

. . .
(1)

Γ ∗ r ⊲ v : T ′ ⊳ Γ1 ∗ r Γ1 ∗ r ⊲ e′ : T ⊳ Γ′ ∗ r′ (b)
(T-Seq)

Γ ∗ r ⊲ v; e′ : T ⊳ Γ′ ∗ r′
(T-State)

Θ;Γ ⊲ (h ∗ r; v; e′) : T ⊳ Γ′ ∗ r′

Furthermore, T ′ is not a link type. Therefore, (1) cannot be T-VarF or T-VarS and it
is either T-Ref, T-Chan, T-Name, T-Label or T-Null, since these are the only rules
for typing values. If it is T-Null, T-Label or T-Name, then Γ = Γ1; if it is T-Ref or
T-Chan, then Γ <: Γ1 and we can use Lemma 3.14 to get Γ ∗ r ⊲ e′ : T ⊳ Γ′ ∗ r′ from (b)
in both cases. We conclude from this using (a) and T-State.

• e = new C(). Then the expression reduces by R-New and the initial reduction is as follows:

Θ ⊢ h : Γ (a)
(T-New)

Γ ∗ r ⊲ new C() : C.session ⊳ Γ ∗ r
(T-State)

Θ;Γ ⊲ (h ∗ r; new C()) : C.session ⊳ Γ ∗ r

Let S = C.session. From the hypothesis that D is well-typed, we have ⊢ class C {S; ~f ; ~M}.
This must come from T-Class, therefore we have

−−→
Null ~f ⊢ C : S (b).

We build the following derivation:

(a)

T-Null, T-Swap, T-Seq

Γ, o : C[
−−→
Null ~f] ∗ o ⊲ ~f ↔

−−→
Null : Null ⊳ Γ, o : C[

−−→
Null ~f] ∗ o

(T-Hadd)
Θ ⊢ h, {o = C[~f =

−→
null]} : Γ, o : C[

−−→
Null ~f] (b)

(T-Hide)
Θ ⊢ h, {o = C[~f =

−→
null]} : Γ, o : S

2clearly there is no λ such that we would have E[e1]
λ

−→ but not e1
λ

−→, hence it is legitimate to use the
induction hypothesis here.

36

then conclude Θ;Γ, o : S ⊲ (h, {o = C[~f =
−→
null]} ∗ r; o) : S ⊳ Γ ∗ r using T-Ref (it is not

possible that r starts with o since o is fresh) and T-State.

• e = switch (v) {l : el}l∈E . Then we have two cases. The slightly more complex one is if the
initial derivation is as follows:

v is a label

Γ ∗ r ⊲ v : {v} ⊳ Γ ∗ r Γ(r.f) = S

Γ ∗ r ⊲ v : link f ⊳ Γ{r.f 7→ 〈v : S〉} ∗ r v ∈ E (b) Γ ∗ r ⊲ ev : T ⊳ Γ′ ∗ r (c)

Γ ∗ r ⊲ switch (v) {l : el}l∈E : T ⊳ Γ′ ∗ r

(using T-Label, T-VarS, T-SwitchLink top to bottom). As usual we also have Θ ⊢ h : Γ
(a) as the other premise of T-State (omitted for lack of space). The reason why the initial
environment of judgement (c) is Γ is because it is obtained from the version of Γ with the
type of r.f modified by modifying this type again, putting back S instead of the variant.
(b) implies that the expression reduces by R-Switch. As regards type preservation, we
can conclude Θ;Γ ⊲ (h ∗ r; ev) : T ⊳ Γ′ ∗ r directly from (a), (c), and T-State. The
other case is when the T-VarS step is absent and the following rule is T-Switch instead
of T-SwitchLink; the argument is the same.

• e = f ↔ v. Then the initial derivation is as follows:
. . .

Γ ∗ r ⊲ v′ : T ′ ⊳ Γ1 ∗ r (b) Γ1(r.f) = T (c) T is not a variant (d)
(T-Swap)

Γ ∗ r ⊲ f ↔ v′ : T ⊳ Γ1{r.f 7→ T ′} ∗ r

and we also have, as usual, Θ ⊢ h : Γ (a). The fact that Γ1(r.f) is defined implies that
Γ(r.f) is also defined, indeed the effect of typing v can only remove from the environment
or create a variant type, so it can only decrease the set of valid field references. Thus h(r).f
is defined as well, and the expression reduces by R-Swap. Let v = h(r).f . From (a), (b),
(c) and (d), we use Lemma 7.9 to get Γ′′ such that Θ ⊢ h{r.f 7→ v′} : Γ′′. We then notice
that in each of the three cases of the lemma we have Γ′′ ∗ r ⊲ v : T ⊳ Γ1{r.f 7→ T ′} ∗ r:

1. If v is an object identifier or channel endpoint then Γ′′ = Γ1{r.f 7→ T ′}, v : T . We use
T-Ref or T-Chan.

2. If v is not an object or channel and T is not a link type, then v is either null, an access
point name or a label. We use T-Null, T-Name or T-Label.

3. If T = link f ′ then Γ1(r.f
′) = 〈l : Sl〉l∈E with v ∈ E and we have Γ′′ = Γ1{r.f 7→ T ′}{r.f ′ 7→

Sv}. We use T-Label, T-VarS and T-SubEnv.

Finally we conclude with T-State.

• e = return v. Then the expression reduces by R-Return. The initial derivation is as follows:
. . .

(1)
Γ ∗ r.f ⊲ v : T1 ⊳ Γ1 ∗ r.f Γ1(r.f) = C[F] F ⊢ C : S (b)

(T-Return)
Γ ∗ r.f ⊲ return v : T ⊳ Γ1{r.f 7→ S} ∗ r

with also Θ ⊢ h : Γ (a). We distinguish cases depending on what rule (1) is:

– If (1) is T-Null, T-Name or T-Label then Γ = Γ1, and if it is T-Ref or T-Chan
then Γ = Γ1, v : T1. In both cases we have Γ(r.f) = Γ1(r.f) and T1 = T . From
(a) and (b) we deduce Θ ⊢ h : Γ{r.f 7→ S} using the closing lemma (Lemma 7.8).
We then use T-Null, T-Name, T-Label, T-Chan or T-Ref, as appropriate, to get
Γ{r.f 7→ S} ∗ r ⊲ v : T1 ⊳ Γ1{r.f 7→ S} ∗ r, and we conclude with T-State.

– (1) cannot be T-VarS because T-Return forbids that T1 be of the form link f ′.

– If (1) is T-VarF, then T1 = linkthis and T = link f . Furthermore, v is a label,
F = 〈v : F ′〉 with F ′ not a variant, and Γ = Γ1{r.f 7→ C[F ′]}. (b) then implies that S
is of the form 〈l : Sl〉l∈E with v ∈ E and F ′ ⊢ C : Sv. Note that because F ′ is not a
variant, Sv must be a branch. Now, from that judgement and (a), we use the closing
lemma to get Θ ⊢ h : Γ{r.f 7→ Sv}. Let Γ′′ = Γ{r.f 7→ Sv}. Since Γ only differs from
Γ1 by the type of r.f , it is also the case of Γ′′, and as 〈v : Sv〉 is a subtype of S, we have
Γ′′{r.f 7→ 〈v : Sv〉} <: Γ1{r.f 7→ S}. From all this, we build the following derivation:

37

Θ ⊢ h : Γ{r.f 7→ Sv}

v is a label
(T-Label)

Γ′′ ∗ r ⊲ v : {v} ⊳ Γ′′ ∗ r Sv branch
(T-VarS)

Γ′′ ∗ r ⊲ v : T ⊳ Γ′′{r.f 7→ 〈v : Sv〉} ∗ r
(T-SubEnv)

Γ′′ ∗ r ⊲ v : T ⊳ Γ′ ∗ r
(T-State)

Θ;Γ′′ ⊲ (h ∗ r; v) : T ⊳ Γ′ ∗ r

• e = spawn C.m(v). The initial derivation involves T-Spawn, and v is null. The premise that
the method exists implies that the state can reduce by R-Spawn, which corresponds to a
C.m() transition. The new derivation is obtained replacing T-Spawn with T-Null.

• e = f.m(v). The initial derivation is as follows, with m = mj and j ∈ I:

. . .
(1)

Γ ∗ r ⊲ v : T ′ ⊳ Γ1 ∗ r
(T-Sub)

Γ ∗ r ⊲ v : T ′

j ⊳ Γ1 ∗ r Γ1(r.f) = {Ti mi(T
′

i) : Si}i∈I (b)
(T-Call)

Γ ∗ r ⊲ f.mj(v) : T ⊳ Γ1{r.f 7→ Sj} ∗ r

and we also have Θ ⊢ h : Γ (a). T is obtained from Tj as specified in T-Call, i.e. replacing
linkthis with link f if necessary. Let S = {Ti mi(T

′
i) : Si}i∈I . First note that T ′

j is a part of
a method signature and that only a restricted set of types is allowed there: it cannot be of
the form link f ′. Furthermore, (1) cannot be T-VarF because of (b), thus T ′ is not linkthis

either. Indeed, if Γ1(r) were a variant, Γ1(r.f) would not be defined. Therefore (1) is either
T-Null, T-Label, T-Chan, T-Name or T-Ref and in all cases we have Γ(r.f) = Γ1(r.f).
As it is a session type, it implies because of (a) that h(r).f exists and is either an object
identifier, an access point name or a channel endpoint. We distinguish these three cases:

– h(r).f is an object identifier o. We use (a) and the opening lemma (Lemma 7.7) to
get a field typing C[F] such that Θ ⊢ h : Γ{r.f 7→ C[F]} and F ⊢ C : S. This last
judgement implies, by definition, that F is not a variant; that, among others, method
mj appears in the declaration of class C; and that, if ej is its body and x its parameter,
we have x : T ′

j, this : C[F] ∗ this ⊲ ej : Tj ⊳ this : C[Fj] ∗ this and Fj ⊢ C : Sj . The fact
that the method is declared implies (h∗r; e) −→ (h∗r.f ; return ej{v/x}); we now have
to type this resulting state. For this, we apply the substitution lemma (Lemma 7.10)
to the typing judgement for ej, using Γ1{r.f 7→ C[F]} as the Γ of the lemma and r.f
as the r of the lemma. The first case of the lemma corresponds to (1) being T-Null,
T-Label or T-Name; the second one corresponds to (1) being T-Ref or T-Chan. In
both cases, the resulting judgement is:

Γ{r.f 7→ C[F]} ∗ r.f ⊲ ej{
v/x} : Tj ⊳ Γ1{r.f 7→ C[Fj]} ∗ r.f

Indeed, the difference between Γ and Γ1 depends on (1) in the same way as the lemma’s
result. From this and Fj ⊢ C : Sj we can now apply T-Return and get:

Γ{r.f 7→ C[F]} ∗ r.f ⊲ return ej{
v/x} : T ⊳ Γ1{r.f 7→ Sj} ∗ r

where T is the same as in the initial derivation. We then conclude, using the heap
typing that was provided by the opening lemma, with T-State.

– h(r).f is an access point name n. Then Γ(r.f) must come, in the derivation of Θ ⊢ h : Γ,
from T-Name, which implies that n is declared, that mj is either accept or request,
and that Tj :> JΣK where Σ is either the declared type or its dual depending on which
one mj is. All this implies that the state does a n[cp] transition where c is fresh and

p depends, again, on mj , and that Θ
n[cp]
−→ Θ, cp : Σ. The resulting state is typed using

Γ′′ = Γ, cp : JΣK and T-Chan.

– h(r).f is a channel endpoint cp. Then Θ ⊢ h : Γ implies that cp ∈ dom(Θ) and
S :> JΘ(cp)K. Hence mj is either send or receive. We distinguish the two cases. In the
first case, the fact that S contains send implies that Θ(cp) is either of the form !

