
HAL Id: hal-00700598
https://hal.science/hal-00700598

Submitted on 23 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tractability and approximability of maximal strip
recovery

Laurent Bulteau, Guillaume Fertin, Minghui Jiang, Irena Rusu

To cite this version:
Laurent Bulteau, Guillaume Fertin, Minghui Jiang, Irena Rusu. Tractability and approx-
imability of maximal strip recovery. Theoretical Computer Science, 2012, 440-441, pp.14-28.
�10.1016/j.tcs.2012.04.034�. �hal-00700598�

https://hal.science/hal-00700598
https://hal.archives-ouvertes.fr

Tractability and approximability of maximal strip recovery∗

Laurent Bulteau1 Guillaume Fertin1 Minghui Jiang2† Irena Rusu1

1Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241

Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France

{Laurent.Bulteau,Guillaume.Fertin,Irena.Rusu}@univ-nantes.fr

2Department of Computer Science, Utah State University, Logan, UT 84322, USA

mjiang@cc.usu.edu

April 2, 2012

Abstract

An essential task in comparative genomics is to decompose two or more genomes into synteny blocks

that are segments of chromosomes with similar contents. Given a set of d genomic maps each containing

the same n markers without duplicates, the problem MAXIMAL STRIP RECOVERY (MSR) aims at find-

ing a decomposition of the genomic maps into synteny blocks (strips) of the maximum total length ℓ, by

deleting the minimum number k = n−ℓ of markers which are likely noise and ambiguities. In this paper,

we present a collection of new or improved FPT and approximation algorithms for MSR and its variants.

Our main results include a 2O(dδℓ)poly(nd) time FPT algorithm for δ-gap-MSR-d, a 2.36kpoly(nd) time

FPT algorithm for both CMSR-d and δ-gap-CMSR-d, and a (d+1.5)-approximation algorithm for both

CMSR-d and δ-gap-CMSR-d.

Keywords: Bioinformatics; Comparative genomics; Synteny blocks; Approximation algorithms; Pa-

rameterized complexity.

1 Introduction

An essential task in comparative genomics is to decompose two or more genomes into synteny blocks that

are segments of chromosomes with similar contents. Synteny blocks represent units of the genomes that

have not been disrupted by large-scale rearrangements such as reversals and transpositions, and thus form

the input for genome rearrangement algorithms. They also give useful clues regarding the role of each gene,

since genes belonging to the same synteny block often produce proteins with related functions. Extracting

synteny blocks from genomic maps, however, is a non-trivial task when the genomic maps contain noise

and ambiguities, which need to be removed before we can give a precise synteny block decomposition. This

motivates the problem MAXIMAL STRIP RECOVERY (MSR) [9]: to delete a set of markers (genes) from

the genomic maps until the remaining markers can be partitioned into a set of strips (synteny blocks) of

maximum total length.

We review some definitions. A genome consists of one or more chromosomes; each chromosome is a

sequence of genes. Correspondingly, a genomic map consists of one or more sequences of gene markers.

Each marker is a signed integer representing a gene: the absolute value of the integer represents the family

∗A preliminary version of this article appeared in CPM 2011.
†Corresponding author.

1

of the gene; the sign of the integer represents the orientation. A marker has duplicates if it is contained more

than once in some genomic map, possibly in different orientations. A strip of d ≥ 2 genomic maps is a

sequence of at least two markers appearing consecutively in each map, such that the order of the markers

and the orientation of each marker are either both preserved or both reversed. The reversed opposite of a

sequence s = 〈x1, . . . , xh〉 is −s = 〈−xh, . . . ,−x1〉. The problem MSR on d input maps is the following

maximization problem MSR-d [2, 9]:

PROBLEM MSR-d
INPUT: d genomic maps G1, . . . , Gd each containing the same n markers without duplicates.

SOLUTION: d subsequences G′
1, . . . , G

′
d of G1, . . . , Gd respectively, each containing the same ℓ markers,

such that all the markers in G′
1, . . . , G

′
d can be partitioned into strips.

PARAMETER: the number ℓ of selected markers.

The maximization problem MSR-d that maximizes the parameter ℓ, the number of selected markers, has

a complement minimization problem called CMSR-d [8, 6] that minimizes the parameter k = n − ℓ, the

number of deleted markers. For genomic maps of close species with few errors, k can be much smaller than

ℓ, thus approximation and FPT algorithms are sometimes more relevant for CMSR than for MSR.

Given d subsequences G′
1, . . . , G

′
d of d genomic maps G1, . . . , Gd, respectively, the gap between two

consecutive markers a and b of G′
i is the number of markers appearing between a and b in Gi, a and b

excluded. The gap of a strip s is the maximum gap between any two consecutive markers of s in any map

G′
i. The deleted markers between markers of a strip correspond to noise and ambiguities, which occur infre-

quently. A synteny block is a segment of chromosomes that remain undisrupted by genome rearrangements

during evolution. Consecutive elements of a synteny block can only be separated in a data set due to noise

and ambiguities. Thus a strip having a large gap is unlikely to correspond to a synteny block. This leads to

the following gap-constrained variant of MSR-d:

PROBLEM δ-gap-MSR-d
INPUT: d genomic maps G1, . . . , Gd each containing the same n markers without duplicates.

SOLUTION: d subsequences G′
1, . . . , G

′
d of G1, . . . , Gd respectively, each containing the same ℓ markers,

such that the markers inG′
1, . . . , G

′
d can be partitioned into strips, and such that each strip has gap at most δ.

PARAMETER: the number ℓ of selected markers.

No doubt that MSR-d is a more elegant problem from a theoretical perspective, but δ-gap-MSR-d could

be more relevant in biological applications. The gap-constrained variant of CMSR-d, denoted δ-gap-CMSR-

d, can be similarly defined. Similarly to MSR-d and CMSR-d, the parameter for δ-gap-MSR-d is ℓ, and the

parameter for δ-gap-CMSR-d is k. In most cases, δ and d are assumed to be constants, although our FPT

algorithm in Theorem 3 does not depend on this assumption and can take δ and d as parameters besides ℓ.
There is no known direct reduction from δ-gap-MSR-d to MSR-d or vice versa. Although the gap constraint

appears to be an additional burden that the algorithm has to take care of, it also limits the set of candidate

strips and their intersection pattern, especially when δ is small, which may make the problem easier to

handle.

The following is an example of the problem MSR on three genomic maps G1, G2, G3 and an optimal

solution of three subsequences G′
1, G

′
2, G

′
3:

G1 = 1 5 −3 2 6 4 8 7

G2 = 1 5 −3 −8 7 −6 2 4

G3 = −8 2 7 −6 −4 3 −5 −1

G′
1 = 1 5 −3 6 8

G′
2 = 1 5 −3 −8 −6

G′
3 = −8 −6 3 −5 −1

2

Problem Best FPT algorithm (running time)

δ-gap-MSR-d O(2ttdδ2 + ndδ) [Theorem 3.1, Section 3]

with t = ℓ(1 + 3

2
dδ)

CMSR-d 2.36kpoly(nd) [Theorem 4.1, Section 4]

δ-gap-CMSR-d (δ ≥ 2) 2.36kpoly(nd) [Theorem 4.1, Section 4]

1-gap-CMSR-d 2kpoly(nd) [Theorem 5.1, Section 5]

Problem Best approximation ratio

MSR-d 2d [2, 6]

δ-gap-MSR-d (δ ≥ 4) 2d [1]

1-gap-MSR-d (d ≥ 3) 0.75d+ 0.75 + ǫ [Theorem 8.1, Section 8]

1-gap-MSR-2 1.8 [1]

2-gap-MSR-d 1.5d+ ǫ [Theorem 8.1, Section 8]

3-gap-MSR-d 1.5d+ 0.75 + ǫ [Theorem 8.1, Section 8]

CMSR-d (d ≥ 3) d+ 1.5 [Theorem 6.1, Section 6]

CMSR-2 7/3 [7]

δ-gap-CMSR-d d+ 1.5 [Theorem 6.1, Section 6]

1-gap-CMSR-2 2.778 [Theorem 7.2, Section 7]

Table 1: Positive results for variants of MSR.

Here the markers 2, 4, 7 are deleted, and the markers 1, 3, 5, 6, 8 are selected in two strips 〈1, 5,−3〉 and

〈6, 8〉 of G′
1, G′

2, G′
3. The gap of the strip 〈1, 5,−3〉 is 0. The gap of the strip 〈6, 8〉 is 2, since there are 2

markers between −8 and −6 in G3.

