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Introduction

An essential task in comparative genomics is to decompose two or more genomes into synteny blocks that are segments of chromosomes with similar contents. Synteny blocks represent units of the genomes that have not been disrupted by large-scale rearrangements such as reversals and transpositions, and thus form the input for genome rearrangement algorithms. They also give useful clues regarding the role of each gene, since genes belonging to the same synteny block often produce proteins with related functions. Extracting synteny blocks from genomic maps, however, is a non-trivial task when the genomic maps contain noise and ambiguities, which need to be removed before we can give a precise synteny block decomposition. This motivates the problem MAXIMAL STRIP RECOVERY (MSR) [START_REF] Zheng | Removing noise and ambiguities from comparative maps in rearrangement analysis[END_REF]: to delete a set of markers (genes) from the genomic maps until the remaining markers can be partitioned into a set of strips (synteny blocks) of maximum total length.

We review some definitions. A genome consists of one or more chromosomes; each chromosome is a sequence of genes. Correspondingly, a genomic map consists of one or more sequences of gene markers. Each marker is a signed integer representing a gene: the absolute value of the integer represents the family algorithm in Theorem 3 does not depend on this assumption and can take δ and d as parameters besides ℓ. There is no known direct reduction from δ-gap-MSR-d to MSR-d or vice versa. Although the gap constraint appears to be an additional burden that the algorithm has to take care of, it also limits the set of candidate strips and their intersection pattern, especially when δ is small, which may make the problem easier to handle.

The following is an example of the problem MSR on three genomic maps G 1 , G 2 , G 3 and an optimal solution of three subsequences

G ′ 1 , G ′ 2 , G ′ 3 : G 1 = 1 5 -3 2 6 4 8 7 
G 2 = 1 5 -3 -8 7 -6 2 4 
G 3 = -8 2 7 -6 -4 3 -5 -1 Here the markers 2, 4, 7 are deleted, and the markers 1, 3, 5, 6, 8 are selected in two strips 1, 5, -3 and

G ′ 1 = 1 5 -3 6 8 G ′ 2 = 1 5 -3 -8 -6 G ′ 3 = -8 -6 3 
6, 8 of G ′ 1 , G ′ 2 , G ′ 3 .
The gap of the strip 1, 5, -3 is 0. The gap of the strip 6, 8 is 2, since there are 2 markers between -8 and -6 in G 3 .

For the four variants of the maximal strip recovery problem, MSR-d, CMSR-d, δ-gap-MSR-d, and δgap-CMSR-d, several hardness results have been obtained [START_REF] Chen | On recovering syntenic blocks from comparative maps[END_REF][START_REF] Wang | On the tractability of maximal strip recovery[END_REF][START_REF] Jiang | Inapproximability of maximal strip recovery[END_REF]1,[START_REF] Jiang | On the parameterized complexity of some optimization problems related to multiple-interval graphs[END_REF], and a variety of algorithms have been developed, including heuristics [START_REF] Zheng | Removing noise and ambiguities from comparative maps in rearrangement analysis[END_REF], approximation algorithms [START_REF] Chen | On recovering syntenic blocks from comparative maps[END_REF]1,[START_REF] Zhu | Efficient exact and approximate algorithms for the complement of maximal strip recovery[END_REF][START_REF] Jiang | Exact and approximation algorithms for the complementary maximal strip recovery problem[END_REF][START_REF] Lin | An improved approximation algorithm for the complementary maximal strip recovery problem[END_REF], and FPT algorithms [START_REF] Wang | On the tractability of maximal strip recovery[END_REF][START_REF] Zhu | Efficient exact and approximate algorithms for the complement of maximal strip recovery[END_REF][START_REF] Jiang | Exact and approximation algorithms for the complementary maximal strip recovery problem[END_REF]. The previous hardness results regarding these problems are summarized in the following:

• [6, 1]: MSR-d, CMSR-d, δ-gap-MSR-d, and δ-gap-CMSR-d are APX-hard for any d ≥ 2 and δ ≥ 2, even if all markers appear in positive orientation in all genomic maps; 1-gap-MSR-d and 1-gap-CMSR-d are NP-hard for any d ≥ 2.

• [START_REF] Jiang | On the parameterized complexity of some optimization problems related to multiple-interval graphs[END_REF]: MSR-d is W [1]-hard for any d ≥ 4, even if all markers appear in positive orientation in all genomic maps.

On the positive side, it was known that MSR-d admits a 2d-approximation algorithm for any d ≥ 2 [START_REF] Chen | On recovering syntenic blocks from comparative maps[END_REF][START_REF] Jiang | Inapproximability of maximal strip recovery[END_REF], and that δ-gap-MSR-d admits a 2d-approximation algorithm for any d ≥ 2 and δ ≥ 1 and a 1.8approximation algorithm for d = 2 and δ = 1 [1]. Also, along some very recent development [START_REF] Zhu | Efficient exact and approximate algorithms for the complement of maximal strip recovery[END_REF][START_REF] Jiang | Exact and approximation algorithms for the complementary maximal strip recovery problem[END_REF][START_REF] Lin | An improved approximation algorithm for the complementary maximal strip recovery problem[END_REF] on the CMSR problem parallel to our work, Lin et al. [START_REF] Lin | An improved approximation algorithm for the complementary maximal strip recovery problem[END_REF] presented a 7/3-approximation algorithm for CMSR-2, which is based on an interesting idea called local amortization with re-weighting.

In this paper, we present a panel of new or improved FPT and approximation algorithms for the many variants of the maximal strip recovery problem. The current best results, including our contribution, are summarized in Table 1.

Preliminaries

We assume without loss of generality that all markers in the first input map G 1 have positive sign. Unless explicitly noted, our uses of some standard terms such as solution and optimal solution, our previous definitions of strip and gap, as well as other definitions that we will introduce in this section -all these apply to some "current" set of genomic maps G ′ 1 , . . . , G ′ d implicit from context, which can be either the set of original maps G 1 , . . . , G d given as input, or some set of reduced maps (subsequences obtained from G 1 , . . . , G d by deleting some markers) during or after the execution of a recursive algorithm.

If a maximal sequence of markers form a strip in some maps G ′ 1 , . . . , G ′ d , then these markers are either all selected or all deleted in any optimal solution for these maps. This is because any solution that includes only a subset of the markers in a strip can be extended to a better solution to include all markers in that strip. Hence these markers can be treated as an atomic unit, and called a super-marker, whose size is the number of markers it contains. Note that the size of a super-marker is always at least 2. A marker that does not belong to any super-marker is a single-marker. We use the term single-super-marker to refer to either a single-marker or a super-marker. A common (sometimes implicit) step of our algorithms is to partition the markers in the current maps into single-super-markers. If the current maps contain only super-markers, then we have a straightforward decomposition into strips, without deleting any marker.

Let x and y be two single-super-markers of some maps G ′ 1 , . . . , G ′ d . We write S i (x, y) for the set of markers appearing between x and y in map G ′ i . We say that y follows x in map G ′ i if one of +x, +y , -y, -x is a subsequence of G ′ i . For δ-gap-CMSR-d, we add the constraint that the number of markers appearing between x and y in the original maps is at most δ (x and y excluded). For multichromosomal genomes, that is, when a genomic map consists of several sequences of gene markers (several chromosomes), we require that x and y belong to the same chromosome in G ′ i . We define the relation "y precedes x" symmetrically.