[

T ′′
j

]

.Σ
with T ′

j <: T ′′
j or ⊕{l : Σl}l∈E and then T ′

j = {v} and v ∈ E. If v is not an object
identifier then the state does a cp ! [v] transition. We can see that in both cases (send

38

and select), Θ is able to follow that transition and evolves in such a way that Θ′ ⊢ h : Γ′

holds: the session type of cp is advanced and if v was a channel it is removed from the
environment, which corresponds to the difference between Γ and Γ′, thus it suffices to
change the instance of T-Hempty at the root of the derivation leading to (a) to get
this new typing. Then the new state is typed using T-Null and T-State. If v is an
object identifier, then (1) is T-Ref and thus v ∈ dom(Γ), which implies (using (a))
that v is a root of h, so the state does a cp ! [h ↓ v] transition. We use the splitting
lemma (Lemma 7.4) to see that Θ is able to follow this transition and yields a Θ′ such
that we have Θ′ ⊢ h ↑ v : Γ′. We can then again conclude using T-Null and T-State.

In the case where mj is receive, the state can straightforwardly do a transition, which
will be a receive on channel cp, however the transition label is not completely determined
by the original state as we do not know what will be received. So we have to prove
type preservation in all cases where the transition label λ is such that Θ

λ
−→ Θ′ for

some Θ′. If λ is of the form cp ? [v′], then this hypothesis tells us that Θ(cp) is either of
the form ? [T0] .Σ, and then v′ must be a literal value of type T0 or a channel endpoint
which gets added to the environment with a type smaller that T0, or of the form
& {l : Σl}l∈E , and then v′ ∈ E. In the first case we must have T0 <: Tj , thus the
resulting expression, which is v′, can be typed using the appropriate literal value rule,
or T-Chan, and subsumption. In the second one, Tj = linkthis so that T = link f ;
the resulting expression can be typed using T-Label and T-VarS. As for the new
initial environment, it is obtained, as in the case of send, by replacing the instance of
T-Hempty at the top of the derivation for (a) with one using Θ′ instead of Θ, so that
v′ gets added to the initial environment if it is a channel and that the session type of
r.f is correctly advanced, meaning, in the case of a branch, that it is advanced to the
particular session corresponding to v′, the variant type being reconstituted in the final
environment by T-VarS. Finally, if λ is of the form cp ? [h′], then we have Θ′ = Θ+Θ′′

with Θ′′ ⊢ h′ : o : Tj , where o is the only root of h′. The merging lemma (Lemma 7.5)
gives us a typing for the new heap and, as in the other cases, advancing the session
type of cp yields a session type change in r.f , corresponding to the difference between
Γ and Γ′. We conclude using T-Ref and T-State.�

The following two lemmas will allow us to deduce from this theorem the proof of subject
reduction for configurations.

Lemma 7.18 If Θ ⊢ s and s ≡ s′ then Θ ⊢ s′.

Proof. By induction on the derivation of s ≡ s′.

Lemma 7.19 If s −→ s′, then either:

1. s ≡ (ν~c) ((h ∗ r; e) || s′′),
s′ ≡ (ν~c) ((h′ ∗ r′; e′) || s′′)

and (h ∗ r; e)
τ

−→ (h′ ∗ r′; e′), or

2. s ≡ (ν~c) ((h1 ∗ r1; e1) || (h2 ∗ r2; e2) || s′′),
s′ ≡ (ν~c)(νd) ((h1 ∗ r1; e′1) || (h2 ∗ r2; e′2) || s

′′),

(h1 ∗ r1; e1)
n[d+]
−→ (h1 ∗ r1; e′1) and (h2 ∗ r2; e2)

n[d−]
−→ (h2 ∗ r2; e′2), or

3. s ≡ (ν~c) ((h1 ∗ r1; e1) || (h2 ∗ r2; e2) || s′′),
s′ ≡ (ν~c) ((h1 ∗ r1; e′1) || (h2 ∗ r2; e′2) || s

′′),

(h1 ∗ r1; e1)
cp ![v]
−→ (h1 ∗ r1; e′1) and (h2 ∗ r2; e2)

cp ?[v]
−→ (h2 ∗ r2; e′2), or

4. s ≡ (ν~c) ((h1 ∗ r1; e1) || (h2 ∗ r2; e2) || s′′),
s′ ≡ (ν~c) ((h′

1 ∗ r1; e′1) || (h
′
2 ∗ r2; e′2) || s

′′),

(h1 ∗ r1; e1)
cp ![h′]
−→ (h′

1 ∗ r1; e′1) and (h2 ∗ r2; e2)
cp ?[ϕ(h′)]

−→ (h′
2 ∗ r2; e′2)

with h′ = h1 ↓ o, h′
1 = h1 ↑ o, and h′

2 = h2 + ϕ(h′), or

39

5. s ≡ (ν~c) ((h ∗ r; e) || s′′),

s′ ≡ (ν~c) ((h ∗ r; e′) || (o = C[~f =
−→
null] ∗ o; e′′{null/x}) || s′′)

and (h ∗ r; e)
C.m()
−→ (h ∗ r; e′), where C.fields = ~f , o is fresh and m(x) {e′′} ∈ C.

Proof. This is nothing more than a reformulation of the reduction rules in terms of labelled
transitions: the derivation for s −→ s′ can contain any number of instances of R-Par, R-Str or
R-NewChan but must have one of the other rules at the top. It is straightforward to see that
depending on that top rule we are in one of the five cases listed: (1) for any of the single-thread
rules in Figure 7, (2) for R-Init, (3) for R-ComBase, (4) for R-ComObj, and (5) for R-Spawn.

We can now prove Theorem 7.13. Proof.[(Theorem 7.13)] Because of Lemma 7.18 we only need
to look at the different cases described in Lemma 7.19.

In cases (1) and (5), the initial derivation is as follows:

Θ1; Γ ⊲ (h ∗ r; e) : T ⊳ Γ′ ∗ r′′
(T-Thread)

Θ1 ⊢ (h ∗ r; e) Θ2 ⊢ s′′
(T-Par)

Θ1 +Θ2 ⊢ (h ∗ r; e) || s′′
(T-NewChan)

⊢ s

In case (1), Theorem 7.13 gives us Θ1; Γ
′′ ⊲ (h′ ∗ r′; e′) : T ⊳ Γ′ ∗ r′′; from there the final

derivation is the same.
In case (5), the theorem gives us the same result, but the final derivation is more complicated

as there is one more parallel component. The C.m() transition tells us that e must be of the form
E [spawn C.m(v)]. From Lemma 7.11, this implies that the subexpression spawn C.m(v) is typable,
which must be a consequence of T-Spawn, implying that m appears in the initial session type S
of C with a Null argument type. As, by hypothesis, the declaration of class C is well-typed, this
implies (from T-Class) x : Null, this : C[

−−→
Null ~f] ∗ this ⊲ e′′ : T ⊳ this : C[F] ∗ this. We apply the

substitution lemma (7.10) to this judgement to replace this with o and x with null, and we build
the heap typing ∅ ⊢ o = C[~f =

−→
null] : o : C[

−−→
Null ~f] from T-Hempty and T-Hadd. This gives a

typing for the new thread, with an empty Θ, using T-State and T-Thread and we can conclude
with T-Par.

In cases (2), (3), and (4), the initial derivation is:

Θ1; Γ1 ⊲ (h1 ∗ r1; e1) : T1 ⊳ Γ′

1
∗ r′

1

Θ1 ⊢ (h1 ∗ r1; e1)

Θ2; Γ2 ⊲ (h2 ∗ r2; e2) : T2 ⊳ Γ′

2
∗ r′

2

Θ2 ⊢ (h2 ∗ r2; e2)
(T-Par)

Θ1 +Θ2 ⊢ (h1 ∗ r1; e1) || (h2 ∗ r2; e2) Θ ⊢ s′′
(T-Par)

Θ1 +Θ2 +Θ ⊢ (h1 ∗ r1; e1) || (h2 ∗ r2; e2) || s′′
(T-NewChan)

⊢ s

Furthermore, we can deduce from the transition labels that the expressions in the two topmost
premises are of the form E1[f1.m1(v1)] and E2[f2.m2(v2)] with h1(r1).f1 and h2(r2).f2 being, in
case (2), n, and in cases (3) and (4), respectively cp and cp. These two topmost premises must
come from T-State, which implies Θ1 ⊢ h1 : Γ1 and Θ2 ⊢ h2 : Γ2, from which we deduce, in case
(2), that n is a declared access point name and in cases (3) and (4) that JΘ1(c

p)K <: Γ1(r1.f1)
and JΘ2(c

p)K <: Γ2(r2.f2). We use Theorem 7.13 on these two topmost premises and distinguish
cases.

In case (2), Θ1 and Θ2 make transitions which introduce two dual types for d+ and d−, which
are fresh so that the disjoint unions are still possible, and we just need to add an additional step
of T-NewChan before the last one.

In cases (3) and (4), we first remark that because T-NewChan in the derivation leads to an
empty environment, c must be one of the channels in (ν~c) and we must have Θ1(c

p) = Σ and
Θ2(c

p) = Σ for some Σ. Then we use Lemma 7.11 to get a typing judgement for the method
call subexpression on the sending side (thread 1). This judgement has Γ1 as an initial typing
environment and comes from T-Call; as we have Σ <: Γ1(r1.f1), this implies that Σ is either of
the form ! [T] .Σ′ with v (in case (3)) or o (in case (4)) of type T , or (only in case (3)) of the form
⊕{l : Σl}l∈E with v ∈ E. The simplest case is (3): then this typing information, together with
the duality of the two endpoint types, shows that Θ2 follows the transition with the new type of
cp still dual to the new type of cp. In the case where v is a channel endpoint, its typing goes from
Θ1 to Θ2 but stays the same, so that it is unchanged in the sum environment yielded by T-Par.
Thus we can still apply T-NewChan.

40

Case (4) is similar but, additionally, a renaming function is applied to the transmitted heap.
We use Lemma 7.6 to see that the type of its only root, which is all we need, stays the same, so
that again Θ2 can follow the transition. We also have that a whole part of the channel environment
can go from Θ1 to Θ2 but the effect is the same as with just one channel: it does not affect the
sum environment resulting from T-Par. So again we can still apply T-NewChan.�

7.3 Type safety

We now have the following safety result, ensuring not only race-freedom (no two sends or receives
in parallel on the same endpoint of a channel) but also that the communication is successful.

Theorem 7.20 (No Communication Errors) Let

s ≡ (ν~c)(s′ || (h ∗ r; E [r.f.m(v)]) || (h′ ∗ r′; E [r′.f ′.m′(v′)]))

and suppose that ⊢ s holds. If h(r).f = cp and h′(r′).f ′ = cq then:

1. q = p,

2. channel c does not occur in s′, and

3. there exists s′′ such that s −→ s′′.

As the statement is true in particular when s′ is empty, it implies that communication between
the two threads is possible. Proof. This is an essentially straightforward consequence of ⊢ s.
The typing derivation is similar to the one shown for cases 2/3/4 in Theorem 7.13 above; the
two top premises must be consequences of T-State and the heap typing necessary to apply this
rule implies, respectively, Γ1(r.f) :> JΘ1(c

p)K and Γ2(r
′.f ′) :> JΘ2(c

q)K. Because of the disjoint
unions in T-Par, cp ∈ dom(Θ1) and cq ∈ dom(Θ2) immediately imply (1) and (2); (3) is then
a consequence of the duality constraint imposed by T-NewChan: looking at the translations of
dual channel types, and because the method call subexpressions must be typed by T-Call, if m
is send then m′ must be receive and vice-versa.

This theorem, together with the progress aspect of Theorem 7.16, restricts the set of blocked
configurations to the following: if ⊢ s and s 6−→, then all parallel components in s are either
terminated (reduced to values), unmatched accepts or requests, or method calls on pairwise distinct
channels — this last case corresponding to a deadlock.

7.4 Conformance

We now have the technical material necessary to prove Theorem 3.31 (conformance). Note that
we do not formally extend this result to the distributed setting, as stating a similar property in
that case would require more complex definitions describing, among other things, how call traces
are moved around between threads; however we can see informally that, because objects keep their
content and session type when transmitted, all necessary information is kept such that we still
have a conformance property.