For the four variants of the maximal strip recovery problem, MSR-d, CMSR-d, δ-gap-MSR-d, and δ-

gap-CMSR-d, several hardness results have been obtained [2, 8, 6, 1, 5], and a variety of algorithms have

been developed, including heuristics [9], approximation algorithms [2, 1, 10, 4, 7], and FPT algorithms [8,

10, 4]. The previous hardness results regarding these problems are summarized in the following:

• [6, 1]: MSR-d, CMSR-d, δ-gap-MSR-d, and δ-gap-CMSR-d are APX-hard for any d ≥ 2 and δ ≥ 2,

even if all markers appear in positive orientation in all genomic maps; 1-gap-MSR-d and 1-gap-

CMSR-d are NP-hard for any d ≥ 2.

• [5]: MSR-d is W[1]-hard for any d ≥ 4, even if all markers appear in positive orientation in all

genomic maps.

On the positive side, it was known that MSR-d admits a 2d-approximation algorithm for any d ≥
2 [2, 6], and that δ-gap-MSR-d admits a 2d-approximation algorithm for any d ≥ 2 and δ ≥ 1 and a 1.8-

approximation algorithm for d = 2 and δ = 1 [1]. Also, along some very recent development [10, 4, 7]

on the CMSR problem parallel to our work, Lin et al. [7] presented a 7/3-approximation algorithm for

CMSR-2, which is based on an interesting idea called local amortization with re-weighting.

In this paper, we present a panel of new or improved FPT and approximation algorithms for the many

variants of the maximal strip recovery problem. The current best results, including our contribution, are

summarized in Table 1.

2 Preliminaries

We assume without loss of generality that all markers in the first input map G1 have positive sign. Un-

less explicitly noted, our uses of some standard terms such as solution and optimal solution, our previous

3

definitions of strip and gap, as well as other definitions that we will introduce in this section — all these

apply to some “current” set of genomic maps G′
1, . . . , G

′
d implicit from context, which can be either the

set of original maps G1, . . . , Gd given as input, or some set of reduced maps (subsequences obtained from

G1, . . . , Gd by deleting some markers) during or after the execution of a recursive algorithm.

If a maximal sequence of markers form a strip in some maps G′
1, . . . , G

′
d, then these markers are either

all selected or all deleted in any optimal solution for these maps. This is because any solution that includes

only a subset of the markers in a strip can be extended to a better solution to include all markers in that

strip. Hence these markers can be treated as an atomic unit, and called a super-marker, whose size is the

number of markers it contains. Note that the size of a super-marker is always at least 2. A marker that does

not belong to any super-marker is a single-marker. We use the term single-super-marker to refer to either a

single-marker or a super-marker. A common (sometimes implicit) step of our algorithms is to partition the

markers in the current maps into single-super-markers. If the current maps contain only super-markers, then

we have a straightforward decomposition into strips, without deleting any marker.

Let x and y be two single-super-markers of some maps G′
1, . . . , G

′
d. We write Si(x, y) for the set of

markers appearing between x and y in map G′
i. We say that y follows x in map G′

i if one of 〈+x,+y〉,
〈−y,−x〉 is a subsequence of G′

i. For δ-gap-CMSR-d, we add the constraint that the number of markers

appearing between x and y in the original maps is at most δ (x and y excluded). For multichromosomal

genomes, that is, when a genomic map consists of several sequences of gene markers (several chromo-

somes), we require that x and y belong to the same chromosome in G′
i. We define the relation “y precedes

x” symmetrically.

We say that y is a candidate successor of x, and we write x ≺ y, if y follows x in all maps, and

if there is no other y′ such that for all 1 ≤ i ≤ d, y′ follows x in G′
i and appears in Si(x, y). Note

that if 〈x, y〉 is part of some strip in an optimal solution, then y is a candidate successor of x. We define

symmetrically the candidate predecessors. Note that y is a candidate successor of x if and only if x is a

candidate predecessor of y. If y is a candidate successor or predecessor of x, gap(x, y) is the set of all

markers appearing in Si(x, y) for some 1 ≤ i ≤ d. In the example given in Section 1, we have 6 ≺ 8, and

gap(6, 8) = gap(8, 6) = {2, 4, 7}.
The following lemma gives some basic properties of the function gap:

Lemma 2.1. (a) Let u, v, w be three markers or single-super-markers. If u and v are two candidate succes-

sors of w with u 6= v, then u ∈ gap(w, v) and v ∈ gap(w, u). (b) Let u and v be two single-super-markers.

If u ≺ v or u ≻ v, then gap(u, v) is not empty.

Proof. (a) By definition of a candidate successor, there exists some i such that v /∈ Si(w, u), and some j
such that u /∈ Sj(w, v). Assume without loss of generality that w has positive sign in Gi. Then there exist

sequences sw,u and sw,v, using markers of Si(w, u) and Si(w, v) respectively, such that both w sw,u u and

w sw,v v appear in map Gi. We now compare |Si(w, u)| and |Si(w, v)|:

• if |Si(w, u)| = |Si(w, v)|, then sw,u = sw,v and u = v (this case is impossible),

• if |Si(w, u)| < |Si(w, v)|, then sw,u u is a prefix of sw,v, and u ∈ Si(w, v) ⊆ gap(w, v),

• if |Si(w, u)| > |Si(w, v)|, then sw,v v is a prefix of sw,u and v ∈ Si(w, u) (this case is impossible).

Likewise, using map Gj , we have v ∈ Sj(w, u) ⊆ gap(w, u). This proves the first property.

(b) Assume without loss of generality that u ≺ v (the other case u ≻ v is symmetric). If gap(u, v) = ∅,
then for all i, Si(u, v) = ∅, and hence either 〈+u,+v〉 or 〈−v,−u〉 appears in mapGi. It follows that 〈u, v〉
could form a super-marker: a contradiction.

4

3 FPT algorithm for δ-gap-MSR-d

In this section, we present the first FPT algorithm for δ-gap-MSR-dwith the parameter ℓ. Recall that without

the gap constraint, MSR-d with the parameter ℓ is W[1]-hard for any d ≥ 4. In sharp contrast to the W[1]-

hardness of MSR-d, we obtain a somewhat surprising result that δ-gap-MSR-d is in FPT, where ℓ is the

parameter, and δ and d are constants. In fact, our FPT algorithm for δ-gap-MSR-d works even if d and δ are

not constants: δ-gap-MSR-d is in FPT even with three combined parameters d, δ and ℓ.

Theorem 3.1. Algorithm 1 finds an optimal solution for δ-gap-MSR-d for any d ≥ 2 and δ ≥ 1, in time

O(2ttdδ2 + ndδ), where t = ℓ(1 + 3

2
dδ).

Algorithm 1 FPT algorithm for δ-gap-MSR-d

1: Gather all pairs of markers (u, v) such that u ≺ v. Such pairs are called candidate pairs.

2: For each marker u, create a boolean variable xu.

3: For each candidate pair (u, v), create a conjunctive boolean formula fu,v = xu∧xv∧¬xg1 ∧ . . .∧¬xgs ,

where g1, . . . , gs are the markers in gap(u, v).
4: Delete the variables that do not appear in any formula or appear only in negative form in the formulas.

5: Enumerate all possible assignments to the remaining variables to find an optimal assignment that max-

imizes the number of variables appearing in positive form in at least one satisfied formula. Delete all

markers whose variables are not assigned true values.

6: Return the resulting genomic maps.

Our algorithm is based on a simple idea: create a boolean variable for each marker (where true means

the marker is selected in a solution, false that it is unselected), then test all possible assignments to find an

optimal solution. To reduce the time complexity of this brute-force approach, we add a pruning step (line 4)

to delete certain variables whose markers cannot appear in any optimal solution. The remaining variables

form a “core” on which we can find an optimal solution in FPT time.

The correctness of the algorithm is deduced from the fact that each marker selected in a solution corre-

sponds to a variable appearing in positive form in at least one formula, thus all optimal solutions are kept

during the pruning step (line 4), and are discovered during the exhaustive enumeration (line 5).

Given an optimal solution, which selects ℓ markers, we call a marker active if it appears within distance

at most δ from a selected marker in some map. Then each map contains at most ℓδ + ℓ
2
δ unselected active

markers: at most δ after each selected marker, and at most δ before the first marker of each strip (note that

the number of strips of this optimal solution is at most ℓ/2). The total number of active markers is at most

ℓ+ d(ℓδ + ℓ
2
δ) = ℓ(1 + 3

2
dδ).

The pruning step in line 4 depends on the crucial observation that a non-active marker can never appear

in positive form. Suppose for contradiction that a non-active marker u appears in a candidate pair with some

marker v. Then u is at distance at most δ + 1 from v in each map. Since u, as a non-active marker, must be

at distance at least δ + 1 from the selected markers in all maps, no selected markers can appear between u
and v in any map, thus we can extend the optimal solution by selecting both u and v, a contradiction.