We say that y is a candidate successor of x, and we write x ≺ y, if y follows x in all maps, and if there is no other y ′ such that for all 1 ≤ i ≤ d, y ′ follows x in G ′ i and appears in S i (x, y). Note that if x, y is part of some strip in an optimal solution, then y is a candidate successor of x. We define symmetrically the candidate predecessors. Note that y is a candidate successor of x if and only if x is a candidate predecessor of y. If y is a candidate successor or predecessor of x, gap(x, y) is the set of all markers appearing in S i (x, y) for some 1 ≤ i ≤ d. In the example given in Section 1, we have 6 ≺ 8, and gap(6, 8) = gap(8, 6) = {2, 4, 7}.

The following lemma gives some basic properties of the function gap: Proof. (a) By definition of a candidate successor, there exists some i such that v / ∈ S i (w, u), and some j such that u / ∈ S j (w, v). Assume without loss of generality that w has positive sign in G i . Then there exist sequences s w,u and s w,v , using markers of S i (w, u) and S i (w, v) respectively, such that both w s w,u u and w s w,v v appear in map G i . We now compare |S i (w, u)| and |S i (w, v)|:

• if |S i (w, u)| = |S i (w, v)|, then s w,u = s w,v and u = v (this case is impossible), • if |S i (w, u)| < |S i (w, v)|, then s w,u u is a prefix of s w,v , and u ∈ S i (w, v) ⊆ gap(w, v), • if |S i (w, u)| > |S i (w, v)|, then s w,v v is a prefix of s w,u and v ∈ S i (w, u) (this case is impossible).
Likewise, using map G j , we have v ∈ S j (w, u) ⊆ gap(w, u). This proves the first property.

(b) Assume without loss of generality that u ≺ v (the other case u ≻ v is symmetric). If gap(u, v) = ∅, then for all i, S i (u, v) = ∅, and hence either +u, +v or -v, -u appears in map G i . It follows that u, v could form a super-marker: a contradiction.

FPT algorithm for δ-gap-MSR-d

In this section, we present the first FPT algorithm for δ-gap-MSR-d with the parameter ℓ. Recall that without the gap constraint, MSR-d with the parameter ℓ is W [1]-hard for any d ≥ 4. In sharp contrast to the W[1]hardness of MSR-d, we obtain a somewhat surprising result that δ-gap-MSR-d is in FPT, where ℓ is the parameter, and δ and d are constants. In fact, our FPT algorithm for δ-gap-MSR-d works even if d and δ are not constants: δ-gap-MSR-d is in FPT even with three combined parameters d, δ and ℓ. 

f u,v = x u ∧ x v ∧ ¬x g 1 ∧ . . . ∧ ¬x gs ,
where g 1 , . . . , g s are the markers in gap(u, v). 4: Delete the variables that do not appear in any formula or appear only in negative form in the formulas. 5: Enumerate all possible assignments to the remaining variables to find an optimal assignment that maximizes the number of variables appearing in positive form in at least one satisfied formula. Delete all markers whose variables are not assigned true values. 6: Return the resulting genomic maps.

Our algorithm is based on a simple idea: create a boolean variable for each marker (where true means the marker is selected in a solution, false that it is unselected), then test all possible assignments to find an optimal solution. To reduce the time complexity of this brute-force approach, we add a pruning step (line 4) to delete certain variables whose markers cannot appear in any optimal solution. The remaining variables form a "core" on which we can find an optimal solution in FPT time.

The correctness of the algorithm is deduced from the fact that each marker selected in a solution corresponds to a variable appearing in positive form in at least one formula, thus all optimal solutions are kept during the pruning step (line 4), and are discovered during the exhaustive enumeration (line 5).

Given an optimal solution, which selects ℓ markers, we call a marker active if it appears within distance at most δ from a selected marker in some map. Then each map contains at most ℓδ + ℓ 2 δ unselected active markers: at most δ after each selected marker, and at most δ before the first marker of each strip (note that the number of strips of this optimal solution is at most ℓ/2). The total number of active markers is at most

ℓ + d(ℓδ + ℓ 2 δ) = ℓ(1 + 3 2 dδ
). The pruning step in line 4 depends on the crucial observation that a non-active marker can never appear in positive form. Suppose for contradiction that a non-active marker u appears in a candidate pair with some marker v. Then u is at distance at most δ + 1 from v in each map. Since u, as a non-active marker, must be at distance at least δ + 1 from the selected markers in all maps, no selected markers can appear between u and v in any map, thus we can extend the optimal solution by selecting both u and v, a contradiction.

Note that in line 4 the variables appearing at least once in positive form are never deleted, hence no formula becomes empty after deleting the variables that appear only in negative form. After line 4, the number of remaining variables is at most the number of active markers, which is at most t = ℓ(1 + 3 2 dδ). Correspondingly, the number of formulas is at most t(δ +1), because any candidate pair consists of an active marker and one of the δ + 1 markers immediately following it in the first map. Each formula contains at most dδ + 2 variables.

The time complexity of line 1 is O(ndδ). In lines 2 and 3, the variables can be created in time O(n), and the formulas can be created in time O(t(δ + 1)(dδ + 2)) = O(tdδ 2 ). Similarly, line 4 can be executed in time O(n + tdδ 2 ). Finally, line 5 can be executed in time O(2 t t(δ + 1)(dδ + 2)) = O(2 t tdδ 2 ), so the overall time complexity is O(2 t tdδ 2 + ndδ).

FPT algorithm for CMSR-d and δ-gap-CMSR-d

In this section, we design an FPT algorithm for CMSR-d and δ-gap-CMSR-d, where the parameter is k, the number of deleted markers in the optimal solution.

Since super-markers are already strips in the input genomic maps, one may naturally be tempted to come up with the following algorithm. First, find all super-markers, and add them to the solution. Then, delete a subset of single-markers until all markers in the resulting maps can be partitioned into strips. The correctness of this algorithm for finding an exact solution, however, depends on the assumption that in some optimal solution no super-marker needs to be deleted, which is false as can be seen in the following counter-example:

G 1 = 4 1 2 3 5 6 7 G 2 = 6 -3 -2 -1 7 4 5
Here 1, 2, 3 forms a super-marker, but the optimal solution deletes 1, 2, 3 and selects 4, 5 and 6, 7

instead. An easy generalization of this counter-example shows that any super-marker of size strictly less than 2d is not guaranteed to be always selected in some optimal solution. Note that on the other hand, longer super-markers, of size at least 2d, are always selected in some optimal solution, see e.g. [4, Lemma 1]. We observe that an FPT algorithm for CMSR-d and δ-gap-CMSR-d can be easily obtained using the bounded search tree method. In any feasible solution for the two problems, a single-marker x must be either deleted or selected. If x is selected, then at least one of its neighbors must be deleted. Since x has at most 2d neighbors (at most two in each map), this leads to a very simple algorithm running in time (2d+1) k poly(nd). Parallel to our work, Jiang et al. [START_REF] Jiang | Exact and approximation algorithms for the complementary maximal strip recovery problem[END_REF] presented an FPT algorithm running in time 3 k poly(nd). We next describe a carefully tuned FPT algorithm running in time 2.36 k poly(nd). For convenience, we consider the decision problem associated with CMSR-d and δ-gap-CMSR-d, for which the parameter k is part of the input. It is interesting to note that although the two problems MSR-d and δ-gap-MSR-d have very different complexities when parameterized by ℓ, their complements CMSR-d and δ-gap-CMSR-d are both tractable when parameterized by k.