Proof. We first prove, by strong induction on n, a slightly different result, namely the following:
for each i there is Γi such that Γi ⊲ (hi ∗ ri; ei) : T ⊳ Γ′ ∗ r′ and tr i is consistent with Γi.

We suppose that this property is true for any reduction sequence of length n or less whose
initial state satisfies the hypotheses and prove that it is true also for length n+ 1. The base case
n = 1 is trivial.

If the nth reduction step (hn ∗ rn; en) −→ (hn+1 ∗ rn+1; en+1) does not originate from R-
Return, we use the induction hypothesis on the beginning of the sequence; we refer to the cases
in the proof of Theorem 7.16 to show that the Γn+1 it allows to construct from Γn indeed is
consistent with trn+1. Because we are only interested in Γn+1 and not Γ′, in most cases we can
use Lemmas 7.11 and 7.12 to ignore any context E and proceed as if the reduction is exactly an
instance of its original rule.

If the rule is R-Seq, R-Switch or R-Swap then trn+1 = trn.
If the rule is R-Seq or R-Switch then the proof of Theorem 7.16 shows that we can choose

Γn+1 = Γn, so there is nothing more to prove.

41

If the rule is R-Swap then the proof of Theorem 7.16 indicates that Γn+1 (called Γ′′ in subject
reduction) can be defined using Lemma 7.9 from the Γ′′′ (called Γ1 in subject reduction) obtained
after typing v′, the value that gets swapped into the field. First of all note that most objects,
notably all those which are not v′ and not in a field of r, have the same type and position in the
heap in Γn+1 as they have in Γ. For all them the result is straightforward: we only concentrate
on those objects that move or change type. Depending on the nature of T and T ′ (object, link,
or base type), there may be one or two of them. Recall that neither type can be linkthis as else
the expression would not be typable. We distinguish cases separately for T and T ′, knowing that
any combination is possible (except both linking to the same field). Cases for T ′:

• If T ′ is an object type (thus v′ is an object name o′), then Γn+1(r.f) = Γn(o
′) (the rule used

for v′ is T-Ref). We also have trn+1(hn+1(r.f)) = trn+1(o
′) = trn(o

′), so trn+1 is indeed
consistent with Γn+1 with respect to reference r.f .

• If T ′ is link f ′, the rule used for v′ is T-VarS, and Γn+1(r.f
′) = 〈v′ : Sv′〉. We have

Γn+1(r.f) = link f ′ and hn+1(r.f) = v′, hence the actual session type of r.f ′ in hn+1

according to Γn+1 is Sv′ . Thus consistency is preserved for r.f ′.

Cases for T (corresponding respectively to cases 1 and 3 of Lemma 7.9):

• If T is an object type (thus hn(r.f) is an object name o), then Γn+1 contains a new entry
for o, with type Γn(r.f). Consistency for this new entry comes from consistency for r.f at
the previous step.

• If T is link f ′′, then Γn(r.f
′) = 〈l : Sl〉l∈E and hn(r.f) = l0 is in E. Thus the actual session

type of r.f ′′ in hn according to Γn is Sl0 . Lemma 7.9 also gives us Γn+1(r.f
′) = Sl0 , hence

the actual session type of r.f ′′ has not changed, and consistency is preserved.

If the rule is R-New then the proof of Theorem 7.16 shows that a suitable Γn+1 is of the form
Γn, o : C.session where o is the fresh object name introduced by the reduction. Definition 3.26
states that trn+1 extends trn by assigning an empty call trace to o; clearly trn+1 is consistent
with Γn+1.

If the rule is R-Call then the proof of Theorem 7.16 shows that a suitable Γn+1 is Γn with
the type of r.f replaced by a type which is not a session. So there is no consistency requirement in
Γn+1 for r.f , and every other reference is given the same call trace by trn+1 as by trn. Therefore
trn+1 is consistent with Γn+1.

Now if the nth step originates from R-Return, we reason slightly differently. We know by
hypothesis that r1 is a prefix of rn+1. Furthermore, since the nth step is R-Return, rn is of
the form rn+1.f . Reduction rules can only alter the current object by removing or adding one
single field reference at once, therefore there must be a previous reduction step in the sequence,
say the ith, that last went from rn+1 to rn+1.f . That is, we chose i such that rn+1.f is a prefix
of all rj for j between i + 1 and n and that ri = rn+1. That step must originate from R-Call
as it is the only rule which adds a field specification to the current object. Thus, it is of the form
(hi ∗ rn+1; E(f.m(v′))) −→ (hi+1 ∗ rn+1.f ; E(return e)), where e is the method body of m with
the parameter substituted. Then it is straightforward to see that the whole reduction sequence
from i + 1 to n consists of reductions of e inside the context E(return [_]).

We first use the induction hypothesis on the first part of the reduction (1 to i) so as to get
judgments up to Γi ⊲ (hi ∗ rn+1; E(f.m(v′))) : T ⊳ Γ′ ∗ r′. We then use Lemma 7.11 to get Γi ⊲

(hi ∗ rn+1; f.m(v′)) : T ′ ⊳ Γ′′ ∗ r′′ and note that this judgment must come from T-Call, which
implies that r′′ = rn+1, that Γi(rn+1.f) is of the form {T ′ m(. . .) : S, . . .} and that Γ′′(rn+1.f) = S.
Furthermore, T ′ is either a base type if S is a branch or link f if it is a variant. We know that tr i

is consistent with Γi, therefore we have class(o).session
tr i(o)

−→∗ {T ′ m(. . .) : S, . . .}
m
−→ S.

We now use the induction hypothesis again on the reduction sequence from i to n for this
particular call subexpression, recalling that i has been defined such that the hypothesis on the
current object is indeed satisfied by this sequence. We can also use Lemma 7.12 at each step in
order to lift the judgements thus obtained to the whole expression. To summarise, this means that
for any j between i + 1 and n we have: ej = E(return e′j) for some e′j, Γj ⊲ (hj ∗ rj ; return e′j) :
T ′ ⊳ Γ′′ ∗ rn+1 and Γj ⊲ (hj ∗ rj ; ej) : T ⊳ Γ′ ∗ r′, and that trj is consistent with Γj .

42

W(C) = AC(C.session, C.fields, ∅)
if for every req F ens F ′ for T ′ m(T x) {e} ∈ C

F ′ 6= 〈_〉 and BC(e, F, x : T) = (T ′, F ′, _)

AC(S, F, ∆) = ∆ if (F, S) ∈ ∆
AC(µX.S, F, ∆) = AC(S{µX.S/X}, F, ∆ ∪ {(F, µX.S)})

AC({Ti mi(Ui) : Si}16i6n, F, ∆0) = ∆n

where for i = 1 to n
let (T ′

i , F
′

i , _) = BC(ei, F, xi : Ui) where mi(xi) {ei} ∈ C
if T ′

i <: Ti then let ∆i = AC(Si, F ′

i , ∆i−1)
else if T ′

i is an enumeration E and Ti = linkthis

then let ∆i = AC(Si, 〈l : F
′

i 〉l∈E , ∆i−1)
else if T ′

i = linkthis and Ti is an enumeration E and F ′

i = 〈l : Fl〉l∈E′ and E′ ⊆ E
then let ∆i = AC(Si,

∨

l∈E′ Fl, ∆i−1)

AC(〈l : Sl〉l∈E , 〈l : Fl〉l∈E′ , ∆0) = ∆n

where E′ = {l1 . . . ln} ⊆ E and for i = 1 to n, ∆i = AC(Sli
, Fli

, ∆i−1)

Combining variants

{Ti fi}i∈I ∨ {T ′

i fi}i∈I = {(Ti ∨ T ′

i) fi}i∈I

〈l : Fl〉l∈I ∨ 〈l : F ′

l
〉l∈J = 〈l : F ′′

l
〉l∈I∪J

where F ′′

l
= Fl ∨ F ′

l
if l ∈ I ∩ J , Fl if l 6∈ J , F ′

l
if l 6∈ I

Figure 27: Typechecking: algorithms W and A.

For the last reduction step, R-Return, the proof of Theorem 7.16 tells us that we can choose
a Γn+1 which is identical to Γn except for the type of rn+1.f , and as the call trace for other
references is not modified, consistency is preserved for them. For rn+1.f we have to look back at
the initial subexpression on step i. First note that R-Swap can only act on a field of the current
object, therefore since rn+1.f is a prefix of the current object during the whole subsequence, its
content cannot change and is the same object o throughout. Similarly, there is no other R-Call
or R-Return acting on that particular object, hence trn(o) = tr i+1(o) = tr i(o)m. We saw
above that this call trace leads the initial session of o to S. Then the judgement for the final
subexpression, at step n + 1, is of the form Γn+1 ⊲ (hn+1 ∗ rn+1; v) : T ′ ⊳ Γ′′ ∗ rn+1. There are
two cases, as in the proof of Theorem 7.16. If T ′ is a base type then S is a branch and it is possible
to decide that Γn+1(rn+1.f) is equal to S. In that case the call trace either does not change or
has a label appended, but as S is a branch it can do a transition to itself with any label, therefore
trn+1(o) is consistent with Γn+1(rn+1.f) in both cases. If T ′ is link f , then v is a label, S is a
variant 〈l : Sl〉l∈E and Γn+1(rn+1.f) can be chosen equal to Sv. We have trn+1(o) = trn(o)v and
S

v
−→ Sv, so consistency is preserved.

This completes the inductive proof that for every step i in the reduction sequence there is Γi

such that Γi ⊲ (hi ∗ ri; ei) : T ⊳ Γ′ ∗ r′ and tr i is consistent with Γi. This fact obviously implies
that tr i is valid for all the objects which have a session type in Γi; we now argue that it is also the
case for the other objects, namely those which either are not at all in Γi or do not have a session
type. We know by hypothesis that it is the case for tr1 and show by a very simple induction that
it cannot change from i to i + 1. The ith step can only change the call trace for an object o if
it originates from R-Call or R-Return concerning that object. R-Call can only occur if the
reducible part of the expression is indeed a method call on a field which contains o, and that is
only typable if Γi contains a session type for that field which is a branch containing the method,
and thus allows the appropriate transition: therefore validity of the call trace for o is preserved
in that case. R-Return on the other hand can only occur if the reducible part of the expression
is a return and if the current object is (the address of) o, and we saw that in that case the Γi+1

constructed in our proof contains a session type for o, so this case is covered by the consistency
result.