Note that in line 4 the variables appearing at least once in positive form are never deleted, hence no

formula becomes empty after deleting the variables that appear only in negative form. After line 4, the

number of remaining variables is at most the number of active markers, which is at most t = ℓ(1 + 3

2
dδ).

Correspondingly, the number of formulas is at most t(δ+1), because any candidate pair consists of an active

marker and one of the δ + 1 markers immediately following it in the first map. Each formula contains at

most dδ + 2 variables.

The time complexity of line 1 is O(ndδ). In lines 2 and 3, the variables can be created in time O(n),
and the formulas can be created in time O(t(δ + 1)(dδ + 2)) = O(tdδ2). Similarly, line 4 can be executed

5

in time O(n + tdδ2). Finally, line 5 can be executed in time O(2tt(δ + 1)(dδ + 2)) = O(2ttdδ2), so the

overall time complexity is O(2ttdδ2 + ndδ).

4 FPT algorithm for CMSR-d and δ-gap-CMSR-d

In this section, we design an FPT algorithm for CMSR-d and δ-gap-CMSR-d, where the parameter is k, the

number of deleted markers in the optimal solution.

Since super-markers are already strips in the input genomic maps, one may naturally be tempted to come

up with the following algorithm. First, find all super-markers, and add them to the solution. Then, delete a

subset of single-markers until all markers in the resulting maps can be partitioned into strips. The correctness

of this algorithm for finding an exact solution, however, depends on the assumption that in some optimal

solution no super-marker needs to be deleted, which is false as can be seen in the following counter-example:

G1 = 4 1 2 3 5 6 7
G2 = 6 −3 −2 −1 7 4 5

Here 〈1, 2, 3〉 forms a super-marker, but the optimal solution deletes 〈1, 2, 3〉 and selects 〈4, 5〉 and 〈6, 7〉
instead. An easy generalization of this counter-example shows that any super-marker of size strictly less than

2d is not guaranteed to be always selected in some optimal solution. Note that on the other hand, longer

super-markers, of size at least 2d, are always selected in some optimal solution, see e.g. [4, Lemma 1].

We observe that an FPT algorithm for CMSR-d and δ-gap-CMSR-d can be easily obtained using the

bounded search tree method. In any feasible solution for the two problems, a single-marker x must be either

deleted or selected. If x is selected, then at least one of its neighbors must be deleted. Since x has at most 2d
neighbors (at most two in each map), this leads to a very simple algorithm running in time (2d+1)kpoly(nd).
Parallel to our work, Jiang et al. [4] presented an FPT algorithm running in time 3kpoly(nd). We next

describe a carefully tuned FPT algorithm running in time 2.36kpoly(nd). For convenience, we consider the

decision problem associated with CMSR-d and δ-gap-CMSR-d, for which the parameter k is part of the

input.

Theorem 4.1. Algorithm 2 finds an exact solution for the decision problems associated with CMSR-d and

δ-gap-CMSR-d, for any δ ≥ 1 and d ≥ 2, in time ckpoly(nd), where c < 2.36 is the unique real root of the

equation 2c−1 + 2c−3 = 1.

It is interesting to note that although the two problems MSR-d and δ-gap-MSR-d have very different

complexities when parameterized by ℓ, their complements CMSR-d and δ-gap-CMSR-d are both tractable

when parameterized by k.

We describe the intuition behind Algorithm 2. As already noted, we will explore a bounded search tree as

follows: in each node we consider a single-marker x, and we explore the branches corresponding to the cases

where x is deleted and where it is selected in a strip with each possible candidate successor or predecessor.

This search tree has bounded depth (in each branch we delete at least one marker, and we stop after deleting

k markers) and degree (each single-marker has at most 2d candidate successors or predecessors). In order

to improve the complexity of this algorithm, we aim at (1) choosing x so that we may delete a maximum

number of markers in the subsequent recursive calls (thus reducing the depth of the subtree), and (2) pointing

out special cases where we may ignore some branches of the search tree without loosing an optimal solution

(thus reducing the degree). For objective (1) we choose x as the first single-marker in the first map, hence,

the gap between x and a candidate predecessor consists mostly of super-markers, thus increasing the number

of markers to be deleted in the corresponding branches. For objective (2), we provide a number of technical

lemmas (Lemma 4.2 to Lemma 4.5) which allow us to reduce the degree of some “worst-case” nodes. In

some situations, we find a marker which is necessarily deleted. In others, we identify a good candidate

6

predecessor or successor, which we may select to generate a solution at least as good as with any other

candidate.

Algorithm 2 FPT algorithm for δ-gap-CMSR-d and CMSR-d

Input: d genomic maps G1, . . . , Gd each containing the same n markers without duplicates, and two pa-

rameters k ∈ N, δ ∈ N ∪ {∞}

1: return recurse(G1, . . . , Gd, k, δ, false)

Function recurse(G1, . . . , Gd, k, δ, skip step 2b): boolean

1: if k < 0 then

2: return false

3: Partition the markers into single-super-markers.

4: if there exists at least one single-marker in G1 then

5: x← the left-most single-marker in G1

6: else

7: return true

8: s← the first single-super-marker following x in G1

9: // 1: Assume x is deleted in the optimal solution

10: Create G′
1, . . . , G

′
d by removing x from G1, . . . , Gd.

11: if recurse(G′
1, . . . , G

′
d, k − 1, δ, false) then

12: return true

13: // 2: Assume x is part of a strip in the optimal solution

14: Y ← { single-super-marker y | x ≺ y} // the set of candidate successors

15: Z ← { super-marker z | z ≺ x} // the set of candidate predecessors

16: if ∃w0 ∈ Y ∪ Z a super-marker s.t. (x,w0) satisfies the conditions of Lemma 4.2 then

17: Create G′
1, . . . , G

′
d by removing the marker in gap(x,w0) from G1, . . . , Gd.

18: return recurse(G′
1, . . . , G

′
d, k − 1, δ, false)

19: if ∃s0 a single-marker s.t. (x, s0) satisfies the conditions of Lemma 4.3 then

20: Create G′
1, . . . , G

′
d by removing s0 from G1, . . . , Gd.

21: return recurse(G′
1, . . . , G

′
d, k − 1, δ, false)

22: // 2.a: Assume x is not at the end of its strip

23: if Y 6= ∅ then

24: if recurse 2a(Y, x,G1, . . . , Gd, k, δ) then

25: return true

26: // 2.b: Assume x is at the end of its strip

27: if Z 6= ∅ and skip step 2b=false then

28: if recurse 2b(Z, x, s,G1, . . . , Gd, k, δ) then

29: return true

30: return false

4.1 Some technical lemmas

The efficiency of Algorithm 2 is made possible by several optimizations justified by the following four

lemmas. These lemmas are all based on very simple observations. Note that although we consider the

decision problem for simplicity, Algorithm 2 can be adapted to directly return the actual solution, instead

of “true”, when the input instance indeed has a solution of size k. Recall that the relation ≺ in lines 14–15

is defined for markers in the original maps — it remains unchanged through recursive calls, and can be

7

Algorithm 2 (continued)

Function recurse 2a(Y, x,G1, . . . , Gd, k, δ): boolean

1: if ∃y0 ∈ Y s.t. y0 satisfies the conditions of Lemma 4.4 then

2: if δ ∈ N and y0 is a single-marker then

3: Replace y0 by the unspecified marker [y0 | Y].
4: Y0 ← {y0}
5: else

6: Y0 ← Y
7: for all y ∈ Y0 do

8: Create G′
1, . . . , G

′
d by removing all markers in gap(x, y) from G1, . . . , Gd.

9: if recurse(G′
1, . . . , G

′
d, k − |gap(x, y)|, δ, false) then

10: return true

11: return false

Function recurse 2b(Z, x, s,G1, . . . , Gd, k, δ): boolean

1: if ∃z0 ∈ Z s.t. z0 satisfies the conditions of Lemma 4.5 then

2: Z0 ← {z0}
3: else

4: Z0 ← Z
5: for all z ∈ Z0 do

6: if z ends with an unspecified marker [y0 | Y] and ∃y1 ∈ Y s.t. y1 ≺ x then

7: Replace the unspecified marker [y0 | Y] by y1.

8: Create G′
1, . . . , G

′
d by removing all markers in gap(x, z) from G1, . . . , Gd.

9: skip next step 2b← s exists and s is a single-marker and s /∈ gap(x, z)
10: if recurse(G′

1, . . . , G
′
d, k − |gap(x, z)|, δ, skip next step 2b) then

11: return true

12: return false

8

precomputed.