We describe the intuition behind Algorithm 2. As already noted, we will explore a bounded search tree as follows: in each node we consider a single-marker x, and we explore the branches corresponding to the cases where x is deleted and where it is selected in a strip with each possible candidate successor or predecessor. This search tree has bounded depth (in each branch we delete at least one marker, and we stop after deleting k markers) and degree (each single-marker has at most 2d candidate successors or predecessors). In order to improve the complexity of this algorithm, we aim at (1) choosing x so that we may delete a maximum number of markers in the subsequent recursive calls (thus reducing the depth of the subtree), and (2) pointing out special cases where we may ignore some branches of the search tree without loosing an optimal solution (thus reducing the degree). For objective (1) we choose x as the first single-marker in the first map, hence, the gap between x and a candidate predecessor consists mostly of super-markers, thus increasing the number of markers to be deleted in the corresponding branches. For objective (2), we provide a number of technical lemmas (Lemma 4.2 to Lemma 4.5) which allow us to reduce the degree of some "worst-case" nodes. In some situations, we find a marker which is necessarily deleted. In others, we identify a good candidate predecessor or successor, which we may select to generate a solution at least as good as with any other candidate. x ← the left-most single-marker in G 1 6: else 

Some technical lemmas

The efficiency of Algorithm 2 is made possible by several optimizations justified by the following four lemmas. These lemmas are all based on very simple observations. Note that although we consider the decision problem for simplicity, Algorithm 2 can be adapted to directly return the actual solution, instead of "true", when the input instance indeed has a solution of size k. Recall that the relation ≺ in lines 14-15 is defined for markers in the original maps -it remains unchanged through recursive calls, and can be if δ ∈ N and y 0 is a single-marker then return true 12: return false precomputed.

Lemma 4.2. Let x be a single-marker and w a super-marker. If x is selected in an optimal solution, and w is a candidate successor or predecessor of x with exactly one marker in gap(x, w), then there is an optimal solution where the marker in gap(x, w) is deleted.

Proof. Assume that w is a candidate successor of x, the case where it is a candidate predecessor being symmetric.

Let v be the single-marker such that gap(x, w) = {v}, i.e., in some map G i , one of +x, ±v, +w or -w, ±v, -x appears. In the case where no optimal solution selects both x and v, the lemma is obviously true since in any solution where x is selected, v must be deleted. It remains to consider the cases where an optimal solution O exists such that both x and v are selected. Since any strip of length p ≥ 4 can be split into two shorter strips of lengths 2 and (p -2), we can assume without loss of generality that all strips have lengths 2 or 3.

First case: x and v appear in the same strip. Then v is a candidate successor of x and w is not selected in O, since by Lemma 2.1a, w ∈ gap(x, v). Create O ′ by removing this strip from O, the total size decreases by at most 3. Then no marker in {x, w} ∪ gap(x, w) is selected in O ′ : we can add the strip xw to obtain a feasible solution of size greater than or equal to that of O, since w is a super-marker, where v is deleted.

Second case: x and v appear in different strips. Looking at map G i , we see that v is at one end of its strip, and either (a) w is deleted or (b) w is in the same strip as v, and v precedes w. In case (a) we delete v (plus a second marker if v is in a length-2 strip), and add w at the end of the strip containing x: we again have an optimal solution where v is deleted. We now show that case (b) is absurd: since w is a candidate successor of both x and v, then x and v are candidate predecessors of w. However, by Lemma 2.1a, x ∈ gap(w, v), so this contradicts the fact that x is selected and w, v are in the same strip. Lemma 4.3. Let x be a single-marker and s a single-super-marker. If s appears in gap(x, w) for each w that is a candidate successor or predecessor of x, then s itself cannot be a candidate successor or predecessor of x, and any solution selecting x deletes s.

Proof. We first prove that s is not a candidate successor or predecessor of x: otherwise, we would have s ∈ gap(x, s), which is impossible.

Consider the strip containing x in any feasible solution. If x is at the end of this strip, it is preceded by a candidate predecessor z, z = s, and all markers in gap(x, z), including s, are deleted. Otherwise x is followed in its strip by a candidate successor y, and again s ∈ gap(x, y) is deleted. Lemma 4.4. (In this lemma we assume there is no gap constraint.) Let x be a single-marker and y a candidate successor of x such that all markers in gap(x, y) are single-markers and candidate successors of x. If x is part of some strip in an optimal solution, but not at the end of this strip, then there is an optimal solution where x, y is part of some strip.

Proof. Let y 0 be the single-super-marker following x in the strip of the optimal solution, and y 1 be the successor of y 0 if it exists. If y = y 0 , then the lemma is proved. Otherwise, y 0 ∈ gap(x, y) (by Lemma 2.1a) and y 0 is a single-marker.

If y 1 does not exist, we can replace y 0 by y if we delete all markers in gap(x, y) -{y 0 }. But since all these markers are candidate successors of x, they also appear in gap(x, y 0 ) and are already deleted, hence the total size of the solution is unchanged.

Assume now that y 1 exists, we prove that y 1 is a candidate successor of y. First of all, x, y, y 0 , y 1 appear in the same sequence of gene markers (in the same chromosome) in each map. Moreover, x, y, y 1 appear in this order in all maps: y and y 1 both appear after x, and y 1 cannot appear in any S i (x, y), otherwise y 1 ∈ gap(x, y) and y 1 would be a candidate successor of x (which is absurd, since y 0 ∈ S j (x, y 1 ) for all j). Since there is no gap constraint, y 1 is a candidate successor of y. We can replace y 0 by y if we delete all markers in Γ = (gap(x, y) ∪ gap(y, y 1 )) -{y 0 }:

Γ = i S i (x, y) ∪ S i (y, y 1 ) -{y 0 } = i S i (x, y 1 ) -{y, y 0 } = i S i (x, y 0 ) ∪ S i (y 0 , y 1 ) -{y} = (gap(x, y 0 ) ∪ gap(y 0 , y 1 )) -{y}.
Then all markers in Γ are already deleted: we can replace y 0 by y without changing the solution size. Lemma 4.5. Let x be the first single-marker in G ′ 1 . Let z be a candidate predecessor of x such that all markers in gap(x, z) are size-2 super-markers and candidate predecessors of x. If x appears at the end of a strip in an optimal solution, then there is an optimal solution where z, x is at the end of some strip.

Proof. Let z 0 be the single-super-marker preceding x in the strip of the optimal solution, and z 1 be the one preceding z 0 . If z = z 0 , the lemma is proved. Otherwise, z 0 ∈ gap(x, z), hence it is a size-2 super-marker.

If z 1 exists, then it is also a super-marker, since x is the first single-marker in G ′ 1 , and we can split the strip between z 1 and z 0 : hence we can assume that the strip containing x in the optimal solution is z 0 x.

We can replace z 0 by z in z 0 x by deleting all markers in gap(x, z)-{z 0 }. Since all these markers appear in gap(x, z 0 ), they are already deleted in the optimal solution. Moreover, |z| ≥ 2 = |z 0 |, so replacing z 0 by z does not reduce the solution size.