43

BC(null, F, V) = (Null, F, V)

BC(n, F, V) = (J〈n.protocol〉K, F, V)

BC(x, F, y : T) = (T, F, V) if x = y, where V = ∅ if T is linear or y : T otherwise

BC(f ↔ e, F, V) = (U, F ′′, V ′)
where (T, F ′, V ′) = BC(e, F, V) and F ′(f) is not a variant and
if T = linkthis then F ′ = 〈l : Fl〉l∈E and U = (

∨

l∈E Fl)(f) and F ′′ = (
∨

l∈E Fl){f 7→ E}
else U = F ′(f) and F ′′ = F ′{f 7→ T}

BC(l, F, V) = (linkthis, 〈l : F 〉, V)

BC(new C′(), F, V) = (C′.session, F, V)

BC(f.mj(e), F, V) = (T, F ′′, V ′)
where (T ′, F ′, V ′) = BC(e, F, V) and

if T ′ = linkthis then F ′ = 〈l : Fl〉l∈E and (
∨

l∈E Fl)(f) = {Ti mi(T ′

i) : Si}i∈I and j ∈ I
and T ′

j is an enumeration E′ and E ⊆ E′ and F ′′ = (
∨

l∈E Fl){f 7→ S′

j} and

T = link f if Tj = linkthis, T = Tj otherwise
else F ′(f) = {Ti mi(T

′

i) : Si}i∈I and j ∈ I and T ′ <: T ′

j and

F ′′ = F ′{f 7→ S′

j} and T = link f if Tj = linkthis, T = Tj otherwise

BC(m(e), F, V) = (T ′, F ′′′, V ′)
where (T, F ′, V ′) = BC(e, F, V) and req F ′′ ens F ′′ for T ′ m(T ′′ x) {e} ∈ C and

if T = linkthis then F ′ = 〈l : Fl〉l∈E and T ′′ is an enumeration E′ and
E ⊆ E′ and

∨

l∈E Fl <: F ′′

else T <: T ′′ and F ′ <: F ′′

BC(switch (e) {l : el}l∈E , F, V) = (T,
∨

l∈E F ′′

l
, V ′′)

where (U, F ′, V ′) = BC(e, F, V) and
if U = E′ then E′ ⊆ E and ∀l ∈ E′.(T, F ′′

l
, V ′′) = BC(el, F

′, V ′)
else if U = linkthis then F ′ = 〈m : Gm〉m∈E′ and E′ ⊆ E and

∀l ∈ E′.(T, F ′′

l
, V ′′) = BC(el,

∨

m∈E′ Gm, V ′)
else if U = link f then

F ′(f) = 〈l : Sl〉l∈E′ and E′ ⊆ E and ∀l ∈ E′.(T, F ′′

l
, V ′′) = BC(el, F

′{f 7→ Sl}, V
′)

BC(while (e) {e′}, F, V) = (Null, F ′′, V ′)
where (U, F ′, V ′) = BC(e, F, V) and

if U = E′ then E′ ⊆ {True, False} and BC(e′, F ′, V ′) = (Null, F, V) and F ′′ = F ′

else if U = linkthis then F ′ = 〈l : Fl〉l∈E and E ⊆ {True, False} and
BC(e′,

∨

l∈E Fl, V
′) = (Null, F, V) and F ′′ =

∨

l∈E Fl

else if U = link f then F ′(f) = 〈True : STrue, False : SFalse〉 and
BC(e′, F ′{f 7→ STrue}, V

′) = (Null, F, V) and F ′′ = F ′{f 7→ SFalse}

BC(e; e′, F, V) = BC(e′, F ′′, V ′)
where (T, F ′, V ′) = BC(e, F, V) and T 6= link _ and

if T = linkthis then F ′ = 〈l : Fl〉l∈E and F ′′ =
∨

l∈E Fl

else F ′′ = F ′

BC(spawn C′.m(e), F, V) = (Null, F ′, V ′)
where (Null, F ′, V ′) = BC(e, F, V) and Null m(Null) ∈ C′.session

Figure 28: Typechecking: algorithm B.

8 Type Checking Algorithm

This section introduces a type checking algorithm, sound and complete with respect to the type
system in Section 6, and describes a prototype implementation of a programming language based
on the ideas of the paper.

8.1 The Algorithm

Figures 27 and 28 define a type checking algorithm for the distributed language, including the
sequential extensions from Section 4. The algorithm is applied to each component of a distributed
system, and in order to ensure type safety of the complete system there must be some separate
mechanism to check that each access point n is given the same type everywhere. A program is
type checked by calling algorithm W on each class definition and checking that no call generates
an error. The definition of algorithm W follows the typing rule T-Class in Figure 14. It calls
algorithm A to check the relation F ⊢ C : S and algorithm B to type check the bodies of the
methods that have req/ens annotations. Algorithm A also calls algorithm B to typecheck the
bodies of the methods that appear in the session type.

44

1c l a s s C {
2s e s s i on { l i n k t h i s m(i n t) : 〈 FALSE : SCf , TRUE: SCt 〉 }
3where SCf = . . . , SCt = . . .
4. . .
5}
6
7c l a s s D {
8s e s s i on { l i n k t h i s a (i n t) : 〈 FALSE : SDf , TRUE: SDt 〉 ,
9l i n k t h i s b (i n t) : 〈 FALSE : SDf , TRUE: SDt 〉 ,

10{ FALSE , TRUE } c (i n t) : SD1 ,
11{ FALSE , TRUE, UNKNOWN } d (i n t) : SD2 }
12where SDf = . . . , SDt = . . . , SD1 = . . . , SD2 = . . .
13
14f ;
15
16a (x) { // Not a l l owed , because r e t u r n type i s l i n k f
17f ↔ new C () ;
18f .m(x) ; }
19
20aa (x) { // Al lowed , because body type i s l i n k t h i s
21f ↔ new C () ;
22switch (f .m(x)) {
23case FALSE : FALSE ;
24case TRUE: TRUE; } }
25
26b (x) { // Al lowed , by c r e a t i n g a un i f o rm v a r i a n t
27even (x) ; }
28
29bb (x) { // Al lowed , because body type i s l i n k t h i s
30switch (even (x)) {
31case FALSE : FALSE ;
32case TRUE: TRUE; } }
33
34c (x) { // Al lowed , by t a k i ng a j o i n o f f i e l d t y p i n g s
35f ↔ new C () ;
36switch (f .m(x)) {
37case FALSE : FALSE ;
38case TRUE: TRUE; } }
39
40cc (x) { // Al lowed , by t a k i ng a j o i n o f equa l f i e l d t y p i n g s
41switch (even (x)) {
42case FALSE : FALSE ;
43case TRUE: TRUE; } }
44
45d (x) { // Al lowed , because o f s ub t y p i ng between enumera t i ons
46even (x) ; }
47}

Figure 29: Example for type checking.

In both A and B there are several “if” and “where” clauses; they should be interpreted as
conditions which, if not satisfied, cause termination with a typing error.

Because of the coinductive definition of F ⊢ C : S, algorithm A uses a set ∆ of assumed
relationships between field typings F and session types S. If there is no error then the algorithm
returns ∆, but at the top level we are only interested in success or failure, not in the returned
value.

Algorithm B checks the typing judgement for expressions, defined in Figure 9, specialized to
the top-level form this : C[F], V ∗ this ⊲ e : T ⊳ this : C[F ′], V ′ ∗ this as explained in Section 3.4.1.
The definition of B follows the typing rules (Figure 9) except for one point: T-VarF means that
the rules are not syntax-directed, as any expression with type E can also be given type linkthis.
For this reason, clause l of B produces type linkthis and a variant field typing with the single
label l. More general variant field typings are produced when typing switch expressions, as the
∨ operator is used to combine the field typings arising from the branches. This is the typical
situation when typing the body of a method whose return type is linkthis: the body contains a
switch whose branches return different labels with different associated field typings.

45

It is possible, however, that giving type linkthis to l is incorrect. It might turn out that the
expression needs to have an enumerated type E, for example in order to be passed as a method
parameter or returned as a method result of type E. An expression that has been inappropiately
typed with linkthis can, in general, be associated with any variant field typing, for example if it
contains a switch whose branches yield different field typings. In this case, the algorithm uses ∨ to
combine the branches of the variant field typing into a single field typing; the join is always over all
of the labels in the variant. This happens in several places in algorithm B, indicated by conditions
of the form “if T = linkthis”, and in the final “else” branch of the third clause of algorithm A.

The algorithm for checking subtyping is not described here but is similar to the one defined for
channel session types in [31]. We write S∨S′ for the least upper bound of S and S′ with respect to
subtyping. It is defined by taking the intersection of sets of methods and the least upper bound of
their continuations. Details of a similar definition (greatest lower bound of channel session types)
can be found in [44].

The type checking algorithm is modular in the sense that to check class C we only need to
know the session types of other classes, not their method definitions.

We have not yet investigated type inference, but there are two ways in which it might be
beneficial. One would be to infer the req/ens annotations. The other would be to support some
form of polymorphism over field typings, along the lines that if method m does not use field f
then it should be callable independently of the type of f . This might reduce the need to type
check the definition of m every time it occurs in the session type.

8.2 Examples of Type Checking

Figure 29 defines classes C and D. In class C, only the outer layer of the session type is of interest;
the example uses an object of class C but does not need the definition of method m. Class D, as
well as the outer layer of the session type, contains a field f and one or two candidate definitions
for each of the methods a, b, c and d. The definitions of a and aa are alternatives for the method
a specified in the session type, and so on.

The definition of a is not typable because the type of the returned expression is link f . Allowing
this would let the caller of a have access to field f. Instead, the result of f .m(x) must be analyzed
with a switch, as in the definition of aa, which is typable. The linkthis type required by the
signature of a is introduced by the enumeration labels FALSE and TRUE in the branches of the
switch. A compiler could insert switches of this kind automatically, allowing the definition of a
as syntactic sugar.

The remaining method definitions are all typable and illustrate different features of the type
system and the algorithm. In the definition of b, the method even is supposed to be the obvious
function for testing parity of an integer, returning TRUE or FALSE. This definition is typable
even though the body of b does not introduce a linkthis type, because algorithm A constructs a
variant field typing over {TRUE,FALSE} in which both options are the same. This is seen in the
first else clause of A. The definition of bb achieves the same effect by using the labels FALSE and
TRUE to introduce the type linkthis . Each label corresponds to a partial variant field typing,
and checking the switch combines them by means of the ∨ operator. Because the field f is not
involved in the method body, the field typing is the same in both options of the variant.

Method c has the same definition as a, but this time the signature in the session type specifies
a simple enumeration as the return type. This is allowed, by using the ∨ operator to construct
the join of the field typings, in the second else clause of A. This means that when the algorithm
proceeds to type check method definitions in the session type SD1, the type of f is taken to be the
join of SCf and SCt. Whether or not this loss of information causes a problem will depend on the
particular definitions of those types, which we have not shown. Method cc is handled in the same
way, but this time there is no loss of information because the types being joined are identical; this
in turn is because f is not involved in the method body.

Finally, method d illustrates straightforward subtyping between enumerations, defined as set
inclusion.

46

8.3 Correctness of the Algorithm

The following sequence of results outlines the proof of soundness and completeness of the algorithm.
The detailed proofs are routine and are omitted.

Theorem 8.1 Algorithm A always terminates, either with an error (and then the function A is
undefined) or with a result.

Proof. Similar to proofs about algorithms for coinductively-defined subtyping relations [53, Chap-
ter 16].

Lemma 8.2 If this : C[F], V ∗ this ⊲ e : linkthis ⊳ this : C[F ′], V ′ ∗ this then for some E and
{Fl}l∈E, F ′ = 〈l : Fl〉l∈E and this : C[F], V ∗ this ⊲ e : E ⊳ this : C[

∨

l∈E Fl], V
′ ∗ this.

Proof. By induction on the typing derivation.

Lemma 8.3 If BC(e, F, V) = (T, F ′, V ′) then this : C[F], V ∗ this ⊲ e : T ⊳ this : C[F ′], V ′ ∗ this.

Proof. By induction on the structure of e.

Lemma 8.4 If this : C[F], V ∗ this ⊲ e : T ⊳ this : C[F ′], V ′ ∗ this and BC(e, F, V) = (T ′, F ′′, V ′′)
then V ′′ <: V ′ and either

1. T ′ <: T and F ′′ <: F ′, or

2. T = linkthis, T ′ is an enumeration E, F ′ = 〈l : Fl〉l∈E′ , E ⊆ E′ and ∀l ∈ E. F ′′ <: Fl, or

3. T is an enumeration E, T ′ = linkthis, F ′′ = 〈l : Fl〉l∈E′ , E′ ⊆ E and ∀l ∈ E′. Fl <: F ′.

Proof. By induction on the typing derivation.

Theorem 8.5 If F ⊢ C : S then AC(S, F, ∅) is defined.

Proof. Consider the execution of AC(S, F, ∅). It terminates and has various calls of the form
AC(S

′, F ′, ∆), including the top-level call. We prove the following statement, by induction on
the number of recursive calls in the execution of AC(S

′, F ′, ∆): if ∆ ⊆ • ⊢ C : • and F ′ ⊢ C : S′

then AC(S
′, F ′, ∆) is defined and AC(S

′, F ′, ∆) ⊆ • ⊢ C : •.

Lemma 8.6 If AC(S, F, ∆) is defined then for any ∆′, AC(S, F, ∆ ∪∆′) = AC(S, F, ∆) ∪∆′.

Proof. Similar to the proof of Theorem 8.5, by induction on the recursive calls within a given
top-level call.

Lemma 8.7 Suppose AC(µX.S0, F0, ∅) is defined and (F0, µX.S0) 6∈ ∆. Then for all S and F ,
if AC(S, F, ∆ ∪ {(F0, µX.S0)}) is defined then AC(S, F, ∆) is defined.