Lemma 4.2. Let x be a single-marker and w a super-marker. If x is selected in an optimal solution, and w
is a candidate successor or predecessor of x with exactly one marker in gap(x,w), then there is an optimal

solution where the marker in gap(x,w) is deleted.

Proof. Assume that w is a candidate successor of x, the case where it is a candidate predecessor being

symmetric.

Let v be the single-marker such that gap(x,w) = {v}, i.e., in some map Gi, one of 〈+x,±v,+w〉 or

〈−w,±v,−x〉 appears. In the case where no optimal solution selects both x and v, the lemma is obviously

true since in any solution where x is selected, v must be deleted. It remains to consider the cases where an

optimal solution O exists such that both x and v are selected. Since any strip of length p ≥ 4 can be split

into two shorter strips of lengths 2 and (p− 2), we can assume without loss of generality that all strips have

lengths 2 or 3.

First case: x and v appear in the same strip. Then v is a candidate successor of x and w is not selected in

O, since by Lemma 2.1a, w ∈ gap(x, v). Create O′ by removing this strip from O, the total size decreases

by at most 3. Then no marker in {x,w} ∪ gap(x,w) is selected in O′: we can add the strip xw to obtain a

feasible solution of size greater than or equal to that of O, since w is a super-marker, where v is deleted.

Second case: x and v appear in different strips. Looking at mapGi, we see that v is at one end of its strip,

and either (a) w is deleted or (b) w is in the same strip as v, and v precedes w. In case (a) we delete v (plus

a second marker if v is in a length-2 strip), and add w at the end of the strip containing x: we again have an

optimal solution where v is deleted. We now show that case (b) is absurd: since w is a candidate successor

of both x and v, then x and v are candidate predecessors of w. However, by Lemma 2.1a, x ∈ gap(w, v),
so this contradicts the fact that x is selected and w, v are in the same strip.

Lemma 4.3. Let x be a single-marker and s a single-super-marker. If s appears in gap(x,w) for eachw that

is a candidate successor or predecessor of x, then s itself cannot be a candidate successor or predecessor

of x, and any solution selecting x deletes s.

Proof. We first prove that s is not a candidate successor or predecessor of x: otherwise, we would have

s ∈ gap(x, s), which is impossible.

Consider the strip containing x in any feasible solution. If x is at the end of this strip, it is preceded

by a candidate predecessor z, z 6= s, and all markers in gap(x, z), including s, are deleted. Otherwise x is

followed in its strip by a candidate successor y, and again s ∈ gap(x, y) is deleted.

Lemma 4.4. (In this lemma we assume there is no gap constraint.) Let x be a single-marker and y a

candidate successor of x such that all markers in gap(x, y) are single-markers and candidate successors of

x. If x is part of some strip in an optimal solution, but not at the end of this strip, then there is an optimal

solution where 〈x, y〉 is part of some strip.

Proof. Let y0 be the single-super-marker following x in the strip of the optimal solution, and y1 be the

successor of y0 if it exists. If y = y0, then the lemma is proved. Otherwise, y0 ∈ gap(x, y) (by Lemma 2.1a)

and y0 is a single-marker.

If y1 does not exist, we can replace y0 by y if we delete all markers in gap(x, y) − {y0}. But since all

these markers are candidate successors of x, they also appear in gap(x, y0) and are already deleted, hence

the total size of the solution is unchanged.

Assume now that y1 exists, we prove that y1 is a candidate successor of y. First of all, x, y, y0, y1 appear

in the same sequence of gene markers (in the same chromosome) in each map. Moreover, x, y, y1 appear

in this order in all maps: y and y1 both appear after x, and y1 cannot appear in any Si(x, y), otherwise

y1 ∈ gap(x, y) and y1 would be a candidate successor of x (which is absurd, since y0 ∈ S
j(x, y1) for all

9

j). Since there is no gap constraint, y1 is a candidate successor of y. We can replace y0 by y if we delete all

markers in Γ = (gap(x, y) ∪ gap(y, y1))− {y0}:

Γ =

(

⋃

i

Si(x, y) ∪ Si(y, y1)

)

− {y0}

=

(

⋃

i

Si(x, y1)

)

− {y, y0}

=

(

⋃

i

Si(x, y0) ∪ S
i(y0, y1)

)

− {y}

= (gap(x, y0) ∪ gap(y0, y1))− {y}.

Then all markers in Γ are already deleted: we can replace y0 by y without changing the solution size.

Lemma 4.5. Let x be the first single-marker in G′
1. Let z be a candidate predecessor of x such that all

markers in gap(x, z) are size-2 super-markers and candidate predecessors of x. If x appears at the end of a

strip in an optimal solution, then there is an optimal solution where 〈z, x〉 is at the end of some strip.

Proof. Let z0 be the single-super-marker preceding x in the strip of the optimal solution, and z1 be the one

preceding z0. If z = z0, the lemma is proved. Otherwise, z0 ∈ gap(x, z), hence it is a size-2 super-marker.

If z1 exists, then it is also a super-marker, since x is the first single-marker in G′
1, and we can split the

strip between z1 and z0: hence we can assume that the strip containing x in the optimal solution is z0x.

We can replace z0 by z in z0x by deleting all markers in gap(x, z)−{z0}. Since all these markers appear

in gap(x, z0), they are already deleted in the optimal solution. Moreover, |z| ≥ 2 = |z0|, so replacing z0 by

z does not reduce the solution size.

In addition to these four optimizations, we also use a “delayed commitment” optimization which is the

equivalent of Lemma 4.4 when we need to observe a gap constraint. We consider the case where x is part,

but not at the end, of some strip in the optimal solution, and where y is a single-marker and a candidate

successor of x such that all markers in gap(x, y) are single-markers and candidate successors of x. In this

case we delete all markers in gap(x, y) to make 〈x, y〉 a strip, but keep the possibility of replacing y by any

marker y1 ∈ gap(x, y), should necessity arise. We denote this unspecified marker by [y | gap(x, y)].

4.2 Correctness of Algorithm 2

To prove the correctness of Algorithm 2, we also need the following lemma from [9]. We provide an easy

proof for completeness.

Lemma 4.6. [9, Proposition 2] We can decompose the strips of any optimal solution in such a way that

(1) each strip contains at most 3 single-super-markers and (2) each strip containing 3 single-super-markers

starts and ends with a single-marker.

Proof. Let s be a strip containing h single-super-markers: s = s1s2 . . . sh. If h ≥ 4, we can split s into two

strips: s1s2 and s3s4 . . . sh. We apply this until condition (1) is true. If h = 3 and s1 (respectively s3) is a

super-marker, then we can split s into s1 and s2s3 (respectively s1s2 and s3). We can do this operation until

condition (2) also becomes true.

Let OPT be any optimal solution. Decompose the strips of OPT as in the above lemma. We show by

induction that the solution found by Algorithm 2 has the same size as OPT. Let x be the left-most single-

marker in G1, then exactly one of the following three cases is true:

10

1: x is deleted in OPT,

2.a: There exists a single-super-marker y such that 〈x, y〉 is part of a strip in OPT,

2.b: There exists a super-marker z such that 〈z, x〉 is a strip in OPT.

Note that in case 2.b, z cannot be a single-marker since it is to the left of x in G1. By our choice of x,

case 2.a can be split into the following two subcases:

2.a.i: There exists a single-super-marker y such that 〈x, y〉 is a strip in OPT,

2.a.ii: There exists a single-super-marker y and a single-marker y′ such that 〈x, y, y′〉 is a strip in OPT.

Refer to Algorithm 2. In case 1, a solution is found in lines 9–12 of the function recurse. In case 2, i.e.

in the case where x is part of an optimal solution, if either Lemma 4.2 or Lemma 4.3 can be applied, then

again a solution is found. Otherwise, we are in case 2.a or 2.b.

Suppose we are in case 2.a. If y ∈ Y0, then the function recurse 2a tests a branch in which 〈x, y〉
becomes part of some strip. Otherwise, there exists some y0 ∈ Y satisfying the conditions of Lemma 4.4.

If there is no gap constraint, y is replaced by y0, which does not change the size of the solution. If there is

a gap constraint, y is replaced by the unspecified marker u = [y0 | Y], and we look further in case 2.a.i or

2.a.ii.

In case 2.a.i, we can replace y by y0 since gap(x, y0) has no more markers than gap(x, y). In case 2.a.ii,

we can replace y by any y1 such that x ≺ y1 ≺ y′, since gap(x, y) ∪ {y} ∪ gap(y, y′) is the same set as

gap(x, y1) ∪ {y1} ∪ gap(y1, y
′). This is what happens in case 2.b of a subsequent recursive call in which y′

becomes the left-most single-marker in G1.