In addition to these four optimizations, we also use a "delayed commitment" optimization which is the equivalent of Lemma 4.4 when we need to observe a gap constraint. We consider the case where x is part, but not at the end, of some strip in the optimal solution, and where y is a single-marker and a candidate successor of x such that all markers in gap(x, y) are single-markers and candidate successors of x. In this case we delete all markers in gap(x, y) to make x, y a strip, but keep the possibility of replacing y by any marker y 1 ∈ gap(x, y), should necessity arise. We denote this unspecified marker by [y | gap(x, y)].

Correctness of Algorithm 2

To prove the correctness of Algorithm 2, we also need the following lemma from [START_REF] Zheng | Removing noise and ambiguities from comparative maps in rearrangement analysis[END_REF]. We provide an easy proof for completeness. Lemma 4.6. [9, Proposition 2] We can decompose the strips of any optimal solution in such a way that (1) each strip contains at most 3 single-super-markers and ( 2) each strip containing 3 single-super-markers starts and ends with a single-marker. Proof. Let s be a strip containing h single-super-markers: s = s 1 s 2 . . . s h . If h ≥ 4, we can split s into two strips: s 1 s 2 and s 3 s 4 . . . s h . We apply this until condition (1) is true. If h = 3 and s 1 (respectively s 3 ) is a super-marker, then we can split s into s 1 and s 2 s 3 (respectively s 1 s 2 and s 3 ). We can do this operation until condition (2) also becomes true.

Let OPT be any optimal solution. Decompose the strips of OPT as in the above lemma. We show by induction that the solution found by Algorithm 2 has the same size as OPT. Let x be the left-most singlemarker in G 1 , then exactly one of the following three cases is true: where r is a candidate successor of a. Hence the algorithm finds the solution consisting of the length-4 strip 1, 2, a, r .

In another branch of the search tree, where a and r are deleted, we obtain the following maps: 

G 1 = (1, [2 | 2, 3, 4]), b G 2 = (1, [2 | 2, 3, 4]), b G 3 = (1, [2 | 2, 3, 4]), x

Complexity analysis of Algorithm 2

Let T (k) be the complexity of the function recurse of Algorithm 2 with parameters k and skip step 2b=false, and T skip (k) the complexity of this function with parameters k and skip step 2b=true (the complexity here being the number of leaves in the search tree). The complexity of several parts of the algorithm depends on whether the single-super-marker s defined at line 8 is a single-marker: so we define a boolean variable s single, which is true if s exists and is a single-marker, and false otherwise. We now compute the complexity of each part of the algorithm.

Part 1: The complexity from line 9 to 12 is T (k -1).

Part 2 (lines 13 to 29): if one of the conditions from lines 16 and 19 is true, then the complexity here is T (k -1). Otherwise, we need to analyze the complexity of parts 2.a (lines 22 to 25) and 2.b (lines 26 to 29).

Part 2.a: We write r for the number of single-super-markers in Y 0 , and r ′ for the minimum size of gap(x, y) for y ∈ Y 0 , and y 0 the single-super-marker reaching this bound; then the complexity is at most rT (kr ′ ). We now bound r and r ′ : first, by Lemma 2.1a, we already have r ′ ≥ r -1. We now prove by contradiction that r ′ > r -1. Assume that r ′ = r -1, then the candidate successors of Y -{y 0 } are the only markers appearing in gap(x, y 0 ), and they are all single-markers. Thus y 0 satisfies the conditions of Lemma 4.4, and Y 0 = {y 0 }, r = 1 and r ′ = 0 (even if y 0 is replaced by an unspecified marker in the meantime). This is absurd, since r ′ = |gap(x, y 0 )| and gap(x, y 0 ) is not empty by Lemma 2.1b. Thus r ′ ≥ r and the complexity of part 2.a is upper bounded by r ′ T (kr ′ ) with r ′ ≥ 1.

Moreover, if s single is false, then we show that we cannot have r ′ = 1. By contradiction again, suppose r ′ = 1. The super-marker s exists (otherwise no marker follows x in G 1 , so Y = ∅), and it appears in gap(x, y) for all y ∈ Y -{s}, then we necessarily have y 0 = s and |gap(x, y 0 )| = 1. This would mean that (x, y 0 ) satisfies the conditions of Lemma 4.2, a contradiction.

Thus the complexity of part 2.a is at most

max{r ′ T (k-r ′ ) | r ′ ≥ 1} if s single is true, and max{r ′ T (k- r ′ ) | r ′ ≥ 2} otherwise.
Part 2.b: First note that all z ∈ Z are super-markers. We denote by t the number of super-markers in Z, and by t ′ the minimum size of gap(x, z) for z ∈ Z 0 (we write z 0 for the super-marker reaching this bound). By Lemma 2.1a, gap(x, z 0 ) contains at least t -1 super-markers, thus t ′ ≥ 2(t -1). Moreover t ′ = 0 (Lemma 2.1b) and t ′ = 1 (otherwise (x, z 0 ) would satisfy the conditions of Lemma 4.2); and one cannot have t ′ = 2(t -1) for t ≥ 2: if t ′ = 2(t -1), then z 0 satisfies the conditions of Lemma 4.5, so Z 0 = {z 0 } and t = 1.

Hence the complexity of part 2.b is at most max{T (k -2), max{tT (k -2t + 1) | t ≥ 2}}. This is the best bound we obtain when s single is false, but it can be improved when s single is true. Indeed, if s single is true, we consider Z 1 the set of z ∈ Z 0 such that s ∈ gap(x, z) and Z 2 = Z 0 -Z 1 . We can see that Z 2 is not empty: otherwise (x, s) would satisfy the conditions of Lemma 4.3. Several cases are possible:

• t = 1, then Z 0 = Z 2 contains only one super-marker z 0 , and the complexity is T skip (k -2).

• t ≥ 2: For each z ∈ Z 1 , gap(x, z) contains at least (t -1) super-markers from Z -{z} and the single-marker s, so the complexity is

T (k -2(t -1) -1). For z ∈ Z 2 , it is T skip (k -2(t -1) -1).
Overall, the complexity of part 2.b in the case where s single is true is at most:

max{T skip (k -2), max{T skip (k -t ′ ) + (t -1) max{T (k -t ′ ), T skip (k -t ′ )} | t ≥ 2, t ′ = 2t -1}}
We can now show by induction that T (k) ≤ c k and T skip (k) ≤ µc k , with c ≈ 2.3593 (c is the real positive solution of 1 = 2c -1 + 2c -3 ) and µ = 2/c ≈ 0.8477.

For part 2.a, we have the following upper bounds:

• for s single = false max{r ′ T (k -r ′ ) | r ′ ≥ 2} ≤ 2c k-2
• for s single = true

max{r ′ T (k -r ′ ) | r ′ ≥ 1} ≤ c k-1
And for part 2.b:

• for s single = false max{T (k -2), max{tT (k -2t + 1) | t ≥ 2}} ≤ c k-2
• for s single = true

max{T (k -t ′ ), T skip (k -t ′ )} ≤ c k-t ′ for all t ′ max{T skip (k -t ′ ) + (t -1)c k-t ′ | t ≥ 2, t ′ = 2t -1} ≤ 2c k-4 + c k-3 max{T skip (k -2), 2c k-4 + c k-3 } ≤ 2c k-3
We first look at the case where s single = false:

T skip (k)c -k ≤ c -1 + max{c -1 , 2c -2 } = 2c -1 = µ T (k)c -k ≤ c -1 + max{c -1 , 2c -2 + c -2 } = 0.962 . . . < 1
Next for s single = true:

T skip (k)c -k ≤ c -1 + max{c -1 , c -1 } = 2c -1 = µ T (k)c -k ≤ c -1 + max{c -1 , c -1 + 2c -3 } = 1
Thus we have T (k) ≤ c k and T skip (k) ≤ µc k . This proves that the size of the search tree is bounded by O(c k ), and each recursive call is done in polynomial time in n and d, so, altogether, the running time of Algorithm 2 is c k poly(dn).