Proof. Similar to the proof of Theorem 8.5, by induction on the recursive calls within a given
top-level call.

Lemma 8.8 If AC(µX.S, F, ∅) is defined then AC(S{
µX.S/X}, F, ∅) is defined.

Proof. By the definition of A, AC(µX.S, F, ∅) = AC(S{µX.S/X}, F, {(F, µX.S)}), which is there-
fore defined. By Lemma 8.7, AC(S{µX.S/X}, F, ∅) is defined.

Corollary 8.9 If AC(S, F, ∅) is defined then AC(unfold(S), F, ∅) is defined.

Theorem 8.10 If AC(S, F, ∅) is defined then F ⊢ C : S.

Proof. By Corollary 8.9 and the fact that F ⊢ C : S is defined in terms of the unfolded structure
of session types, it is sufficient to consider the case in which S is guarded.

Similarly to the proof of Theorem 8.5, consider the recursive calls in the execution of AC(S0, F0, ∅).
We show that the following relation is a C-consistency relation:

R = {(F, S) | AC(S, F
′, ∆) is called for some ∆ and F ′ with F <: F ′}.

This is easily checked, using the three cases of Lemma 8.4 to correspond to the three cases in the
third clause of the definition of A.

47

8.4 Implementation

We have used the Polyglot [51] system to implement the ideas of this paper as a prototype
extension of Java 1.4 (extended with enum declarations), which we call Bica. The compiler
accepts conventional Java code, possibly including @session annotations in classes and in method
parameters, as well as @req and @ens annotations for recursive methods (cf. Section 4.2). All we
do is extended type checking; there is no need to touch the back-end of the compiler.

To keep in line with the expectations of Java programmers, annotations follow the first style
in Figure 1, page 3. Also, the type system is nominal (cf. Section 4.4); label sets (cf. Figure 5) are
explicitly introduced via Java 1.5 enum declarations. The ideas presented in this paper, addressing
a subset of the Java language, are extended towards the whole language. In particular:

• The while loop technique described in Section 4.1 is extended to handle for and do−while

loops.

• The same idea is used to type the various goto instructions present in Java: exceptions,
break, continue and return, labelled versions included.

• All control flow instructions (including if−then, not discussed in the paper) can be used
with conventional or with session-related boolean/enum values.

• Classes not featuring a @session annotation are considered shared rather than linear. Their
objects are treated very much like the null value (cf. Section 4.3). We do not allow a shared
class to contain a linear field, even though it is perfectly acceptable for a method of a shared
class to have a linear parameter.

• The same technique used for “top-level” classes is used for inner, nested, local (defined within
methods) and anonymous classes.

• In order to mention overloaded methods in @session annotations, alias names for these
methods are introduced via extra annotations.

• Static fields are always shared.

• Class inheritance (cf. Section 4.4) is supported; interface or multiple inheritance is not. enum

inheritance (contravariant subtyping) is supported via annotations.

• The distributed part of the language is not implemented at the time of this writing.

A prototype implementation is available from http://gloss.di.fc.ul.pt/bica/.

9 Related Work

Previous work on session types for object-oriented languages. Two lines of work, by
Dezani-Ciancaglini, Yoshida et al. [[13, 25]; [22, 23]] and by Hu [39], have already been described
in Section 1. We have explained that the distinctive feature of our work is that we can store a
channel in a field of an object and allow several methods to use it. We are also able to interleave
sessions on different channels.

[38] have also extended SJ to support event-driven programming, with a session type discipline
to ensure safe event handling and progress. We have not considered event-driven programming in
our setting.

Campos and Vasconcelos [11, 12] developed MOOL, a simple class-based object-oriented lan-
guage, to study object usage and access. The novelties are that class usage types are attached
to class definitions, and the communication mechanism is based on method call instead of being
channel-based. The latter feature is the main difference with respect to our work.
Non-uniform concurrent objects / active objects. Another related line of research, started
by [50], aimed at describing the behaviour of non-uniform active objects in concurrent systems,
whose behaviour (including the set of available methods) may change dynamically. He defined
subtyping for active objects, but did not formally define a language semantics or a type system.
The topic has been continued, in the context of process calculi, by several authors [[18]; [17]; [47];

48

[48]; [57, 56, 55]; [9, 10]]. [9] is the most relevant work; it uses an approach based on spatial types
to give very fine-grained control of resources, and [45] has implemented a Java prototype based
on this idea. [19] define a concurrent Java-like language incorporating inheritance and subtyping
and equipped with a type-and-effect system, in which method availability is made dependent on
the state of objects.

The distinctive feature of our approach to non-uniform objects, in comparison with all of the
above work, is that we allow an object’s abstract state to depend on the result of a method call.
This gives a very nice integration with the branching structure of channel session types, and with
subtyping.

Specifically related to the notion of subtyping between session types, the work of [58] is worth
mentioning. He proposes a type-based approach to ensure that both component objects and
their clients have compatible protocols. The typing discipline specifies not only how to use the
component’s methods, but also the notifications it sends to its clients. Rossie calls this enhanced
specification a Logical Observable Entity (LOE), which is a finite-state machine equipped with a
subtyping notion. An LOE is a high-level description of an object, specifying which transitions
(method executions) change its state, providing for each state both the available methods and
notifications to be sent to the clients. LOEs support behavioural subtyping, in its afferent aspects
(how clients may affect the LOE) — a subtype must allow at least the traces of its supertype,
and in its efferent aspects (how a LOE processing a method request has effects on clients) — the
subtype must not send more notifications than the supertype. This behavioural subtyping notion
on finite-state machines, which is in its spirit very similar to the one of session types — "more
offers, less requests", is defined as a simulation relation. Rossie shows that this relation ensures
safe substitutability.
Typestates. Based on the fact that method availability depends on an object’s internal state
(the situation identified by Nierstrasz, as mentioned above), Strom and Yemini [59] proposed
typestates. The concept consists of identifying the possible states of an object and defining pre-
and post-conditions that specify in which state an object should be so that a given method would
be available, and in which state the method execution would leave the object.

Vault [20, 27] follows the typestates approach. It uses linear types to control aliasing, and uses
the adoption and focus mechanism [27] to re-introduce aliasing in limited situations. Fugue [21, 28]
extends similar ideas to an object-oriented language, and uses explicit pre- and post-conditions.

[4] also work on a typestates approach in an object-oriented language, defining a sound modular
automated static protocol-checking setting. They define a state and method refinement relation
achieving a behavioural subtyping relation. The work is extended with access permissions, that
combine typestate with aliasing information about objects [5], and with concurrency, via the
atomic block synchronization primitive used in transactional memory systems [3]. Like us, they
allow the typestate to depend on the result of a method call. Plural is a prototype tool that
embodies their approach, providing automated static analysis in a concurrent object-oriented lan-
guage [6]. To evaluate their approach they annotated and verified several standard Java APIs [7].

[46] develop a new aliasing control mechanism, finer and more expressive than previous pro-
posals, based on defining object views according to specific access constraints. The discipline is
implemented in a type system combining views and a typestate approach, checking user defined
aliasing patterns.

Finally, Sing# [26] is an extension of C# which has been used to implement Singularity, an
operating system based on message-passing. It incorporates session types to specify protocols for
communication channels, and introduces typestate-like contracts The published paper [26] does
not discuss the relationship between channel contracts and non-uniform objects or typestates,
and does not define a formal language. A technical point is that Sing# uses a single construct
switch receive to combine receiving an enumeration value and doing a case-analysis, whereas our
system allows a switch on an enumeration value to be separated from the method call that produces
it.

Session types and typestates are related approaches, but there are stylistic and technical differ-
ences. With respect to the former, session types are like labelled transition systems or finite-state
automata, capturing the behaviour of an object. When developing an application, one may start
from session types and then implement the classes. Typestates take each transition of a session
type and attach it to a method as pre- and post-conditions. With respect to technical differences,
the main ones are: (a) session types unify types and typestates in a single class type as a global

49

behavioural specification; (b) our subtyping relation is structural, while the typestates refinement
relation is nominal; (c) Plural uses a software transactional model as concurrency control mecha-
nism (thus, shared memory), which is lighter and easier than locks, but one has to mark atomic
blocks in the code, whereas our communication-centric model (using channels) is simpler and al-
lows us to use the same type abstraction (session types) instead of a new programming construct;
moreover, channel-based communication also allows us to specify the client-server communication
protocol as the channel session type, and to implement it modularly, in several methods which may
even be in different classes; (d) typestate approaches allow flexible aliasing control, whereas our
approach uses only linear objects (to add better alias/access control is simple and an orthogonal
issue).
Static verification of protocols. Cyclone [34] and CQual [29] are systems based on the C
programming language that allow protocols to be statically enforced by a compiler. Cyclone adds
many benefits to C, but its support for protocols is limited to enforcing locking of resources.
Between acquiring and releasing a lock, there are no restrictions on how a thread may use a
resource. In contrast, our system uses types both to enforce locking of objects (via linearity)
and to enforce the correct sequence of method calls. CQual expects users to annotate programs
with type qualifiers; its type system, simpler and less expressive than the above, provides for type
inference.
Unique ownership of objects. In order to demonstrate the key idea of modularizing session
implementations by integrating session-typed channels and non-uniform objects, we have taken the
simplest possible approach to ownership control: strict linearity of non-uniform objects. This idea
goes back at least to the work of [2] and has been applied many times. However, linearity causes
problems of its own: linear objects cannot be stored in shared data structures, and this tends
to restrict expressivity. There is a large literature on less extreme techniques for static control
of aliasing: Hogg’s Islands [35], Almeida’s balloon types [1], Clarke et al.’s ownership types [16],
Fähndrich and DeLine’s adoption and focus [27], Östlund et al.’s Joe3 [52] among others. In
future work we intend to use an off-the-shelf technique for more sophisticated alias analysis. The
property we need is that when changing the type of an object (by calling a method on it or by
performing a switch or a while on an enumeration constant returned from a method call) there
must be a unique reference to it.
Resource usage analysis. [41] define a general resource usage analysis problem for an extended
λ-calculus, including a type inference system, that statically checks the order of resource usage.
Although quite expressive, their system only analyzes the sequence of method calls and does not
consider branching on method results as we do.
Analysis of concurrent systems using pi-calculus. Some work on static analysis of concur-
rent systems expressed in pi-calculus is also relevant, in the sense that it addresses the question
(among others) of whether attempted uses of a resource are consistent with its state. Kobayashi
et al. have developed a generic framework [40] including a verification tool [42] in which to define
type systems for analyzing various behavioural properties including sequences of resource uses
[43]. In some of this work, types are themselves abstract processes, and therefore in some situa-
tions resemble our session types. [15] use CCS to describe properties of pi-calculus programs, and
verify the validity of temporal formulae via a combination of type-checking and model-checking
techniques, thereby going beyond static analysis.

All of this pi-calculus-based work follows the approach of modelling systems in a relatively
low-level language which is then analyzed. In contrast, we work directly with the high-level
abstractions of session types and objects.

10 Conclusion

We have extended existing work on session types for object-oriented languages by allowing the
implementation of a session to be divided between several methods which can be called indepen-
dently. This supports a modular approach which is absent from previous work. Technically, it
is achieved by integrating session types for communication channels and a static type system for
non-uniform objects. A session-typed channel is one kind of non-uniform object, but objects whose
fields are non-uniform are also, in general, non-uniform. Typing guarantees that the sequence of

50

messages on every channel, and the sequence of method calls on every non-uniform object, satisfy
specifications expressed as session types.

We have formalized the syntax, operational semantics and static type system of a core dis-
tributed class-based object-oriented language incorporating these ideas. Soundness of the type
system is expressed by type preservation, conformance and correct communication theorems. The
type system includes a form of typestate and uses simple linear type theory to guarantee unique
ownership of non-uniform objects. It allows the typestate of an object after a method call to de-
pend on the result of the call, if this is of an enumerated type, and in this situation, the necessary
case-analysis of the method result does not need to be done immediately after the call.