Suppose we are in case 2.b. If z ∈ Z0, then the function recurse 2b tests a branch in which 〈z, x〉
becomes a strip. Otherwise, Lemma 4.5 can be applied, which leaves the size of the optimal solution

unchanged. In line 9 of recurse 2b, if s becomes the left-most single-marker in G1 in the next recursive call

of recurse, it cannot be at the end of a strip because x is already at the end of a strip.

This completes the correctness proof.

4.3 An example on the behavior of the unspecified markers

We run Algorithm 2 on the following three maps, with the gap constraint δ = 3:

G1 = 〈1, 2, a, 4, 3, r, b〉

G2 = 〈1, 3, 2, a, 4, b, r〉

G3 = 〈1, 4, 3, 2, x, b, a, r〉

In these maps, 1 has three candidate successors: 2, 3 and 4. Moreover, gap(1, 2) = {3, 4}. Thus, in part

(2.a) of Algorithm 2, only one branch is considered: 3 and 4 are deleted, and 2 is replaced by the unspecified

marker [2 | 2, 3, 4]. In the subsequent recursive call, the three maps start with a size-2 super-marker.

G1 = 〈(1, [2 | 2, 3, 4]), a, r, b〉

G2 = 〈(1, [2 | 2, 3, 4]), a, b, r〉

G3 = 〈(1, [2 | 2, 3, 4]), x, b, a r〉

The new first single-marker is a. In part (2.b), (1, [2 | 2, 3, 4]) is a candidate predecessor of a with 2,

and the set gap(a, [2 | 2, 3, 4]) is {x, b}. In this branch of the search tree, we obtain

G1 = G2 = G3 = 〈(1 2 a) r〉,

11

where r is a candidate successor of a. Hence the algorithm finds the solution consisting of the length-4 strip

〈1, 2, a, r〉.
In another branch of the search tree, where a and r are deleted, we obtain the following maps:

G1 = 〈(1, [2 | 2, 3, 4]), b〉

G2 = 〈(1, [2 | 2, 3, 4]), b〉

G3 = 〈(1, [2 | 2, 3, 4]), x, b〉

Here b is the left-most single-marker inG1, and (1 [2 | 2, 3, 4]) is a candidate predecessor of bwith 3 and

4 (not with 2, since the gap between 2 and b in the original maps is 4 > δ). Hence part (2.a) of Algorithm 2

deletes the markers in gap(b, [2 | 2, 3, 4]) = {x}, and replaces the unspecified marker [2 | 2, 3, 4], e.g. by 3.

Thus Algorithm 2 finds in another branch of the search tree the length-3 strip 〈1, 3, b〉.

4.4 Complexity analysis of Algorithm 2

Let T (k) be the complexity of the function recurse of Algorithm 2 with parameters k and skip step 2b=false,

and Tskip(k) the complexity of this function with parameters k and skip step 2b=true (the complexity here

being the number of leaves in the search tree). The complexity of several parts of the algorithm depends

on whether the single-super-marker s defined at line 8 is a single-marker: so we define a boolean variable

s single, which is true if s exists and is a single-marker, and false otherwise. We now compute the complexity

of each part of the algorithm.

Part 1: The complexity from line 9 to 12 is T (k − 1).
Part 2 (lines 13 to 29): if one of the conditions from lines 16 and 19 is true, then the complexity here is

T (k − 1). Otherwise, we need to analyze the complexity of parts 2.a (lines 22 to 25) and 2.b (lines 26 to

29).

Part 2.a: We write r for the number of single-super-markers in Y0, and r′ for the minimum size of

gap(x, y) for y ∈ Y0, and y0 the single-super-marker reaching this bound; then the complexity is at most

rT (k − r′). We now bound r and r′: first, by Lemma 2.1a, we already have r′ ≥ r − 1. We now prove

by contradiction that r′ > r − 1. Assume that r′ = r − 1, then the candidate successors of Y − {y0} are

the only markers appearing in gap(x, y0), and they are all single-markers. Thus y0 satisfies the conditions

of Lemma 4.4, and Y0 = {y0}, r = 1 and r′ = 0 (even if y0 is replaced by an unspecified marker in the

meantime). This is absurd, since r′ = |gap(x, y0)| and gap(x, y0) is not empty by Lemma 2.1b. Thus r′ ≥ r
and the complexity of part 2.a is upper bounded by r′T (k − r′) with r′ ≥ 1.

Moreover, if s single is false, then we show that we cannot have r′ = 1. By contradiction again, suppose

r′ = 1. The super-marker s exists (otherwise no marker follows x in G1, so Y = ∅), and it appears in

gap(x, y) for all y ∈ Y −{s}, then we necessarily have y0 = s and |gap(x, y0)| = 1. This would mean that

(x, y0) satisfies the conditions of Lemma 4.2, a contradiction.

Thus the complexity of part 2.a is at most max{r′T (k−r′) | r′ ≥ 1} if s single is true, and max{r′T (k−
r′) | r′ ≥ 2} otherwise.

Part 2.b: First note that all z ∈ Z are super-markers. We denote by t the number of super-markers in Z,

and by t′ the minimum size of gap(x, z) for z ∈ Z0 (we write z0 for the super-marker reaching this bound).

By Lemma 2.1a, gap(x, z0) contains at least t − 1 super-markers, thus t′ ≥ 2(t − 1). Moreover t′ 6= 0
(Lemma 2.1b) and t′ 6= 1 (otherwise (x, z0) would satisfy the conditions of Lemma 4.2); and one cannot

have t′ = 2(t− 1) for t ≥ 2: if t′ = 2(t− 1), then z0 satisfies the conditions of Lemma 4.5, so Z0 = {z0}
and t = 1.

Hence the complexity of part 2.b is at most max{T (k − 2),max{tT (k − 2t+ 1) | t ≥ 2}}. This is the

best bound we obtain when s single is false, but it can be improved when s single is true.

12

Indeed, if s single is true, we consider Z1 the set of z ∈ Z0 such that s ∈ gap(x, z) and Z2 = Z0 − Z1.

We can see that Z2 is not empty: otherwise (x, s) would satisfy the conditions of Lemma 4.3. Several cases

are possible:

• t = 1, then Z0 = Z2 contains only one super-marker z0, and the complexity is Tskip(k − 2).

• t ≥ 2: For each z ∈ Z1, gap(x, z) contains at least (t − 1) super-markers from Z − {z} and the

single-marker s, so the complexity is T (k − 2(t− 1)− 1). For z ∈ Z2, it is Tskip(k − 2(t− 1)− 1).

Overall, the complexity of part 2.b in the case where s single is true is at most:

max{Tskip(k − 2),max{Tskip(k − t
′) + (t− 1)max{T (k − t′), Tskip(k − t

′)} | t ≥ 2, t′ = 2t− 1}}

We can now show by induction that T (k) ≤ ck and Tskip(k) ≤ µck, with c ≈ 2.3593 (c is the real

positive solution of 1 = 2c−1 + 2c−3) and µ = 2/c ≈ 0.8477.

For part 2.a, we have the following upper bounds:

• for s single= false

max{r′T (k − r′) | r′ ≥ 2} ≤ 2ck−2

• for s single= true

max{r′T (k − r′) | r′ ≥ 1} ≤ ck−1

And for part 2.b:

• for s single= false

max{T (k − 2),max{tT (k − 2t+ 1) | t ≥ 2}} ≤ ck−2

• for s single= true

max{T (k − t′), Tskip(k − t
′)} ≤ ck−t′ for all t′

max{Tskip(k − t
′) + (t− 1)ck−t′ | t ≥ 2, t′ = 2t− 1} ≤ 2ck−4 + ck−3

max{Tskip(k − 2), 2ck−4 + ck−3} ≤ 2ck−3

We first look at the case where s single= false:

Tskip(k)c
−k ≤ c−1 +max{c−1, 2c−2} = 2c−1 = µ

T (k)c−k ≤ c−1 +max{c−1, 2c−2 + c−2} = 0.962 . . . < 1

Next for s single= true:

Tskip(k)c
−k ≤ c−1 +max{c−1, c−1} = 2c−1 = µ

T (k)c−k ≤ c−1 +max{c−1, c−1 + 2c−3} = 1

Thus we have T (k) ≤ ck and Tskip(k) ≤ µck. This proves that the size of the search tree is bounded

by O(ck), and each recursive call is done in polynomial time in n and d, so, altogether, the running time of

Algorithm 2 is ckpoly(dn).