As a final remark regarding Algorithm 2, an anonymous reviewer of an earlier version of this paper commented that perhaps some further properties of the optimal solution, besides those already described in our lemmas, might be used to improve the time complexity further. This may be true, but we believe that such improvement would require significantly different ideas.

FPT algorithm for 1-gap-CMSR-d

In this section we present an improvement of Algorithm 2 for the problem 1-gap-CMSR-d. Note that, as for Algorithm 2, Algorithm 3 can be easily adapted to produce a full solution instead of simply returning "true", when the instance indeed has a solution of the right size.

Proof. Algorithm 3 is based on the following observation. Let x be the left-most single-marker in map 1, and assume it appears in an optimal solution, then there are two cases:

(1) x has a candidate predecessor z 0 (it is necessarily a super-marker). Then, by Lemma 5.2, we can delete all markers between x and z 0 in all maps, regardless of whether z 0 and x are in the same strip in the optimal solution. At least one such marker must exist.

(2) x has no candidate predecessor, then it must be in the same strip as a successor. With the gap constraint, x can have at most two successors. Using Lemma 5.3, we can choose one of them (y 0 , in Algorithm 3).

This proves the correctness of the algorithm. Moreover, the complexity of the 1-gap-CMSR function with parameter k is at most 2 k poly(nd): it is polynomial except for at most two recursive calls, each with a parameter k ′ < k. Thus Theorem 5.1 is proved. Lemma 5.2. (This lemma uses the gap constraint δ = 1.) Let x be a single-marker, and z a super-marker candidate predecessor of x. Then if an optimal solution selects x, it also deletes all markers in gap(x, z).

Proof. With the gap constraint, z is the only candidate predecessor of x, and it is selected in the optimal solution (like all super-markers).

Take u ∈ gap(x, z), then u cannot be in the same strip as x (it is neither a candidate successor nor predecessor of x). Hence if u is selected in the optimal solution, then it is in the same strip as z and all markers of gap(z, u), including x (see Lemma 2.1a), are deleted: a contradiction. So all markers in gap(x, z) are deleted in the optimal solution. Lemma 5.3. (This lemma uses the gap constraint δ = 1.) Let x be a single-marker with two candidate successors a and b. If x appears in an optimal solution, but not at the end of its strip, then there is an optimal solution where x, c is part of some strip, with c = choose(a, b) (see Algorithm 3, parameters G 1 , . . . , G d are omitted).

Proof. For simplicity, we assume without loss of generality that x has a positive sign in all maps. Otherwise, if x has a negative sign in some map G i , we can replace this map by its reversed opposite.

If δ = 1 and x has two candidate successors a 1 and b 1 , then in each map we have the sequence x, a 1 , b 1 or x, b 1 , a 1 . Moreover, if both a 1 and b 1 have at least one candidate successor (respectively a 2 and b 2 ) with a 2 = b 2 , then again only two patterns are possible in all maps:

x, a 1 , b 1 , a 2 , b 2 or x, b 1 , a 1 , b 2 , a 2 .
We proceed with this construction recursively, until we reach a pair (a h , b h ) such that a h and b h do not have different candidate successors.

Assume that x is selected in a strip of an optimal solution, followed by h ′ markers in this strip, with 1 ≤ h ′ ≤ h. Then these markers are either a 1 , . . . , a h ′ or b 1 , . . . , b h ′ , and we can replace one sequence by the other without creating overlapping strips, so there are optimal solutions selecting x, c for c = a 1 and for c = b 1 .

If h ′ > h, let u be the h + 1 st marker following x in the strip (and assume without loss of generality that the first h selected markers are b 1 , . . . b h ). Then u is a candidate successor of b h , and either a h has no x ← the left-most single-marker in G 1 6: else Note that there can be at most two markers u 1 and u 2 with the same image v by ψ: the two neighbors of v in some strip in the optimal solution. Thus we have |R 1 | ≤ 2|D -O|. Moreover, if there are two markers u 1 and u 2 with the same image v, then γ(v) ≥ 2. Therefore

return 1-gap-CMSR(G ′ 1 , . . . , G ′ d , k -|gap(x, z 0 )|) 16: else if ∃a ≻ x then 17: if ∃b ≻ x s.t. b = a then 18: y 0 ← choose(G ′ 1 , . . . , G ′ d , a , b) 19: 
|R 1 | ≤ v∈D-O γ(v). (4) 
Combining inequalities (1), ( 2), (3), and (4), the calculation in the following shows that the number of deleted markers, |D| + |R|, is at most (d + 1.5)k. Thus Algorithm 4 indeed finds a (d + 1.5)-approximation for δ-gap-CMSR-d and CMSR-d.

2dk ≥

x single-marker γ(x) by (1)

= x∈D-O γ(x) + x∈S-O γ(x) + x∈R 1 γ(x) + x∈R 2 γ(x) ≥ x∈D-O γ(x) + |S -O| + |R 1 | + 2|R 2 | ≥ |S -O| + 2|R 1 | + 2|R 2 | by (4) |D| + |R| = |D| + |R 1 | + |R 2 | + |R ∩ O| ≤ |D| + dk -1 2 |S -O| + |R ∩ O| = |D| + dk -1 2 (|S| -|S ∩ O|) + |R ∩ O| ≤ |D| + dk -1 2 |D| + 1 2 |S ∩ O| + |R ∩ O| by (2) = 1 2 (|D| + |S ∩ O|) + |R ∩ O| + dk = 1 2 (|D ∩ O| + |D -O| + |S ∩ O|) + |R ∩ O| + dk ≤ 1 2 (|D ∩ O| + (|O -D| + |S ∩ O|) + |S ∩ O|) + |R ∩ O| + dk by (3) = 1 2 |O| + (|S ∩ O| + |R ∩ O|) + dk ≤ 1 2 k + k + dk = d + 3 2 k
We now give an almost-tight example for Algorithm 4 showing that its approximation ratio cannot be better than d + 1 (here the optimal solution deletes the two single-markers u and v instead of all 2d + 2 single-markers):

G 1 = z d y d • • • z 3 y 3 z 2 y 2 z 1 vu y 1 G 2 = z 1 y 1 z 2 uv y 2 z 3 y 3 • • • z d y d G 3 = z 1 y 1 z 2 y 2 z 3 uv y 3 • • • z d y d • • • • • • • • • • • • • • • • • • G d = z 1 y 1 z 2 y 2 z 3 y 3 • • • z d uv y d
We also have an example showing that no algorithm deleting only single-markers can achieve an approximation ratio better than d (here the optimal solution deletes one super-marker u, v instead of 2d single-markers z i and y i , 1 ≤ i ≤ d):

G 1 = z d y d • • • z 3 y 3 z 2 y 2 z 1 -v-u y 1 G 2 = z 1 y 1 z 2 uv y 2 z 3 y 3 • • • z d y d G 3 = z 1 y 1 z 2 y 2 z 3 uv y 3 • • • z d y d • • • • • • • • • • • • • • • • • • G d = z 1 y 1 z 2 y 2 z 3 y 3 • • • z d uv y d
Compared to the approximation upper bound of 2d [START_REF] Chen | On recovering syntenic blocks from comparative maps[END_REF]1,[START_REF] Jiang | Inapproximability of maximal strip recovery[END_REF] for the two maximization problems MSR-d and δ-gap-MSR-d, which almost matches (at least asymptotically) the current best lower bound of Ω(d/ log d) [START_REF] Jiang | Inapproximability of maximal strip recovery[END_REF], our upper bound of d + 1.5 for the two minimization problems CMSR-d and δ-gap-CMSR-d is still far away from the constant lower bound in [START_REF] Jiang | Inapproximability of maximal strip recovery[END_REF]. It is an intriguing question whether CMSR-d and δ-gap-CMSR-d admit approximation algorithms with constant ratios independent of d.