We have illustrated our ideas with an example based on a remote file server, and described a
prototype implementation. By incorporating further standard ideas from the related literature, it
should be straightforward to extend the implementation to a larger and more practical language.

In the future we intend to work on the following topics. (1) More flexible control of aliasing.
The mechanism for controlling aliasing should be orthogonal to the theory of how operations affect
uniquely-referenced objects. We intend to adapt existing work to relax our strictly linear control
and obtain a more flexible language. (2) In Section 4.4 we outlined an adaptation of our structural
type system to a nominal type system as found in languages such as Java. We would also like to
account for Java’s distinction and relationship between classes and interfaces. (3) Specifications
involving several objects. Multi-party session types [8, 36] and conversation types [10] specify
protocols with more than two participants. It would be interesting to adapt those theories into
type systems for more complex patterns of object usage.

Acknowledgements We thank Jonathan Aldrich and Luís Caires for helpful discussions. Bica
(Section 8.4) was implemented by Alexandre Z. Caldeira. Gay was partially supported by the
UK EPSRC (EP/E065708/1 “Engineering Foundations of Web Services” and EP/F037368/1).
He thanks the University of Glasgow for the sabbatical leave during which part of this research
was done. Gay and Ravara were partially supported by the Security and Quantum Information
Group at Instituto de Telecomunicações, Portugal. Vasconcelos was partially supported by the
Large-Scale Informatics Systems Laboratory, Portugal. Ravara was partially supported the Por-
tuguese Fundação para a Ciência e a Tecnologia FCT (SFRH/BSAB/757/2007), and by the UK
EPSRC (EP/F037368/1 “Behavioural Types for Object-Oriented Languages”). Gesbert was sup-
ported by the UK EPSRC (EP/E065708/1) and by the French ANR (project ANR-08-EMER-004
“CODEX”).

References

[1] Paulo Sérgio Almeida. Balloon types: Controlling sharing of state in data types. In Proceed-
ings of the 11th European Conference on Object-Oriented Programming (ECOOP), volume
1241 of Lecture Notes in Computer Science, pages 32–59. Springer, 1997.

[2] Henry G. Baker. ‘Use-once’ variables and linear objects — storage management, reflection
and multi-threading. ACM SIGPLAN Notices, 30(1):45–52, 1995.

[3] Nels E. Beckman, Kevin Bierhoff, and Jonathan Aldrich. Verifying correct usage of atomic
blocks and typestate. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA), pages 227–244.
ACM, 2008.

[4] Kevin Bierhoff and Jonathan Aldrich. Lightweight object specification with typestates. In
Proceedings of the 13th ACM SIGSOFT Symposium on Foundations of Software Engineering
(FSE), pages 217–226. ACM, 2005.

[5] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In Pro-
ceedings of the 22nd ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), pages 301–320. ACM, 2007.

51

[6] Kevin Bierhoff and Jonathan Aldrich. PLURAL: checking protocol compliance under aliasing.
In Companion of the 30th International Conference on Software Engineering (ICSE), pages
971–972. ACM, 2008.

[7] Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich. Practical API protocol checking
with access permissions. In Proceedings of the 23rd European Conference on Object-Oriented
Programming (ECOOP), volume 5653 of Lecture Notes in Computer Science, pages 195–219.
Springer, 2009.

[8] E. Bonelli and A. Compagnoni. Multipoint Session Types for a Distributed Calculus. In
Proceedings of the 3rd International Symposium on Trustworthy Global Computing (TGC),
volume 4912 of Lecture Notes in Computer Science, pages 240–256. Springer, 2007.

[9] Luis Caires. Spatial-behavioral types for concurrency and resource control in distributed
systems. Theoretical Computer Science, 402(2–3):120–141, 2008.

[10] Luís Caires and Hugo Torres Vieira. Conversation types. Theoretical Computer Science,
411(51–52):4399–4440, 2010.

[11] Joana Campos. Linear and shared objects in concurrent programming. Master’s thesis,
University of Lisbon, 2010.

[12] Joana Campos and Vasco T. Vasconcelos. Channels as objects in concurrent object-oriented
programming. In Proceedings of the 3rd International Workshop on Programming Language
Approaches to Concurrency and Communication-cEntric Software (PLACES), Electronic
Proceedings in Theoretical Computer Science (EPTCS), 2010. To appear.

[13] Sara Capecchi, Mario Coppo, Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, and
Elena Giachino. Amalgamating sessions and methods in object-oriented languages with gener-
ics. Theoretical Computer Science, 410(2–3):142–167, 2009.

[14] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured global programming for
communication behaviour. In Proceedings of the 16th European Symposium on Programming
Languages and Systems (ESOP), volume 4421 of Lecture Notes in Computer Science, pages
2–17. Springer, 2007.

[15] Sagar Chaki, Sriram K. Rajamani, and Jakob Rehof. Types as models: model checking
message-passing programs. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), pages 45–57. ACM, 2002.

[16] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection.
In Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA), pages 48–64. ACM, 1998.

[17] Jean-Louis Colaço, Mark Pantel, Fabien Dagnat, and Patrick Sallé. Safety analysis for
non-uniform service availability in Actors. In Proceedings of the IFIP TC6/WG6.1 3rd
International Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS), volume 139 of IFIP Conference Proceedings. Kluwer, 1999.

[18] Jean-Louis Colaço, Mark Pantel, and Patrick Sallé. A set-constraint-based analysis of Actors.
In Proceedings of the IFIP TC6/WG6.1 International Workshop on Formal Methods for Open
Object-Based Distributed Systems (FMOODS), pages 107–122. Chapman & Hall, 1997.

[19] Ferruccio Damiani, Elena Giachino, Paola Giannini, and Sophia Drossopoulou. A type safe
state abstraction for coordination in Java-like languages. Acta Informatica, 45(7–8):479–536,
2008.

[20] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level software.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 59–69. ACM, 2001.

52

[21] Robert DeLine and Manuel Fähndrich. The Fugue protocol checker: is your software
Baroque? Technical Report MSR-TR-2004-07, Microsoft Research, 2004.

[22] Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Elena Giachino, and Nobuko Yoshida.
Bounded session types for object-oriented languages. In Proceedings of the 5th International
Symposium on Formal Methods for Components and Objects (FMCO 2006), volume 4709 of
Lecture Notes in Computer Science, pages 207–245. Springer, 2007.

[23] Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Dimitris Mostrous, and Nobuko
Yoshida. Objects and session types. Information and Computation, 207(5):595–641, 2009.

[24] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia
Drossopolou. Session types for object-oriented languages. In Proceedings of the 20th Eu-
ropean Conference on Object-Oriented Programming (ECOOP), volume 4067 of LNCS, pages
328–352. Springer, 2006.

[25] Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, Alexander Ahern, and Sophia Drossopolou.
A distributed object-oriented language with session types. In Proceedings of the International
Symposium on Trustworthy Global Computing (TGC), volume 3705 of Lecture Notes in Com-
puter Science, pages 299–318. Springer, 2005.

[26] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt, James R.
Larus, and Steven Levi. Language support for fast and reliable message-based communication
in Singularity OS. In EuroSys, pages 177–190. ACM, 2006.

[27] Manuel Fähndrich and Robert DeLine. Adoption and focus: practical linear types for im-
perative programming. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 13–24. ACM, 2002.

[28] Manuel Fähndrich and Robert DeLine. Typestates for objects. In Proceedings of the 13th Eu-
ropean Symposium on Programming Languages and Systems (ESOP), volume 3086 of Lecture
Notes in Computer Science, pages 465–490. Springer, 2004.

[29] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type qualifiers. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI), pages 1–12. ACM, 2002.

[30] Simon Gay, Vasco T. Vasconcelos, António Ravara, Nils Gesbert, and Alexandre Z. Caldeira.
Modular session types for distributed object-oriented programming. In Proceedings of the 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 299–312. ACM, 2010.

[31] Simon J. Gay and Malcolm J. Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2/3):191–225, 2005.

[32] Simon J. Gay, António Ravara, and Vasco T. Vasconcelos. Session types for inter-process com-
munication. Technical Report TR-2003-133, Department of Computing Science, University
of Glasgow, 2003.

[33] Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous session types.
Journal of Functional Programming, 20(1):19–50, 2010.

[34] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Ch-
eney. Region-based memory management in Cyclone. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages 282–293.
ACM, 2002.

[35] John Hogg. Islands: aliasing protection in object-oriented languages. In Proceedings of the
6th ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), pages 271–285. ACM, 1991.

53

[36] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In Pro-
ceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 273–284. ACM, 2008.

[37] Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and type disci-
pline for structured communication-based programming. In Proceedings of the 7th European
Symposium on Programming Languages and Systems (ESOP), volume 1381 of Lecture Notes
in Computer Science, pages 122–138. Springer, 1998.

[38] Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda. Type-
safe eventful sessions in Java. In Proceedings of the 24th European Conference on Object-
Oriented Programming (ECOOP), volume 6183 of Lecture Notes in Computer Science, pages
329–353. Springer, 2010.

[39] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed programming
in Java. In Proceedings of the 22nd European Conference on Object-Oriented Programming
(ECOOP), volume 5142 of Lecture Notes in Computer Science, pages 516–541. Springer, 2008.

[40] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. Theoretical
Computer Science, 311(1–3):121–163, 2004.

[41] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. ACM Transactions on
Programming Languages and Systems, 27(2):264–313, 2005.

[42] Naoki Kobayashi. Type-based information flow analysis for the pi-calculus. Acta Informatica,
42(4–5):291–347, 2005.

[43] Naoki Kobayashi, Kohei Suenaga, and Lucian Wischik. Resource usage analysis for the π-
calculus. Logical Methods in Computer Science, 2(3:4):1–42, 2006.

[44] Leonardo G. Mezzina. Typing Services. PhD thesis, IMT Institute for Advanced Studies,
Lucca, Italy, 2009.

[45] Filipe Militão. Design and implementation of a behaviorally typed programming system for
web services. Master’s thesis, New University of Lisbon, 2008.

[46] Filipe Militão, Jonathan Aldrich, and Luís Caires. Aliasing control with view-based typestate.
In Proceedings of the 12th Workshop on Formal Techniques for Java-Like Programs (FTfJP).
ACM, 2010.

[47] Elie Najm, Abdelkrim Nimour, and Jean-Bernard Stefani. Guaranteeing liveness in an object
calculus through behavioral typing. In Proceedings of the IFIP TC6 WG6.1 Joint Interna-
tional Conference on Formal Description Techniques for Distributed Systems and Communi-
cation Protocols (FORTE XII) and Protocol Specification, Testing and Verification (PSTV
XIX), pages 203–221. Kluwer, 1999.

[48] Elie Najm, Abdelkrim Nimour, and Jean-Bernard Stefani. Infinite types for distributed
object interfaces. In Proceedings of the IFIP TC6 WG6.1 3rd International Conference on
Formal Methods for Open Object-Based Distributed Systems (FMOODS), volume 139 of IFIP
Conference Proceedings. Kluwer, 1999.

[49] Matthias Neubauer and Peter Thiemann. An implementation of session types. In Proceedings
of the 6th International Symposium on Practical Aspects of Declarative Languages (PADL),
volume 3057 of Lecture Notes in Computer Science, pages 56–70. Springer, 2004.

[50] Oscar Nierstrasz. Regular types for active objects. In Object-Oriented Software Composition,
pages 99–121. Prentice Hall, 1995.

[51] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: an extensible
compiler framework for Java. In Proceedings of the 12th International Conference on Com-
piler Construction (CC), volume 2622 of Lecture Notes in Computer Science, pages 138–152.
Springer, 2003.

54

[52] Johan Östlund, Tobias Wrigstad, Dave Clarke, and Beatrice Åkerblom. Ownership, unique-
ness and immutability. In Objects, Components, Models and Patterns: 46th International
Conference, TOOLS EUROPE, volume 11 of Lecture Notes in Business Information Process-
ing, pages 178–197. Springer, 2008.

[53] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[54] Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no class. In Proceedings
of the 1st ACM SIGPLAN Symposium on Haskell, pages 25–36. ACM, 2008.