As a final remark regarding Algorithm 2, an anonymous reviewer of an earlier version of this paper

commented that perhaps some further properties of the optimal solution, besides those already described in

our lemmas, might be used to improve the time complexity further. This may be true, but we believe that

such improvement would require significantly different ideas.

13

5 FPT algorithm for 1-gap-CMSR-d

In this section we present an improvement of Algorithm 2 for the problem 1-gap-CMSR-d.

Theorem 5.1. Algorithm 3 finds an exact solution for the decision problem associated with 1-gap-CMSR-d,

for any d ≥ 2, in time 2kpoly(nd).

Note that, as for Algorithm 2, Algorithm 3 can be easily adapted to produce a full solution instead of

simply returning “true”, when the instance indeed has a solution of the right size.

Proof. Algorithm 3 is based on the following observation. Let x be the left-most single-marker in map 1,

and assume it appears in an optimal solution, then there are two cases:

(1) x has a candidate predecessor z0 (it is necessarily a super-marker). Then, by Lemma 5.2, we can

delete all markers between x and z0 in all maps, regardless of whether z0 and x are in the same strip in the

optimal solution. At least one such marker must exist.

(2) x has no candidate predecessor, then it must be in the same strip as a successor. With the gap

constraint, x can have at most two successors. Using Lemma 5.3, we can choose one of them (y0, in

Algorithm 3).

This proves the correctness of the algorithm. Moreover, the complexity of the 1-gap-CMSR function

with parameter k is at most 2kpoly(nd): it is polynomial except for at most two recursive calls, each with a

parameter k′ < k. Thus Theorem 5.1 is proved.

Lemma 5.2. (This lemma uses the gap constraint δ = 1.) Let x be a single-marker, and z a super-marker

candidate predecessor of x. Then if an optimal solution selects x, it also deletes all markers in gap(x, z).

Proof. With the gap constraint, z is the only candidate predecessor of x, and it is selected in the optimal

solution (like all super-markers).

Take u ∈ gap(x, z), then u cannot be in the same strip as x (it is neither a candidate successor nor

predecessor of x). Hence if u is selected in the optimal solution, then it is in the same strip as z and

all markers of gap(z, u), including x (see Lemma 2.1a), are deleted: a contradiction. So all markers in

gap(x, z) are deleted in the optimal solution.

Lemma 5.3. (This lemma uses the gap constraint δ = 1.) Let x be a single-marker with two candidate

successors a and b. If x appears in an optimal solution, but not at the end of its strip, then there is an

optimal solution where 〈x, c〉 is part of some strip, with c = choose(a, b) (see Algorithm 3, parameters

G1, . . . , Gd are omitted).

Proof. For simplicity, we assume without loss of generality that x has a positive sign in all maps. Otherwise,

if x has a negative sign in some map Gi, we can replace this map by its reversed opposite.

If δ = 1 and x has two candidate successors a1 and b1, then in each map we have the sequence 〈x, a1, b1〉
or 〈x, b1, a1〉. Moreover, if both a1 and b1 have at least one candidate successor (respectively a2 and b2)

with a2 6= b2, then again only two patterns are possible in all maps: 〈x, a1, b1, a2, b2〉 or 〈x, b1, a1, b2, a2〉.
We proceed with this construction recursively, until we reach a pair (ah, bh) such that ah and bh do not have

different candidate successors.

Assume that x is selected in a strip of an optimal solution, followed by h′ markers in this strip, with

1 ≤ h′ ≤ h. Then these markers are either 〈a1, . . . , ah′〉 or 〈b1, . . . , bh′〉, and we can replace one sequence

by the other without creating overlapping strips, so there are optimal solutions selecting 〈x, c〉 for c = a1
and for c = b1.

If h′ > h, let u be the h + 1st marker following x in the strip (and assume without loss of generality

that the first h selected markers are 〈b1, . . . bh〉). Then u is a candidate successor of bh, and either ah has no

14

Algorithm 3 FPT algorithm for 1-gap-CMSR-d

Function 1-gap-CMSR(G1, . . . , Gd, k): boolean

1: if k < 0 then

2: return false

3: Partition the markers into single-super-markers.

4: if there exists at least one single-marker in G1 then

5: x← the left-most single-marker in G1

6: else

7: return true

8: // 1: Assume x is deleted in the optimal solution

9: Create G′
1, . . . , G

′
d by removing x from G1, . . . , Gd.

10: if 1-gap-CMSR(G′
1, . . . , G

′
d, k − 1) then

11: return true

12: // 2: Assume x is selected in the optimal solution

13: if ∃z0 ≺ x then

14: Create G′
1, . . . , G

′
d by removing all markers in gap(x, z0) from G1, . . . , Gd.

15: return 1-gap-CMSR(G′
1, . . . , G

′
d, k − |gap(x, z0)|)

16: else if ∃a ≻ x then

17: if ∃b ≻ x s.t. b 6= a then

18: y0 ← choose(G′
1, . . . , G

′
d, a, b)

19: else

20: y0 ← a
21: Create G′

1, . . . , G
′
d by removing all markers in gap(x, y0) from G1, . . . , Gd.

22: return 1-gap-CMSR(G′
1, . . . , G

′
d, k − |gap(x, y0)|)

23: else

24: return false

Function choose(G1, . . . , Gd, a, b): single-marker

1: if ∃a′ ≻ a then

2: if ∃b′ ≻ b and b′ 6= a′ then

3: if choose(G1, . . . , Gd, a
′, b′)= a′ then

4: return a
5: else

6: return b
7: else

8: return a
9: else

10: return b

15

Algorithm 4 (d+ 1.5)-approximation for δ-gap-CMSR-d and CMSR-d

1: X ← { triples of markers (z, x, y) | z ≺ y and gap(z, y) = {x} }
2: Partition the markers into single-super-markers.

3: for all (z, x, y) ∈ X do

4: if x, y and z are not deleted and y or z is a single-marker then

5: Delete x.

6: Re-create all super-markers.

7: Delete all remaining single-markers.

8: Return the resulting genomic maps.

candidate successor, or it has only u. In the first case, choose(ah, bh) = bh, and choose(a1, b1) = b1: this

is the choice made in the optimal solution. In the second case, choose(a1, b1) = a1, but in the strip of the

optimal solution, we can replace 〈x, b1, . . . , bh, u〉 by 〈x, a1, . . . , ah, u〉 without creating incompatibilities,

since we have gap(ah, u) = {bh} and gap(bh, u) = {ah}. Thus there is also an optimal solution selecting

a1, . . . , ah, u after x: this proves the lemma.

6 Approximation algorithm for CMSR-d and δ-gap-CMSR-d

In this section, we present a (d+1.5)-approximation algorithm for the two minimization problems CMSR-d
and δ-gap-CMSR-d. Recall that 2d-approximation algorithms [2, 6, 1] were known for the two maximization

problems MSR-d and δ-gap-MSR-d.

Theorem 6.1. Algorithm 4 finds a (d+1.5)-approximation for CMSR-d and δ-gap-CMSR-d for any d ≥ 2
and δ ≥ 1.

Let k be the number of deleted markers in an optimal solution. Then the number of single-markers in

the input maps is at most (2d + 1)k because each single-marker is either deleted or adjacent to a deleted

marker. This immediately yields a (2d+1)-approximation algorithm: simply delete all single-markers. The

following is a tight example for this algorithm (here the optimal solution deletes one single-marker x instead

of all 2d+ 1 single-markers):

G1 = zdyd · · · z3y3 z2y2 z1 x y1
G2 = z1y1 z2 x y2 z3y3 · · · zdyd
G3 = z1y1 z2y2 z3 x y3 · · · zdyd
· · · · · · · · · · · · · · · · · ·
Gd = z1y1 z2y2 z3y3 · · · zd x yd

As we can see from the above example, after one single-marker is deleted, many other single-markers

may be merged into strips. Algorithm 4 first identifies (line 1) all triples of markers (z, x, y) such that z and

y can be merged into a strip 〈z, y〉 after x is deleted. Such markers x are considered to be “cost-efficient”

when z or/and y is a single-marker, since they allow, if deleted, to merge at least one single-marker into a

super-marker. Thus the algorithm successively deletes (lines 2–6) those cost-efficient single-markers (each

time reducing the total number of single-markers by at least 2), and finally removes (line 7) the remaining

single-markers.

The approximation ratio analysis is non-trivial. We first give a number of definitions and easy remarks

(inequalities (1) and (2)). We then bound on one hand the number of cost-efficient single-markers which

are deleted by the algorithm but not by an optimal solution (|D − O| in (3)), and on the other hand the

number of single-markers which have been cost-efficient for the optimal solution but are not deleted as such

16

by the algorithm (|R1| in (4)). Finally, combining inequalities (1) to (4), we obtain a lower bound on the

approximation ratio.

