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Abstract. The error-related potential is an event-related potential trig-

gered by errors. Recently it has been the subject of many attentions

notably for its possible use in BCI systems. Since it is linked to error

occurrence, it could be used in the design of control loop to build more

robust systems. In this paper we studied the characteristics of the error

potential and present how it could be used for BCI systems improvement.

1 Introduction

The error-related potential (ErrP) is an event-related potential (ERP) which is
generated when a subject commits or observes the commitment of an error. It
was first reported in 1991 [1]. Lately several authors have become interested
in its integration in a control loop for BCI systems. The integration of the
ErrP in BCIs involves two main operations: its single trial detection and the
use of this information to modify the system on-line. As any ERP the ErrP can
easily be seen by summing up several trials (its signal to noise ratio is very low).
The detection of the ErrP is a crucial point for its integration in BCIs, thus
learning its characteristics to design optimal filtering method is a key point for
its integration in BCIs. The paper is divided into three parts. First we present
the ErrP and what makes it interesting for BCIs. Then we present an experiment
we designed to study the characteristics of the ErrP and the results we obtained.
Eventually we make propositions on how this ErrP could be integrated in BCIs.

2 The error-related potential

There exists different types of ErrPs characterized by the way the error is re-
ported and depending on the agent committing the error. The most known ErrP
is the response ErrP (ErrPr) [1]. It appears when subjects perform an incorrect
action instantly detected (mostly studied in reaction time tasks). The second
major type is the feedback ErrP (ErrPf) [2]. It appears when the subject gains
access to the outcome of an action through an external feedback (mostly studied
in gambling tasks). More recently, in [3] the authors reported an ErrP when a
subject interacts with an interface that does not respond in the expected way.
It is called the interaction ErrP (ErrPi) (mostly studied in BCI-like context).
All these potentials share some common characteristics. They are mainly char-
acterized by a negative deflection with a fronto-central localization (electrodes
FCz and Cz) (see figure 1) which latency depends on the type of ErrP observed.
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Fig. 1: Temporal evolution of the ErrPf at electrode Cz
Grand averaged error-potential. Data were averaged over 10 subjects. 72 trials were used for

each subject with a mean error rate of 18%. Data were bandpass filtered between
1-12Hz.Blue line corresponds to the error condition, red dashed line to the correct condition.

3 The ErrP and the BCIs

ErrPs are much studied today in the framework of BCI. Indeed they provide
an opportunity to check if the machine has selected the command sought by
the user. Such an information could be used in a control loop for current BCI
protocols. Some authors, as in [4] and [5], already studied the on line detection
of this potential and its possible integration on BCI devices. In the case of a
BCI experiment the ErrPi would be the potential to study. In a BCI context
the user aims at controlling a device by means of cerebral orders. EEG signals
are classified and turned into commands. A misclassification results into an
incorrect action of the device. Thus the subject observes an error of the interface
(generating the ErrPi). In some cases, the error could come directly from the
subject which would use the wrong cerebral order or change his mind. Then the
corresponding error would be the ErrPf. Thus two different types of ErrPs could
co-exist and their disentanglement might be difficult. However when looking
at the temporal shape of both potentials it seems that they share the same
characteristics (some authors even make no distinction between both). Thus
one can hope that both could be detected by the same classifier.

4 Presentation of an error-potential experiment

We studied the ErrPf in the case of a memory game, with no monetary gain
or loss. The experiment involved two sessions, each consisted of six blocks of
six trials, for a total of 72 trials. Stimuli were presented on a computer screen
in front of the subjects. Nine square boxes were arranged in circle. Each trial
consisted in a random sequence of two to nine digits appearing sequentially in
random positions. Subjects had to memorize positions of all digits. At the end of
the sequence the target digit was displayed and subjects had to click on the box
where it had appeared. If the answer was correct, the box background turned
into green, otherwise it turned into red. Subjects were then asked if the result
matched their expectation, giving four classes of outcomes (expected corrects,



unexpected corrects, expected errors, unexpected errors). A random rest period
was allowed before starting the next trial. The number of digits to memorize was
fixed within blocks (between two and nine) and adaptively increased or decreased
of one digit at each block, according to subject performance. The temporal order
of each trial is illustrated in Figure 2. 22 healthy volunteer subjects participated.
Due to the presence of artifacts, four subjects were excluded from analysis. The
age of participants ranged from 20 to 30 with a mean (standard deviation) of
24(2.5). The mean error rate (standard deviation) was equal to 18(4.6)% of the
trials.

Fig. 2: Temporal order

5 Characterization of the ErrP

Analysis was conducted to determine the differenciation between errors and cor-
rects (expectancy was not taken into account in this analysis). Two types of
analysis were conducted: a temporal and a time frequency analysis. Temporal
analysis was applied to the EEG signal filtered between 2-20Hz. Time-Frequency
analysis was conducted using fieldtrip software ([6]). Frequency analysis was per-
formed using ERD/ERS (event-related desynchronization / event-related syn-
chronization) measures ([7]), in order to mitigate subject and inter-trials vari-
ability. This measure is defined as follows:

ERD/ERS(s, f, t) =
TFR(s, f, t)− TFRb(s, f, tj)

TFRb(s, f, tj)

where TFR(s,f,t) is a time-frequency representation averaged over trials of our
signal at sensor s, frequency bin f and time t and TFRb is the TFR of the base-
line (baseline was chosen to be [-1s : 0s] pre-stimulus) averaged over time. Here
TFRs were calculated using a hanning sliding window over the 2-32Hz band
using a 1Hz step, on times [-0,5s 1,2s] using a time step of 0,05s. Frequency
dependent time window were used so as to reduce the spectral leakage. TFRs
were calculated for each subject and each trial and then averaged.