[55] Franz Puntigam. State inference for dynamically changing interfaces. Computer Languages,
27:163–202, 2002.

[56] Franz Puntigam and Christof Peter. Types for active objects with static deadlock prevention.
Fundamenta Informaticæ, 49:1–27, 2001.

[57] António Ravara and Vasco T. Vasconcelos. Typing non-uniform concurrent objects. In
Proceedings of the 11th International Conference on Concurrency Theory (CONCUR), volume
1877 of Lecture Notes in Computer Science, pages 474–488. Springer, 2000.

[58] Jonathan G. Rossie, Jr. Logical observable entities. In Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages
154–165. ACM, 1998.

[59] Robert E. Strom and Shaula Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE Transactions on Software Engineering, 12(1):157–171,
1986.

[60] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and its
typing system. In Proceedings of the 6th International Conference on Parallel Architectures
and Langauges Europe (PARLE), volume 817 of Lecture Notes in Computer Science, pages
398–413. Springer, 1994.

[61] Antonio Vallecillo, Vasco T. Vasconcelos, and António Ravara. Typing the behavior of soft-
ware components using session types. Fundamenta Informaticæ, 73(4):583–598, 2006.

[62] Vasco T. Vasconcelos, Simon J. Gay, and António Ravara. Type checking a multithreaded
functional language with session types. Theoretical Computer Science, 368(1–2):64–87, 2006.

[63] Vasco T. Vasconcelos, Simon J. Gay, António Ravara, Nils Gesbert, and Alexandre Z.
Caldeira. Dynamic interfaces. Presented at the International Workshop on Foundations
of Object-Oriented Languages (FOOL), 2009.

[64] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Infor-
mation and Computation, 115(1):38–94, 1994.

Appendix: Proofs of lemmas from Section 7.1

Lemma 7.1 Suppose Θ ⊢ h : Γ. Then (a) h is complete, (b) chans(Γ) ⊆ dom(Θ) \ chans(h) and
(c) objs(Γ) ⊆ roots(h).

Proof. By induction on the derivation of Θ ⊢ h : Γ. The only axiom is T-Hempty for which the
properties are true. Then T-Hide does not change either h or dom(Γ) so it preserves all three
properties. The other case is T-Hadd. Let h′ be the heap in the conclusion. Then childrenh′(o)
is the set of vi which are object identifiers. Let K be the set of vi which are channel endpoints.
The typing derivation for the sequence of swaps in the right premise must include an occurrence
of T-Ref for each object identifier, and of T-Chan for each channel endpoint, each followed by
T-Swap and a number of occurrences of T-Seq. Looking at these rules, we can see that this
implies:

1. childrenh′(o) ∪K ⊆ dom(Γ) and

55

2. dom(Γ′) ⊆ (dom(Γ)\ (childrenh′(o)∪K))∪{o}. (Note that o cannot be one of the vi because
it is the current object in the judgement: the premise of T-Ref forbids it.)

From (1) and induction hypothesis (c) we get childrenh′(o) ⊆ roots(h). We have roots(h) ⊆
dom(h) ⊆ dom(h′) and o is the only new object in h′, so h′ is complete.

If we project (2) onto just channel endpoints, we get chans(Γ′) ⊆ chans(Γ) \ K. From the
definition of h′, chans(h′) is equal to chans(h) ∪ K. Hence induction hypothesis (b) yields (b)
again for h′.

If we project (2) onto just object identifiers, we get objs(Γ′) ⊆ (objs(Γ) \ childrenh′(o)) ∪ {o}.
From induction hypothesis (a) and the fact that o 6∈ dom(h) we get that o is a root in h′.
Furthermore, all roots of h which are not children of o are also roots of h′. Thus induction
hypothesis (c) allows us to conclude objs(Γ′) ⊆ roots(h′).

Lemma 7.2 (Rearrangement of typing derivations for expressions) Suppose we have
Γ ∗ r ⊲ e : T ⊳ Γ′ ∗ r′. Then there exists a typing derivation for this judgement in which:

1. T-Sub only occurs at the very end, just before T-Switch or T-SwitchLink as the last
rule in the derivation for each of the branches, or just before T-Call as the last rule in the
derivation for the parameter;

2. T-SubEnv only occurs immediately before T-Sub in the first three cases and does not occur
at all in the fourth, i.e. T-Call.

Proof. First note that T-Sub and T-SubEnv commute and that any consecutive sequence of
occurrences of one of these rules can collapse into a single occurrence using transitivity. What
remains to be shown is that these rules can be pushed down in all cases but those mentioned in
the statement. We enumerate the cases below.

• T-Swap. T-Sub on the premise can be replaced with T-SubEnv on the conclusion as T
has been transferred to the environment. T-SubEnv on the premise can be replaced by a
combination of T-Sub (for the type of r′.f) and T-SubEnv (for the rest) on the conclusion.

• T-Call. If T-SubEnv is used on the premise to increase the type of something else than
r′.f it can be moved to the conclusion. If the type of r′.f is changed, first note that the
only relevant part is the signature of mj. Suppose the subsumption step changes it from
Uj mj(U

′
j) : S

′
j to Tj mj(T

′
j) : Sj . For the parameter type we have T ′

j <: U ′
j so we can use

T-Sub on the premise to increase the type of e from T ′
j to U ′

j instead. For the session and
result types, we have two cases:

– if Uj <: Tj and S′
j <: Sj it can just be moved to a T-SubEnv step on the conclusion.

– if Uj = E, Tj = linkthis and 〈l : S′
j〉l∈E <: Sj , then the original conclusion of the rule

(with T-SubEnv on the premise) was:

Γ ∗ r ⊲ f.mj(e) : link f ⊳ Γ′{r′.f 7→ Sj} ∗ r
′

and the new one with the subsumption step removed is:

Γ ∗ r ⊲ f.mj(e) : E ⊳ Γ′{r′.f 7→ S′
j} ∗ r

′.

So in that case the original judgement can be obtained back from this new conclusion
using T-VarS followed by T-SubEnv.

• T-Seq. T-Sub on the first premise is irrelevant and T-SubEnv on the same premise
can be removed using Lemma 3.14. Subsumption on the second premise straightforwardly
commutes to the conclusion.

• T-Switch. Lemma 3.14 allows us to remove T-SubEnv on the first premise. Straightfor-
wardly T-Sub can be removed as well as it just makes E′ smaller.

• T-SwitchLink. T-Sub is irrelevant; removing T-SubEnv can only make E′ and the initial
typing environments for the branches smaller and we can use Lemma 3.14.

56

• T-VarF and T-VarS. T-Sub can increase E which becomes the indexing set of the vari-
ant in the conclusion. By definition of subtyping for variants it is possible to increase it
afterwards using T-SubEnv. T-SubEnv straightforwardly commutes.

• T-Return. T-Sub straightforwardly commutes, as well as the part of T-SubEnv not
concerning r′.f . Subsumption on Γ′(r′.f) can be removed using Proposition 3.15.�

Lemma 7.3 (Rearrangement of typing derivations for heaps) Suppose Θ ⊢ h : Γ holds.
Let o be an arbitrary root of h. Then there exists a typing derivation for it such that:

1. T-Sub is never used;

2. T-SubEnv is used at most once, as the last rule leading to the right premise of the last
occurrence of T-Hadd;

3. every occurrence of T-Hide follows immediately the occurrence of T-Hadd concerning the
same object identifier;

4. the occurrence of T-Hadd concerning an identifier o′ is always immediately preceded (on
the left premise) by the occurrences of T-Hadd/T-Hide concerning the descendants of o′;

5. the first root added is o.

Proof. The first two points are a consequence of Lemma 7.2: the only expressions which appear in
the typing derivation are sequences of swaps, not containing any switch or method call; furthermore
their type is always Null, making T-Sub at the end irrelevant. What remains to be checked is
then just that T-SubEnv at the end of the derivation for one sequence of swaps can be pushed
down to the next occurrence of T-Hadd whenever there is one. This is just a matter of using
Proposition 3.15 in the case of T-Hide and Lemma 3.14 in the case of T-Hadd.

Note that these points imply in particular that in all applications of T-Hadd but the last one,
any element in dom(Γ) which is not one of the vi also occurs in Γ′ with exactly the same type.

For the third point, first notice that the premise of T-Hide implies o is a root of h because of
Lemma 7.1. This implies that the rule immediately above T-Hide either is a T-Hadd introducing
o or does not concern o at all (in particular, o cannot be a vi, otherwise it would not be a root in
the conclusion). In the second case, T-Hide can be pushed upwards.

The fourth and fifth points are a consequence of the remark we made about the first two: if o′

is not a descendant of o nor vice-versa, then the occurrences of T-Hadd and T-Hide concerning o
and its descendants commute with those concerning o′ and its descendants as they affect completely
disjoint parts of the environment. In the case of the last occurrence of T-Hadd there may be
a subsumption step but it is still possible to commute with it by pushing this subsumption step
down again.

Lemma 7.4 (Splitting of the heap) Suppose Θ ⊢ h : Γ, o : T . Let Θ1 = Θ \ chans(h ↓ o) and
let Θ2 be Θ restricted to chans(h ↓ o). Then we have: Θ1 ⊢ (h ↑ o) : Γ and Θ2 ⊢ (h ↓ o) : o : T .

Proof. We know from Lemma 7.1 that o is a root in h. We consider the particular derivation
given by Lemma 7.3 where o is the first root added to the heap. Now if we look at the conclusion
of the last rule concerning o (T-Hadd or T-Hide depending whether T is a field or session type),
we know that at this point the heap is h ↓ o, and therefore the only object identifier in the
environment is its only root: o. Furthermore, this part of the derivation is still true if we replace
the initial Θ with Θ2, with the only difference that then the final Γ contains no channels, and
thus is of the form o : T ′. We also know that the type of o is not changed in the rest of the
derivation except possibly by the subsumption step at the end; therefore T ′ is a subtype of T . If
they are session types, using Proposition 3.17 we can change the last occurrence of T-Hide to use
T instead of T ′ and get Θ2 ⊢ (h ↓ o) : o : T . Otherwise, we can add a subsumption step to the
derivation for the sequence of swaps on the right of T-Hadd to get the same result.

For the rest of the derivation, we know that o is not used, therefore it can be removed from the
initial environment without affecting the derivation except by the fact that it will not be in the final
environment either. Furthermore, we know from Lemma 7.1 that the initial environment minus
its only object identifier o is included in Θ \ chans(h ↓ o) = Θ1. More precisely, the lemma gives

57

us inclusion of domains, but because subsumption is not used in the first part of the derivation
we also know that the types are the same. Thus we can replace the first part of the derivation by
an instance of T-Hempty using Θ1 and the second part is still valid (with all the descendants of
o removed from the heap), yielding Θ1 ⊢ (h ↑ o) : Γ at the bottom.

Lemma 7.5 (Merging of heaps) Suppose Θ ⊢ h : Γ and Θ′ ⊢ h′ : Γ′ with dom(h)∩dom(h′) = ∅
and dom(Θ) ∩ dom(Θ′) = ∅. Then we have Θ+Θ′ ⊢ h+ h′ : Γ + Γ′.

Proof. Since Θ and Θ′ are disjoint, the channels in Θ′ cannot appear anywhere in the typing
derivation for h. Thus, it is possible to add Θ′ to every typing environment occurring in the
derivation for h without altering its validity, yielding Θ + Θ′ ⊢ h : Γ + Θ′. Looking now at the
derivation for h′, since the domains of the heaps are disjoint and objs(Γ) ⊆ roots(h), none of the
identifiers in Γ can appear anywhere in it. Thus we can add Γ to every typing environment and
h to every heap occurring in the derivation for h′, replacing the T-Hempty at the top with the
conclusion of the other derivation, which yields the result we want.

Lemma 7.6 Suppose Θ ⊢ h : o : S. Let ϕ be an injective function from dom(h) to O. Then we
have Θ ⊢ ϕ(h) : ϕ(o) : S.

Proof. Straightforward. Changing the names does not affect the typing derivation in any way.