7 Approximation algorithm for 1-gap-CMSR-2

In this section, we give a method to transform certain approximation algorithms for 1-gap-MSR-d into approximation algorithms for 1-gap-CMSR-d, then apply this method to obtain a 2.778-approximation algorithm for 1-gap-CMSR-2.

Proposition 7.1. If an algorithm A for 1-gap-MSR-d selects all super-markers and selects at least 1/r times the maximum number of single-markers selected in an optimal solution, then A finds a (1 + (1 -1/r)2d)approximation for 1-gap-CMSR-d.

Proof. We denote by s the total number of single-markers in the input maps G 1 , . . . , G d , by s * the number of single-markers selected in an optimal solution, and by s A the number of single-markers selected by the algorithm A. Then s A ≥ s * /r. Since A does not delete any super-marker, the number k A of markers deleted by A is equal to ss A . For 1-gap-CMSR-d, no optimal solution deletes a super-marker (otherwise the super-marker can be added back without breaking any strip since all strips have gap at most 1), so the number k * of markers deleted by an optimal solution is equal to ss * . Since in any feasible solution, every selected single-marker must be adjacent to a deleted single-marker in some map, it follows that s * ≤ 2dk * . The approximation ratio of A for 1-gap-CMSR-d is thus at most

k A k * = s -s A k * ≤ (s * + k * ) -(s * /r) k * = 1 + (1 -1/r)s * k * ≤ 1 + (1 -1/r)2d.
Theorem 7.2. There exists a 2.778-approximation for 1-gap-CMSR-2.

The 1.8-approximation algorithm for 1-gap-MSR-2 in [1] can be easily modified to select all supermarkers while keeping the same approximation ratio. With r = 1.8 = 9/5 and d = 2, we have 1 + (1 -1/r)2d = 25/9 < 2.778. By the above proposition, this modified algorithm for 1-gap-MSR-2 finds a 2.778-approximation for 1-gap-CMSR-2.

Approximation algorithm for δ-gap-MSR-d

In this section, we present an approximation algorithm for δ-gap-MSR-d. The approximation ratio being O(dδ), instead of O(d), it is practical only for small values of δ. 

Lemma 2 . 1 .

 21 (a) Let u, v, w be three markers or single-super-markers. If u and v are two candidate successors of w with u = v, then u ∈ gap(w, v) and v ∈ gap(w, u). (b) Let u and v be two single-super-markers. If u ≺ v or u ≻ v, then gap(u, v) is not empty.

Theorem 4 . 1 .

 41 Algorithm 2 finds an exact solution for the decision problems associated with CMSR-d and δ-gap-CMSR-d, for any δ ≥ 1 and d ≥ 2, in time c k poly(nd), where c < 2.36 is the unique real root of the equation 2c -1 + 2c -3 = 1.

Algorithm 2

 2 FPT algorithm for δ-gap-CMSR-d and CMSR-d Input: d genomic maps G 1 , . . . , G d each containing the same n markers without duplicates, and two parameters k ∈ N, δ ∈ N ∪ {∞} 1: return recurse(G 1 , . . . , G d , k, δ, false) Function recurse(G 1 , . . . , G d , k, δ, skip step 2b): boolean 1: if k < 0 then 2: return false 3: Partition the markers into single-super-markers. 4: if there exists at least one single-marker in G 1 then 5:

Algorithm 2

 2 (continued) Function recurse 2a(Y, x, G 1 , . . . , G d , k, δ): boolean 1: if ∃y 0 ∈ Y s.t. y 0 satisfies the conditions of Lemma 4.4 then 2:

3 :

 3 Replace y 0 by the unspecified marker [y 0 | Y ].

7 : 9 : 5 :

 795 for all y ∈ Y 0 do 8: Create G ′ 1 , . . . , G ′ d by removing all markers in gap(x, y) from G 1 , . . . , G d . if recurse(G ′ 1 , . . . , G ′ d , k -|gap(x, y)|, δ, false) then 10: return true 11: return false Function recurse 2b(Z, x, s, G 1 , . . . , G d , k, δ): boolean 1: if ∃z 0 ∈ Z s.t. z 0 satisfies the conditions of Lemma 4.5 then for all z ∈ Z 0 do 6: if z ends with an unspecified marker [y 0 | Y ] and ∃y 1 ∈ Y s.t. y 1 ≺ x then 7: Replace the unspecified marker [y 0 | Y ] by y 1 .

  , b Here b is the left-most single-marker in G 1 , and (1 [2 | 2, 3, 4]) is a candidate predecessor of b with 3 and 4 (not with 2, since the gap between 2 and b in the original maps is 4 > δ). Hence part (2.a) of Algorithm 2 deletes the markers in gap(b, [2 | 2, 3, 4]) = {x}, and replaces the unspecified marker [2 | 2, 3, 4], e.g. by 3. Thus Algorithm 2 finds in another branch of the search tree the length-3 strip 1, 3, b .

Theorem 5 . 1 .

 51 Algorithm 3 finds an exact solution for the decision problem associated with 1-gap-CMSR-d, for any d ≥ 2, in time 2 k poly(nd).

Algorithm 3 FPT

 3 algorithm for 1-gap-CMSR-d Function 1-gap-CMSR(G 1 , . . . , G d , k): boolean 1: if k < 0 then 2: return false 3: Partition the markers into single-super-markers. 4: if there exists at least one single-marker in G 1 then 5:

1 ,

 1 . . . , G ′ d by removing all markers in gap(x, y 0 ) from G 1 , . . . , G d . 22: return 1-gap-CMSR(G ′ 1 , . . . , G ′ d , k -|gap(x, y 0 )|) 23: else 24: return false Function choose(G 1 , . . . , G d , a, b): single-marker 1: if ∃a ′ ≻ a then 2: if ∃b ′ ≻ b and b ′ = a ′ then 3: if choose(G 1 , . . . , G d , a ′ , b ′ )= a ′ then 4: , indeed v ∈ D -O.

Theorem 8 . 1 .