Statistical differences between error and correct trials were assessed using
a within subjects non-parametric cluster based randomization test. 1000 per-
mutations were performed. A cluster based multiple comparison correction was
applied: at each permutation only the t values which p values are higher than a
given threshold (set here to 0.05) are kept. Clusters are then formed by means of
time, spatial and frequency adjacency. For each cluster the statistic is defined as
the sum of the t value contained in this cluster. The maximum cluster statistics
is kept as the test statistic for this permutation. The global significance thresh-
old was set to p value ≤ 0.05. This method allows not to take into account
outliers and to assess for global effect.



Statistical tests on the temporal signal allowed the identification of three
components: a significant positivity for errors at time [300ms 400ms] at elec-
trode Cz (p ≤ 0.01), a significant negativity for errors at time [450ms 520ms] at
clustered electrodes Fz,FCz,Cz (p ≤ 0.01) and a significant positivity for errors
at time [600ms 700ms] at clustered electrodes Fz,FCz (p = 0.025) (see figure
3). For the frequential domain, TFRs showed a post-stimulus synchronization
in the theta band in both conditions. Statistical tests showed a significantly
higher synchronization for errors in the band 5-8Hz for the time [350ms 600ms]
over the electrode Fz and FCz (p = 0.015)(see figure 4).
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Fig. 3: Temporal evolution of the ErrPf averaged over electrodes Fz,FCz,Cz and

the significant time windows.
Grand averaged on 18 subjects with 72 trials (mean error rate of 18%). Data were bandpass
filtered between 2-20Hz. Blue line corresponds to the ERP on error condition, red dashed

line to correct condition, yellow bars to the statistically significant time windows.
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Fig. 4: Theta power increase
(a)ERD/ERS for errors minus ERD/ERS for corrects averaged over electrodes Fz and FCz.
(b) Topographic maps of t-values averaged over theta band. Thick points correspond to

statistically significant electrodes



6 Perspectives of integration

The integration of the ErrP in BCIs starts by its single trial detection. Several
authors have already studied this point leading to varying results going from
64% (60% for errors and 64% for corrects) [8] of good detection up to 88% [9].
The characterization of the ErrP allows us to better know its components. This
is of great use for the design of specific spatial and frequential filters which could
greatly improve the detection rate. Indeed most authors only used the temporal
evolution of the ErrP, our results show that some frequential components might
also exist and could be used to improve results.

Once an ErrP is detected the question that arises is how it can be used to
improve a BCI. Different approaches have already been proposed. To assess the
performance of a BCI the commonly used measure is the information transfer
rate (in bits per trial (BpT)) which takes into account both the accuracy and
the speed of the system. The first method to be proposed was the cancellation
of the erroneous action. In [4] the author obtained an average gain on the BpT
of 72% for a 2-class paradigm and 28% for a 3-class paradigm. In [10] the author
observed that this improvement depended on the initial performance of the BCI.
Another possible integration has been proposed in the case of a P300 speller in
[11]. The author proposed to select the second best letter when an error was
detected, the total number of mistypes was reduced for every subject. Another
possible integration could be to improve the classifier. For example in the case
of a SVM (support vector machine) classifier [12] the regularization parameter
which determines the trade off between the regularized term and the empirical
error could be adapted in the case of an error detection. For future works we
plan to select different methods and to test them first in a theoretical framework
for different BCI initial BpT and different ErrP classification rates, in order to
determine what strategy is the best and in which conditions. In a second time
we will test the selected strategies on a real BCI experiment in order to see if
the theoretical results match the real one and how the subject responds to this
error correction.

7 Conclusions

In this paper we have discussed the integration of the ErrP in BCI. First we
have shown temporal and frequential results on the characterization of the ErrP
in the aim of improving its single trial detection detection which is the first
step toward its integration in BCI systems. Then we have discussed how this
late could be integrated in a BCI system by presenting already existing results
and proposing future works to test several methods and compare them. Future
works will focus on studying the impact of error (and correct) expectation on the
different characteristics of the ErrP and its possible impact on BCI integration.
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Artificielle, Chambéry, 16 au 20 mai 2011, page 233, 2011.

[10] G. Visconti, B. Dal Seno, M. Matteucci, and L. Mainardi. Automatic recognition of error
potentials in a P300-based brain-computer interface. pages 238–243, 2008.

[11] A. Combaz, N. Chumerin, N.V. Manyakov, A. Robben, J.A.K. Suykens, and M.M.
Van Hulle. Error-related potential recorded by eeg in the context of a p300 mind speller
brain-computer interface. In Machine Learning for Signal Processing (MLSP), 2010
IEEE International Workshop on, pages 65–70. IEEE, 2010.

[12] N. Jrad, M. Congedo, R. Phlypo, S. Rousseau, R. Flamary, F. Yger, and A. Rakotoma-
monjy. sw-svm: sensor weighting support vector machines for eeg-based brain–computer
interfaces. Journal of Neural Engineering, 8:056004, 2011.