Lemma 7.7 (Opening) If Θ ⊢ h : Γ, if Γ(r) is a branch session type S and if h(r) is an object
identifier o, then we know from Lemma 7.1 that h contains an entry for o. Let C be the class of
this entry, then there exists a field typing F for C such that Θ ⊢ h : Γ{r 7→ C[F]} and F ⊢ C : S.

Proof. We prove this by induction on the depth of r. The base case is r = o. Using Lemmas 7.4
and 7.5, we can restrict ourselves to the case where o is the only root of h. In that case we know
that the last rule used in the typing derivation for Θ ⊢ h : o : S must be T-Hide. The result we
want is constituted precisely by the premises of that rule.

For the inductive case, r is of the form o′.f. ~f . We consider the case where o′ is the only root.
The typing derivation then ends with T-Hadd and f gets populated in the sequence of swaps by
some object identifier3 o′′. Let r′ = o′′. ~f , and consider what Γ(r′) can be, knowing that in the
conclusion r has a branch session type: the only way the type can be modified in the sequence
of swaps is by subsumption. Indeed, T-VarS, the other possibility, introduces a variant type.
Therefore Γ(r′) = S′ with S′ <: S. We can thus use the induction hypothesis to replace Γ with
Γ{r 7→ C[F]} on the left premise, with F ⊢ C : S′. Then just use Proposition 3.17 to see that we
also have F ⊢ C : S and see that the type yielded in the conclusion by this new premise is what
we want.

Lemma 7.8 (Closing) If Θ ⊢ h : Γ and Γ(r) = C[F] and F ⊢ C : S, then Θ ⊢ h : Γ{r 7→ S}.

Proof. Again we prove this by induction on the depth of r and the base case is r = o. In that case
the lemma is nothing more than T-Hide. The inductive case is very similar to the above: we look
at the type of r′ (defined as above) in the Γ on the left premise of the last T-Hadd, noticing that
the type of r in the conclusion can only differ from it by subsumption, this time because we know
from Lemma 3.27 that T-VarF is never used. Hence the original type is C[F ′] with F ′ <: F .
Proposition 3.15 gives us F ′ ⊢ C : S and thus we can use the induction hypothesis to change the
type of r′ in this premise, which propagates to the type of r in the conclusion.

Lemma 7.9 (modification of the heap) Suppose that we have Θ ⊢ h : Γ and Γ ∗ r ⊲ v′ :
T ′ ⊳ Γ′ ∗ r, and that Γ′(r.f) = T where T is not a variant. Let v = h(r).f . The modified heap
h{r.f 7→ v′} can be typed as follows:

1. if v is an object identifier or a channel endpoint, then:

Θ ⊢ h{r.f 7→ v′} : Γ′{r.f 7→ T ′}, v : T

3We know o′′ is an object identifier and not a channel endpoint because, according to the hypotheses, either it
is o itself or ~f is nonempty, implying o′′ has fields.

58

2. if v is not an object or channel and T is not a link type, then:

Θ ⊢ h{r.f 7→ v′} : Γ′{r.f 7→ T ′}

3. if v = l0 and T = link f ′, then:

• Γ′(r.f ′) = 〈l : Sl〉l∈E for some E such that l0 ∈ E and some set of branch session types
Sl. Note that this implies f 6= f ′.

• Θ ⊢ h{r.f 7→ v′} : Γ′{r.f 7→ T ′}{r.f ′ 7→ Sl0}

Proof. First of all, note that the hypothesis that Γ′(r.f) is defined implies that Γ′(r) is not a
variant, hence T ′ is not linkthis. In other words, the judgement cannot be derived from T-VarF.
Furthermore, the fact that T is not a variant either means that the judgement is not derived from
an instance of T-VarS referring to field f . As this rule is the only possibility (beside subsumption)
for a judgement typing a value to depend on, and modify, the type of a field, this implies that
Γ(r.f) is a subtype of T and also that the judgement would still hold with another type for f . In
particular we have Γ{r.f 7→ Null} ∗ r ⊲ v′ : T ′ ⊳ Γ′{r.f 7→ Null} ∗ r (a). We will in the following
use this judgement (a) rather than the one in the hypothesis.

We prove the lemma by induction on the depth of r, but the inductive case is straightforward
(just apply the induction hypothesis to the left premise of T-Hadd). In the base case, r is an
object identifier o. We use Lemma 7.4 to consider a typing derivation for the sub-heap h ↓ o. Let
Γo = o : To and Θo be the environments corresponding to that part of the heap. We look at the
application of T-Hadd which ends the derivation for Θo ⊢ ho : Γo. As T is not a variant, it is
possible to consider that f is the last field to get populated in the swap sequence. We thus have
something of the form:

Θo ⊢ (h ↓ o) \ o : Γ1

. . .

. . .
(1)

Γ2 ∗ o ⊲ v : Tv ⊳ Γ3 ∗ o
(T-Swap)

Γ2 ∗ o ⊲ f ↔ v : Null ⊳ Γ3{o.f 7→ Tv} ∗ o
(T-Seq)

Γ1 ∗ o ⊲ . . .; f ↔ v : Null ⊳ Γ3{o.f 7→ Tv} ∗ o
(T-SubEnv)

Γ1 ∗ o ⊲ . . .; f ↔ v : Null ⊳ Γo ∗ o
(T-Hadd)

Θo ⊢ h ↓ o : Γo

with Tv <: T and Γ3{o.f 7→ Tv} <: Γo. If we change the type of o.f , this last relation becomes
Γ3 <: Γo{o.f 7→ Null} (b).

What we want to do is to replace the judgement on the top right, which is an application of
some rule (1), by a judgement typing v′. For this, we need the rest of the environment. We consider
the judgement for the rest of the heap, Θ \ Θo ⊢ h ↑ o : Γ \ o. Since the domains are disjoint, we
can apply Lemma 7.5 to this and the leftmost premise of T-Hadd, yielding Θ ⊢ h \ o : Γ \ o+Γ1.
If we replace our left premise with this, the initial environment we get on the top right is now
Γ4 = Γ \ o+ Γ2, as the additional part is unaffected by the sequence of swaps. This environment
is almost Γ{o.f 7→ Null}, but not quite. We now have three cases depending on what rule (1) is,
which correspond to the three cases of the lemma.

1. If (1) is T-Ref or T-Chan, meaning v is an object identifier or a channel endpoint, then
Γ2 = Γ3, v : Tv. Using (b), this yields Γ2 <: Γo{o.f 7→ Null}, v : Tv. Adding Γ \ o to both
sides, we get Γ4 <: Γ{o.f 7→ Null}, v : Tv. If we replace the initial environment in (a) with
this one, we get the v : Tv back in the final environment. We then use Lemma 3.14 to
replace this initial environment with Γ4, and T-SubEnv to change Tv into T in the final
one: Γ4 ∗ o ⊲ v′ : T ′ ⊳ Γ′{o.f 7→ Null}, v : T ∗ o. Just see that it yields what we want at the
bottom of the derivation.

2. If (1) is T-Label or T-Null or T-Name, i.e. if v is a literal value of non-link, non-linear
type, then Γ2 is identical to Γ3 and we have, using (b) and adding Γ \ o to both sides,
Γ4 <: Γ{o.f 7→ Null}, so we can directly (with Lemma 3.14) use judgement (a).

3. If (1) is T-VarS, the last possibility, then v is a label l0 and Tv is link f ′ for some f ′. As
it has no strict supertype, we have T = link f ′ as well. We also have Γ3(o.f

′) = 〈l0 : S〉.
From (b) we have that Γo(o.f

′) = Γ(o.f ′) is a supertype of this variant type, thus also a
variant. This implies that (a) cannot come from a T-VarS concerning f ′; therefore, Γ′(o.f ′)

59

is a supertype of Γ(o.f ′) and hence, by transitivity, of 〈l0 : S〉, which gives us the first item
of the conclusion, with S <: Sl0 . We now just have to notice that Γ2 = Γ3{o.f ′ 7→ S} and
that (a) is independent of the type of f ′ just like it is of the type of f , and we can conclude
similarly to the two previous cases. �

Lemma 7.10 (Substitution) If this : C[F], x : T ′ ∗ this ⊲ e : T ⊳ this : C[F ′] ∗ this, and if
Γ(r) = C[F], then:

1. if T ′ is a base type (i.e. neither an object type nor a link) and v is a literal value of that
type, or if v is an access point name declared with type 〈Σ〉 and J〈Σ〉K <: T ′, we have:

Γ ∗ r ⊲ e{v/x} : T ⊳ Γ{r 7→ C[F ′]} ∗ r.

2. if T ′ is an object type and v is an object identifier or a channel endpoint, we have:

Γ, v : T ′ ∗ r ⊲ e{v/x} : T ⊳ Γ{r 7→ C[F ′]} ∗ r.

Proof. In order to do an induction, we add the following case where x is still present in the
final environment : if we have this : C[F], x : T ′ ∗ this ⊲ e : T ⊳ this : C[F ′], x : T ′′ ∗ this, and
if T ′ is an object type and v is an object identifier, then we have Γ, v : T ′ ∗ r ⊲ e{v/x} : T ⊳

Γ{r 7→ C[F ′]}, v : T ′′ ∗ r.
We prove this by induction on the derivation of this : C[F], x : T ′ ∗ this ⊲ e : T ⊳ this : C[F ′], V ∗ this

(where V is either empty or v : T ′′ depending on the case). For most toplevel rules, the result is
immediate. The only ones for which it is not are T-Var and T-LinVar. For T-Var the result
is obtained using either T-Null if T ′ is Null or T-Label and T-Sub if it is an enumerated type.
In the case of an extension adding new base types, we assume there is a similar rule to type the
corresponding literal values. For T-LinVar, if v is an access point name the result is obtained
using T-Name and T-Sub. Otherwise, v is an object identifier and the result is obtained using
T-Ref, noticing that because Γ(r) is defined and v is not in Γ, the path r does not start with v
and the premise is satisfied.

Lemma 7.11 (Typability of Subterms) If D is a derivation of Γ ∗ r ⊲ E(e) : T ⊳ Γ′ ∗ r′ then
there exist Γ1, r1 and U such that D has a subderivation D′ concluding Γ ∗ r ⊲ e : U ⊳ Γ1 ∗ r1
and the position of D′ in D corresponds to the position of the hole in E.

Proof. A straightforward induction on the structure of E ; the expression e is always at the extreme
left of the typing derivation for E(e).

Lemma 7.12 (Replacement) If

1. D is a derivation of Γ ∗ r ⊲ E(e) : T ⊳ Γ′ ∗ r′

2. D′ is a subderivation of D concluding Γ ∗ r ⊲ e : U ⊳ Γ1 ∗ r1

3. the position of D′ in D corresponds to the position of the hole in E

4. Γ′′ ∗ r′′ ⊲ e′ : U ⊳ Γ1 ∗ r1

then Γ′′ ∗ r′′ ⊲ E(e′) : T ⊳ Γ′ ∗ r′.

Proof. Replace D′ in D by the derivation of Γ′′ ∗ r′′ ⊲ e′ : U ⊳ Γ1 ∗ r1.

60

	Introduction
	A Sequential Example
	A Core Sequential Language
	Syntax
	Operational Semantics
	Subtyping
	Type System
	Typing expressions
	Consistency between field typings and session types
	Typing rules for top-level expressions
	Typing rules for internal expressions, heaps and states

	Example of reduction and typing
	Typing the initial state
	Properties of the type system
	Soundness of subtyping
	Type preservation
	Type safety
	Conformance

	Extensions to the Sequential Language
	While Loops
	Self-Calls and Recursive Methods
	Shared Types and Base Types
	Nominal Subtyping

	A Distributed Example
	Distributed Example Version 1
	Distributed Example Version 2

	A Core Distributed Language
	Syntax
	Semantics
	Type System
	Subtyping

	results
	Properties of typing derivations
	Type preservation
	Type safety
	Conformance

	Type Checking Algorithm
	The Algorithm
	Examples of Type Checking
	Correctness of the Algorithm
	Implementation

	Related Work
	Conclusion