 81 Algorithm 5 finds an R(d, δ)-approximation for δ-gap-MSR-d, where R(d, δ)

Table 1 :

 1 Positive results for variants of MSR.

	Problem	Best FPT algorithm (running time)
	δ-gap-MSR-d	O(2 t tdδ 2 + ndδ) [Theorem 3.1, Section 3]
	CMSR-d	with t = ℓ(1 + 3 2 dδ) 2.36 k poly(nd) [Theorem 4.1, Section 4]
	δ-gap-CMSR-d (δ ≥ 2)	2.36 k poly(nd) [Theorem 4.1, Section 4]
	1-gap-CMSR-d	2 k poly(nd) [Theorem 5.1, Section 5]
	Problem	Best approximation ratio
	MSR-d	2d [2, 6]
	δ-gap-MSR-d (δ ≥ 4)	2d [1]
	1-gap-MSR-d (d ≥ 3)	0.75d + 0.75 + ǫ [Theorem 8.1, Section 8]
	1-gap-MSR-2	1.8 [1]
	2-gap-MSR-d	1.5d + ǫ [Theorem 8.1, Section 8]
	3-gap-MSR-d	1.5d + 0.75 + ǫ [Theorem 8.1, Section 8]
	CMSR-d (d ≥ 3)	d + 1.5 [Theorem 6.1, Section 6]
	CMSR-2	7/3 [7]
	δ-gap-CMSR-d	d + 1.5 [Theorem 6.1, Section 6]
	1-gap-CMSR-2	2.778 [Theorem 7.2, Section 7]

-5 -1

  ← the first single-super-marker following x in G 1 9: // 1: Assume x is deleted in the optimal solution Assume x is part of a strip in the optimal solution 14: Y ← { single-super-marker y | x ≺ y} // the set of candidate successors 15: Z ← { super-marker z | z ≺ x} // the set of candidate predecessors 16: if ∃w 0 ∈ Y ∪ Z a super-marker s.t. (x, w 0 ) satisfies the conditions of Lemma 4.2 then : if ∃s 0 a single-marker s.t. (x, s 0 ) satisfies the conditions of Lemma 4.3 then : // 2.a: Assume x is not at the end of its strip 23: if Y = ∅ then 24:if recurse 2a(Y, x, G 1 , . . . , G d , k, δ) then Assume x is at the end of its strip 27: if Z = ∅ and skip step 2b=false then 28:if recurse 2b(Z, x, s, G 1 , . . . , G d , k, δ) then

	7:	return true
	8: s 12:	return true
	13: // 2: 20: Create G ′ 1 , . . . , G ′
	25:	return true
	26: // 2.b: 29: return true
	30: return false

10: Create G ′ 1 , . . . , G ′ d by removing x from G 1 , . . . , G d . 11: if recurse(G ′ 1 , . . . , G ′ d , k -1, δ, false) then 17: Create G ′ 1 , . . . , G ′ d by removing the marker in gap(x, w 0 ) from G 1 , . . . , G d . 18: return recurse(G ′ 1 , . . . , G ′ d , k -1, δ, false) 19d by removing s 0 from G 1 , . . . , G d . 21: return recurse(G ′ 1 , . . . , G ′ d , k -1, δ, false) 22

  Assume x is deleted in the optimal solution9: Create G ′ 1 , . . . , G ′ d by removing x from G 1 , . . . , G d . 10: if 1-gap-CMSR(G ′ 1 , . . . , G ′ d , k -1)then Assume x is selected in the optimal solution 13: if ∃z 0 ≺ x then

	7:	return true
	8: // 1: 11: return true
	12: // 2: 14: Create G ′ 1 , . . . , G ′

d by removing all markers in gap(x, z 0 ) from G 1 , . . . , G d .

15:

1:

x is deleted in OPT, 2.a: There exists a single-super-marker y such that x, y is part of a strip in OPT, 2.b: There exists a super-marker z such that z, x is a strip in OPT.

Note that in case 2.b, z cannot be a single-marker since it is to the left of x in G 1 . By our choice of x, case 2.a can be split into the following two subcases: 2.a.i: There exists a single-super-marker y such that x, y is a strip in OPT, 2.a.ii: There exists a single-super-marker y and a single-marker y ′ such that x, y, y ′ is a strip in OPT.

Refer to Algorithm 2. In case 1, a solution is found in lines 9-12 of the function recurse. In case 2, i.e. in the case where x is part of an optimal solution, if either Lemma 4.2 or Lemma 4.3 can be applied, then again a solution is found. Otherwise, we are in case 2.a or 2.b.

Suppose we are in case 2.a. If y ∈ Y 0 , then the function recurse 2a tests a branch in which x, y becomes part of some strip. Otherwise, there exists some y 0 ∈ Y satisfying the conditions of Lemma 4.4. If there is no gap constraint, y is replaced by y 0 , which does not change the size of the solution. If there is a gap constraint, y is replaced by the unspecified marker u = [y 0 | Y ], and we look further in case 2.a.i or 2.a.ii.

In case 2.a.i, we can replace y by y 0 since gap(x, y 0 ) has no more markers than gap(x, y). In case 2.a.ii, we can replace y by any y 1 such that x ≺ y 1 ≺ y ′ , since gap(x, y) ∪ {y} ∪ gap(y, y ′ ) is the same set as gap(x, y 1 ) ∪ {y 1 } ∪ gap(y 1 , y ′ ). This is what happens in case 2.b of a subsequent recursive call in which y ′ becomes the left-most single-marker in G 1 .

Suppose we are in case 2.b. If z ∈ Z 0 , then the function recurse 2b tests a branch in which z, x becomes a strip. Otherwise, Lemma 4.5 can be applied, which leaves the size of the optimal solution unchanged. In line 9 of recurse 2b, if s becomes the left-most single-marker in G 1 in the next recursive call of recurse, it cannot be at the end of a strip because x is already at the end of a strip. This completes the correctness proof.

An example on the behavior of the unspecified markers

We run Algorithm 2 on the following three maps, with the gap constraint δ = 3:

In these maps, 1 has three candidate successors: 2, 3 and 4. Moreover, gap(1, 2) = {3, 4}. Thus, in part (2.a) of Algorithm 2, only one branch is considered: 3 and 4 are deleted, and 2 is replaced by the unspecified marker [2 | 2, 3, 4]. In the subsequent recursive call, the three maps start with a size-2 super-marker.

The new first single-marker is a. In part (2.b), (1, [2 | 2, 3, 4]) is a candidate predecessor of a with 2, and the set gap(a, [2 | 2, 3, 4]) is {x, b}. In this branch of the search tree, we obtain Let k be the number of deleted markers in an optimal solution. Then the number of single-markers in the input maps is at most (2d + 1)k because each single-marker is either deleted or adjacent to a deleted marker. This immediately yields a (2d + 1)-approximation algorithm: simply delete all single-markers. The following is a tight example for this algorithm (here the optimal solution deletes one single-marker x instead of all 2d + 1 single-markers):

As we can see from the above example, after one single-marker is deleted, many other single-markers may be merged into strips. Algorithm 4 first identifies (line 1) all triples of markers (z, x, y) such that z and y can be merged into a strip z, y after x is deleted. Such markers x are considered to be "cost-efficient" when z or/and y is a single-marker, since they allow, if deleted, to merge at least one single-marker into a super-marker. Thus the algorithm successively deletes (lines 2-6) those cost-efficient single-markers (each time reducing the total number of single-markers by at least 2), and finally removes (line 7) the remaining single-markers.

The approximation ratio analysis is non-trivial. We first give a number of definitions and easy remarks (inequalities (1) and ( 2)). We then bound on one hand the number of cost-efficient single-markers which are deleted by the algorithm but not by an optimal solution (|D -O| in (3)), and on the other hand the number of single-markers which have been cost-efficient for the optimal solution but are not deleted as such by the algorithm (|R 1 | in (4)). Finally, combining inequalities (1) to (4), we obtain a lower bound on the approximation ratio. Lemma 6.2. For each triple (z, x, y) in the set X in Algorithm 4, at least one of the three markers x, y, z must be deleted in any feasible solution.