Lemma 6.2. For each triple (z, x, y) in the set X in Algorithm 4, at least one of the three markers x, y, z
must be deleted in any feasible solution.

Proof. We prove the lemma by contradiction. Suppose that all three markers x, y, z are selected in a solution.

Assume without loss of generality that the sequence 〈z, x, y〉 appears in some map. Then x must be in the

same strip as z or y. Assume without loss of generality that 〈z, x〉 is part of some strip. Then z ≺ x. Recall

that z ≺ y. Thus x and y are both candidate successors of z. By Lemma 2.1a, we have y ∈ gap(z, x), thus

y must be deleted: a contradiction.

We next prove the approximation ratio of Algorithm 4. LetO be the set of deleted markers in an optimal

solution; |O| = k. For each marker x /∈ O, we define two sets Γsucc(x) and Γpred(x) as follows. If x is

followed by a marker y in a strip of O, Γsucc(x) = gap(x, y); otherwise x is the last marker of its strip,

Γsucc(x) = ∅. If x is preceded by a marker z in a strip of O, Γpred(x) = gap(z, x); otherwise x is the first

marker of its strip, Γpred(x) = ∅. Then, for each marker x /∈ O, define γ(x) = |Γsucc(x)|+ |Γpred(x)|, and

for each marker x ∈ O, define γ(x) = 0.

Refer to Algorithm 4. LetD be the set of markers deleted in line 5, let S be the set of single-markers that

are merged into super-markers in line 6, and letR be the set of markers deleted in line 7. LetR1 = {r ∈ R |
γ(r) = 1} andR2 = {r ∈ R | γ(r) ≥ 2}. Note that if x is a single-marker at the beginning of the algorithm,

then γ(x) = 0 if and only if x ∈ O. Thus we have a partition of R given by R = (R ∩O) ∪R1 ∪R2. Also

note that each marker x ∈ O is counted by γ at most twice in each map: at most once in some Γpred(y), and

at most once in some Γsucc(z). Thus we have the following inequality:

∑

x single-marker

γ(x) ≤ 2dk. (1)

Each marker x ∈ D has a corresponding triple (z, x, y) ∈ X , where z or y is a single-marker. After x
is deleted in line 5, z and y are merged into the same super-marker in line 6. Thus we have the following

inequality:

|D| ≤ |S|. (2)

For each marker x ∈ D − O, let φ(x) be an arbitrary marker in the non-empty set {z, x, y} ∩ O; see

Lemma 6.2. Obviously φ(x) 6= x, thus φ(x) ∈ O −D. We show that at most two markers in D − O can

have the same image by φ. Suppose that φ(x1) = φ(x2) = φ for two different markers x1, x2 ∈ D − O,

where x1 is deleted before x2 in Algorithm 4. Then the marker φ is merged into a super-marker after x1
is deleted, and again merged into a larger super-marker after x2 is deleted. Since a marker has at most two

neighbors in a super-marker, φ is necessarily a single-marker before x1 is deleted, so it belongs to S, indeed

S ∩O. Moreover, after x2 is deleted and φ is merged into a larger super-marker, φ cannot be adjacent to any

other single-marker, say x3. Therefore

|D −O| ≤ |O −D|+ |S ∩O|. (3)

Let u be a marker such that γ(u) = 1. Then by definition of γ, u belongs to some strip in the optimal

solution, and it has a neighbor v = ψ(u) in the same strip such that gap(u, v) contains only one marker, say

x. Note that u, v /∈ O and x ∈ O. We claim that if u is a single-marker at the beginning of the algorithm,

then either u ∈ D ∪ S or v ∈ D. This claim is clearly true if one of u or v is deleted by the algorithm in

line 5. Otherwise, with (v, x, u) ∈ X or (u, x, v) ∈ X , either x is not deleted because u is merged into a

super-marker, or x is deleted: in both cases u ∈ S. This proves the claim. So for each u ∈ R1, we have

17

v ∈ D, indeed v ∈ D−O. Note that there can be at most two markers u1 and u2 with the same image v by

ψ: the two neighbors of v in some strip in the optimal solution. Thus we have |R1| ≤ 2|D −O|. Moreover,

if there are two markers u1 and u2 with the same image v, then γ(v) ≥ 2. Therefore

|R1| ≤
∑

v∈D−O

γ(v). (4)

Combining inequalities (1), (2), (3), and (4), the calculation in the following shows that the number of

deleted markers, |D|+ |R|, is at most (d+1.5)k. Thus Algorithm 4 indeed finds a (d+1.5)-approximation

for δ-gap-CMSR-d and CMSR-d.

2dk ≥
∑

x single-marker

γ(x) by (1)

=
∑

x∈D−O

γ(x) +
∑

x∈S−O

γ(x) +
∑

x∈R1

γ(x) +
∑

x∈R2

γ(x)

≥
∑

x∈D−O

γ(x) + |S −O|+ |R1|+ 2|R2|

≥ |S −O|+ 2|R1|+ 2|R2| by (4)

|D|+ |R| = |D|+ |R1|+ |R2|+ |R ∩O|

≤ |D|+ dk − 1

2
|S −O|+ |R ∩O|

= |D|+ dk − 1

2
(|S| − |S ∩O|) + |R ∩O|

≤ |D|+ dk − 1

2
|D|+ 1

2
|S ∩O|+ |R ∩O| by (2)

= 1

2
(|D|+ |S ∩O|) + |R ∩O|+ dk

= 1

2
(|D ∩O|+ |D −O|+ |S ∩O|) + |R ∩O|+ dk

≤ 1

2
(|D ∩O|+ (|O −D|+ |S ∩O|) + |S ∩O|) + |R ∩O|+ dk by (3)

= 1

2
|O|+ (|S ∩O|+ |R ∩O|) + dk

≤ 1

2
k + k + dk

=
(

d+ 3

2

)

k

We now give an almost-tight example for Algorithm 4 showing that its approximation ratio cannot be

better than d + 1 (here the optimal solution deletes the two single-markers u and v instead of all 2d + 2
single-markers):

G1 = zdyd · · · z3y3 z2y2 z1 vu y1
G2 = z1y1 z2 uv y2 z3y3 · · · zdyd
G3 = z1y1 z2y2 z3 uv y3 · · · zdyd
· · · · · · · · · · · · · · · · · ·
Gd = z1y1 z2y2 z3y3 · · · zd uv yd

We also have an example showing that no algorithm deleting only single-markers can achieve an ap-

proximation ratio better than d (here the optimal solution deletes one super-marker 〈u, v〉 instead of 2d

18

single-markers zi and yi, 1 ≤ i ≤ d):

G1 = zdyd · · · z3y3 z2y2 z1−v−u y1
G2 = z1y1 z2 uv y2 z3y3 · · · zdyd
G3 = z1y1 z2y2 z3 uv y3 · · · zdyd
· · · · · · · · · · · · · · · · · ·
Gd = z1y1 z2y2 z3y3 · · · zd uv yd

Compared to the approximation upper bound of 2d [2, 1, 6] for the two maximization problems MSR-d
and δ-gap-MSR-d, which almost matches (at least asymptotically) the current best lower bound of Ω(d/ log d) [6],

our upper bound of d+1.5 for the two minimization problems CMSR-d and δ-gap-CMSR-d is still far away

from the constant lower bound in [6]. It is an intriguing question whether CMSR-d and δ-gap-CMSR-d
admit approximation algorithms with constant ratios independent of d.

7 Approximation algorithm for 1-gap-CMSR-2

In this section, we give a method to transform certain approximation algorithms for 1-gap-MSR-d into

approximation algorithms for 1-gap-CMSR-d, then apply this method to obtain a 2.778-approximation al-

gorithm for 1-gap-CMSR-2.

Proposition 7.1. If an algorithmA for 1-gap-MSR-d selects all super-markers and selects at least 1/r times

the maximum number of single-markers selected in an optimal solution, then A finds a (1 + (1− 1/r)2d)-
approximation for 1-gap-CMSR-d.

Proof. We denote by s the total number of single-markers in the input maps G1, . . . , Gd, by s∗ the number

of single-markers selected in an optimal solution, and by sA the number of single-markers selected by the

algorithm A. Then sA ≥ s∗/r. Since A does not delete any super-marker, the number kA of markers

deleted by A is equal to s− sA. For 1-gap-CMSR-d, no optimal solution deletes a super-marker (otherwise

the super-marker can be added back without breaking any strip since all strips have gap at most 1), so the

number k∗ of markers deleted by an optimal solution is equal to s− s∗. Since in any feasible solution, every

selected single-marker must be adjacent to a deleted single-marker in some map, it follows that s∗ ≤ 2dk∗.