Proof. We prove the lemma by contradiction. Suppose that all three markers x, y, z are selected in a solution. Assume without loss of generality that the sequence z, x, y appears in some map. Then x must be in the same strip as z or y. Assume without loss of generality that z, x is part of some strip. Then z ≺ x. Recall that z ≺ y. Thus x and y are both candidate successors of z. By Lemma 2.1a, we have y ∈ gap(z, x), thus y must be deleted: a contradiction.

We next prove the approximation ratio of Algorithm 4. Let O be the set of deleted markers in an optimal solution; |O| = k. For each marker x / ∈ O, we define two sets Γ succ (x) and Γ pred (x) as follows. If x is followed by a marker y in a strip of O, Γ succ (x) = gap(x, y); otherwise x is the last marker of its strip, Γ succ (x) = ∅. If x is preceded by a marker z in a strip of O, Γ pred (x) = gap(z, x); otherwise x is the first marker of its strip, Γ pred (x) = ∅. Then, for each marker x / ∈ O, define γ(x) = |Γ succ (x)| + |Γ pred (x)|, and for each marker x ∈ O, define γ(x) = 0.

Refer to Algorithm 4. Let D be the set of markers deleted in line 5, let S be the set of single-markers that are merged into super-markers in line 6, and let R be the set of markers deleted in line 7. Let

x is a single-marker at the beginning of the algorithm, then γ(x) = 0 if and only if x ∈ O. Thus we have a partition of R given by R = (R ∩ O) ∪ R 1 ∪ R 2 . Also note that each marker x ∈ O is counted by γ at most twice in each map: at most once in some Γ pred (y), and at most once in some Γ succ (z). Thus we have the following inequality:

x single-marker γ(x) ≤ 2dk.

(

Each marker x ∈ D has a corresponding triple (z, x, y) ∈ X, where z or y is a single-marker. After x is deleted in line 5, z and y are merged into the same super-marker in line 6. Thus we have the following inequality:

For each marker x ∈ D -O, let φ(x) be an arbitrary marker in the non-empty set {z, x, y} ∩ O; see Lemma 6.2. Obviously φ(x) = x, thus φ(x) ∈ O -D. We show that at most two markers in D -O can have the same image by φ. Suppose that φ(x 1 ) = φ(x 2 ) = φ for two different markers x 1 , x 2 ∈ D -O, where x 1 is deleted before x 2 in Algorithm 4. Then the marker φ is merged into a super-marker after x 1 is deleted, and again merged into a larger super-marker after x 2 is deleted. Since a marker has at most two neighbors in a super-marker, φ is necessarily a single-marker before x 1 is deleted, so it belongs to S, indeed S ∩ O. Moreover, after x 2 is deleted and φ is merged into a larger super-marker, φ cannot be adjacent to any other single-marker, say x 3 . Therefore

Let u be a marker such that γ(u) = 1. Then by definition of γ, u belongs to some strip in the optimal solution, and it has a neighbor v = ψ(u) in the same strip such that gap(u, v) contains only one marker, say x. Note that u, v / ∈ O and x ∈ O. We claim that if u is a single-marker at the beginning of the algorithm, then either u ∈ D ∪ S or v ∈ D. This claim is clearly true if one of u or v is deleted by the algorithm in line 5. Otherwise, with (v, x, u) ∈ X or (u, x, v) ∈ X, either x is not deleted because u is merged into a super-marker, or x is deleted: in both cases u ∈ S. This proves the claim. So for each u ∈ R 1 , we have Note that the values of R(d, δ) for small δ are the following:

Thus Algorithm 5 improves the 2d-approximation from [START_REF] Chen | On recovering syntenic blocks from comparative maps[END_REF][START_REF] Jiang | Inapproximability of maximal strip recovery[END_REF] for δ ≤ 3, but does not improve the 1.8approximation from [1] for d = 2 and δ = 1. Algorithm 5 uses the notions of candidate adjacencies which are pairs of markers u, v such that v is a candidate successor of u, and overlapping adjacencies which are pairs of candidate adjacencies u, v and u ′ , v ′ such that the sets {u, v} ∪ S i (u, v) and {u ′ , v ′ } ∪ S i (u ′ , v ′ ) intersect for some i. Finally, the algorithm relies on the study of independent sets on graphs with bounded claw-size [START_REF] Halldórsson | Approximating discrete collections via local improvements[END_REF]; a graph has a p-claw if a vertex (the center of the claw) has p independent neighbors. Proof. Suppose there is a q-claw in G = (Ω 2 , E). We denote by c = u, v its center, and by N the set of q neighbors of c in this claw: the candidate adjacency c overlaps with each n ∈ N , but adjacencies in N are pairwise non-overlapping. We partition N into N = N ∩ ∪ N 1 ∪ . . . ∪ N d , as follows: if n ∈ N shares a marker with c, then n ∈ N ∩ ; otherwise, choose a map G i for which {u, v}∪S i (u, v) and {u ′ , v ′ }∪S i (u ′ , v ′ ) intersect, and add n to N i . First note that 0 ≤ |N ∩ | ≤ 2 : a candidate adjacency in N ∩ either contains u or v, and non-overlapping adjacencies cannot both contain u or v. Now for 1 ≤ i ≤ d, we give an upper bound on |N i |, depending on |N ∩ |. We can assume without loss of generality that u and v appear in positive form in G i , and that N i consists of h candidate adjacencies x 1 , y 1 , . . . , x h , y h appearing in this order in G i (i.e., x 1 , y 1 , x 2 , y 2 , . . . , x h , y h is a subsequence of G i ).

If |N ∩ | = 2, then x 1 must appear after u and y h must appear before v in G 1 : otherwise x 1 , y 1 (respectively x h , y h ) would overlap with some candidate adjacency of N ∩ . Since there can be at most δ markers between u and v, we have 2h ≤ δ.

If |N ∩ | = 1, suppose the candidate adjacency in N ∩ contains u: then x 1 must appear after u in G i . Also, x h must appear before v, otherwise x h , y h would not overlap with u, v . Hence we have 2h -1 ≤ δ.

Finally, if |N ∩ | = 0, then y 1 must appear after u and x h before v, hence 2h -2 ≤ δ.

To summarize, we have the following bounds on h = |N i |: We now bound the approximation ratio of Algorithm 5. If O is an optimal solution of size ℓ, there is a solution of size 2 3 ℓ in Ω 2 : all strips in O can be decomposed into strips of length 2 or 3 with gap at most δ. If we remove the last element of each length-3 strip of O, we obtain a feasible solution O ′ of size at least 2 3 ℓ, and whose strips correspond to candidate adjacencies appearing in Ω 2 . Moreover, these strips form an independent set of G = (Ω 2 , E). Using the (p/2 + ǫ)-approximation of MAXIMUM INDEPENDENT SET on (p + 1)-claw-free-graphs given in [START_REF] Halldórsson | Approximating discrete collections via local improvements[END_REF], we obtain an independent set of G corresponding to a set of strips of total length 1 p/2+ǫ 2 3 ℓ. This leads to an approximation ratio of 3 4 p + ǫ, where p = d(1 + δ 2 ) + (δ mod 2).