The approximation ratio of A for 1-gap-CMSR-d is thus at most

kA
k∗

=
s− sA
k∗

≤
(s∗ + k∗)− (s∗/r)

k∗
= 1 +

(1− 1/r)s∗

k∗
≤ 1 + (1− 1/r)2d.

Theorem 7.2. There exists a 2.778-approximation for 1-gap-CMSR-2.

The 1.8-approximation algorithm for 1-gap-MSR-2 in [1] can be easily modified to select all super-

markers while keeping the same approximation ratio. With r = 1.8 = 9/5 and d = 2, we have 1 + (1 −
1/r)2d = 25/9 < 2.778. By the above proposition, this modified algorithm for 1-gap-MSR-2 finds a

2.778-approximation for 1-gap-CMSR-2.

8 Approximation algorithm for δ-gap-MSR-d

In this section, we present an approximation algorithm for δ-gap-MSR-d. The approximation ratio being

O(dδ), instead of O(d), it is practical only for small values of δ.

Theorem 8.1. Algorithm 5 finds an R(d, δ)-approximation for δ-gap-MSR-d, where

R(d, δ) =
3

4

(

d

(

1 +

⌊

δ

2

⌋)

+ (δ mod 2)

)

+ ǫ

19

Algorithm 5 R(d, δ)-approximation algorithm for δ-gap-MSR-d

1: Ω2 ← the set of all candidate adjacencies of length 2 with gap ≤ δ
2: E ← the subset of Ω2 × Ω2 of overlapping adjacencies

3: G← the (p+ 1)-claw-free graph (Ω2, E), with p = d(1 +
⌊

δ
2

⌋

) + (δ mod 2) by Lemma 8.2

4: Return a (p/2 + ǫ)-approximation of a MAXIMUM INDEPENDENT SET of G.

Note that the values of R(d, δ) for small δ are the following:

R(d, δ) =















0.75d+ 0.75 + ǫ for δ = 1
1.5d+ ǫ for δ = 2
1.5d+ 0.75 + ǫ for δ = 3
2.25d+ ǫ for δ = 4.

Thus Algorithm 5 improves the 2d-approximation from [2, 6] for δ ≤ 3, but does not improve the 1.8-

approximation from [1] for d = 2 and δ = 1.

Algorithm 5 uses the notions of candidate adjacencies which are pairs of markers 〈u, v〉 such that v
is a candidate successor of u, and overlapping adjacencies which are pairs of candidate adjacencies 〈u, v〉
and 〈u′, v′〉 such that the sets {u, v} ∪ Si(u, v) and {u′, v′} ∪ Si(u′, v′) intersect for some i. Finally, the

algorithm relies on the study of independent sets on graphs with bounded claw-size [3]; a graph has a p-claw

if a vertex (the center of the claw) has p independent neighbors.

Lemma 8.2. The size of any claw in the graph G created by the algorithm is upper-bounded by p =
d(1 +

⌊

δ
2

⌋

) + (δ mod 2).

Proof. Suppose there is a q-claw in G = (Ω2, E). We denote by c = 〈u, v〉 its center, and by N the set of q
neighbors of c in this claw: the candidate adjacency c overlaps with each n ∈ N , but adjacencies in N are

pairwise non-overlapping. We partition N into N = N∩ ∪ N1 ∪ . . . ∪ Nd, as follows: if n ∈ N shares a

marker with c, then n ∈ N∩; otherwise, choose a mapGi for which {u, v}∪Si(u, v) and {u′, v′}∪Si(u′, v′)
intersect, and add n to Ni.

First note that 0 ≤ |N∩| ≤ 2 : a candidate adjacency in N∩ either contains u or v, and non-overlapping

adjacencies cannot both contain u or v. Now for 1 ≤ i ≤ d, we give an upper bound on |Ni|, de-

pending on |N∩|. We can assume without loss of generality that u and v appear in positive form in Gi,

and that Ni consists of h candidate adjacencies 〈x1, y1〉, . . . , 〈xh, yh〉 appearing in this order in Gi (i.e.,

〈x1, y1, x2, y2, . . . , xh, yh〉 is a subsequence of Gi).

If |N∩| = 2, then x1 must appear after u and yh must appear before v in G1: otherwise 〈x1, y1〉
(respectively 〈xh, yh〉) would overlap with some candidate adjacency of N∩. Since there can be at most δ
markers between u and v, we have 2h ≤ δ.

If |N∩| = 1, suppose the candidate adjacency inN∩ contains u: then x1 must appear after u inGi. Also,

xh must appear before v, otherwise 〈xh, yh〉 would not overlap with 〈u, v〉. Hence we have 2h− 1 ≤ δ.

Finally, if |N∩| = 0, then y1 must appear after u and xh before v, hence 2h− 2 ≤ δ.

To summarize, we have the following bounds on h = |Ni|:

• If |N∩| = 0, then |Ni| ≤ 1 +
⌊

δ
2

⌋

• If |N∩| = 1, and δ is odd, then |Ni| ≤ 1 +
⌊

δ
2

⌋

• If |N∩| = 1, and δ is even, then |Ni| ≤
⌊

δ
2

⌋

• If |N∩| = 2, then |Ni| ≤
⌊

δ
2

⌋

20

Summing over all Ni and N∩, we have

q = |N | ≤ max







0 + d(1 + ⌊ δ
2
⌋)

1 + d((δ mod 2) + ⌊ δ
2
⌋)

2 + d(⌊ δ
2
⌋)

= max
{

d, 1 + d(δ mod 2), 2
}

+ d⌊ δ
2
⌋

= d+ (δ mod 2) + d⌊ δ
2
⌋

= d(1 + ⌊ δ
2
⌋) + (δ mod 2) = p,

as desired.

We now bound the approximation ratio of Algorithm 5. If O is an optimal solution of size ℓ, there is a

solution of size 2

3
ℓ in Ω2: all strips in O can be decomposed into strips of length 2 or 3 with gap at most δ.

If we remove the last element of each length-3 strip of O, we obtain a feasible solution O′ of size at least
2

3
ℓ, and whose strips correspond to candidate adjacencies appearing in Ω2. Moreover, these strips form an

independent set of G = (Ω2, E). Using the (p/2+ ǫ)-approximation of MAXIMUM INDEPENDENT SET on

(p+ 1)-claw-free-graphs given in [3], we obtain an independent set of G corresponding to a set of strips of

total length 1

p/2+ǫ
2

3
ℓ. This leads to an approximation ratio of 3

4
p+ ǫ, where p = d(1 +

⌊

δ
2

⌋

) + (δ mod 2).

References

[1] L. Bulteau, G. Fertin, and I. Rusu. Maximal strip recovery problem with gaps: hardness and approxi-

mation algorithms. In Proceedings of the 20th International Symposium on Algorithms and Computa-

tion (ISAAC’09), LNCS 5878, pages 710–719, 2009.

[2] Z. Chen, B. Fu, M. Jiang, and B. Zhu. On recovering syntenic blocks from comparative maps. Journal

of Combinatorial Optimization, 18:307–318, 2009.

[3] M. M. Halldórsson. Approximating discrete collections via local improvements. In Proceedings of the

6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’95), pages 160–169, 1995.

[4] H. Jiang, Z. Li, G. Lin, L. Wang, and B. Zhu. Exact and approximation algorithms for the complemen-

tary maximal strip recovery problem. Journal of Combinatorial Optimization, doi:10.1007/s10878-

010-9366-y.

[5] M. Jiang. On the parameterized complexity of some optimization problems related to multiple-interval

graphs. Theoretical Computer Science, 411:4253–4262, 2010.

[6] M. Jiang. Inapproximability of maximal strip recovery. Theoretical Computer Science, 412:3759–

3774, 2011.

[7] G. Lin, R. Goebel, Z. Li, and L. Wang. An improved approximation algorithm for the complementary

maximal strip recovery problem. Journal of Computer and System Sciences, 78:720–730, 2012.

[8] L. Wang and B. Zhu. On the tractability of maximal strip recovery. Journal of Computational Biology,

17:907–914, 2010. Erratum in Journal of Computational Biology, 18:129, 2011.

[9] C. Zheng, Q. Zhu, and D. Sankoff. Removing noise and ambiguities from comparative maps in rear-

rangement analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4:515–

522, 2007.

21

[10] B. Zhu. Efficient exact and approximate algorithms for the complement of maximal strip recovery. In

Proceedings of the 6th International Conference on Algorithmic Aspects in Information and Manage-

ment (AAIM’10), LNCS 6124, pages 325-333, 2010.

22

