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Frequency-dependent streaming potentials: a review

The interpretation of seismoelectric observations involves the dynamic electrokinetic coupling, which is related to the streaming potential coefficient. We describe the different models of the frequency-dependent streaming potential, mainly the Packard's and the Pride's model. We compare the transition frequency separating low-frequency viscous flow and high-frequency inertial flow, for dynamic permeability and dynamic streaming potential. We show that the transition frequency, on a various collection of samples for which both formation factor and permeability are measured, is predicted to depend on the permeability as inversely proportional to the permeability. We review the experimental setups built to be able to perform dynamic measurements. And we present some measurements and calculations of the dynamic streaming potential.

INTRODUCTION

Electrokinetics arise from the interaction between the rock matrix and the pore water. Therefore electrokinetic phenomena are often observed in aquifers, volcanoes, and hydrocarbon or hydrothermal reservoirs. Observations show that seismoelectromagnetic signals associated to earthquakes can be induced by electromagnetic induction [START_REF] Honkura | A model for observed circular polarized electric fields coincident with the passage of large seismic waves[END_REF][START_REF] Matsushima | Seismoelectromagnetic effect associated with the izmit earthquake and its aftershocks[END_REF] or by electrokinetic effect [START_REF] Takeuchi | Analysis of earth potential difference signals by using seismic wave signals[END_REF][START_REF] Fenoglio | Magnetic and electric fields associated with changes in high pore pressure in fault zones; application to the loma prieta ulf emissions[END_REF].

The electrokinetic phenomena are due to pore pressure gradients leading to fluid flow in the porous media or fractures, and inducing electrical fields. These electrokinetic effects are associated to the electrical double layer which was originally described by Stern. The electrokinetic signals can be induced by global displacements of the reservoir fluids (streaming potential) or by the propagation of seismic waves (seismoelectromagnetic effect). As soon as these pressure gradients have a transient signature, the dynamic part of the electrokinetic coupling has to be taken into account by introducing the dependence on fluid transport properties.

It is generally admitted that two kinds of seismoelectromagnetic effects can be observed. The dominant contribution, commonly called "coseismic", is generated close to the receivers during the passage of seismic waves. The second kind, so called "interfacial conversion" [START_REF] Dupuis | Anatomy of a seismoelectric conversion: Measurements and conceptual modeling in boreholes penetrating a sandy aquifer[END_REF], is very similar to dipole radiation and is generated at physico-chemical interfaces due to strong electrokinetic coupling discontinuities. This interface conversion is often perceived to have the potential to detect fine fluids transitions with higher resolution than seismic investigations, but in practice, signals are often masked by electromagnetic disturbances, especially when generated at great depth.

Nevertheless recent field studies have focused on the seismo-electric conversions linked to electrokinetics in order to investigate oil and gas reservoirs [START_REF] Thompson | Field tests of electroseismic hydrocarbon detection[END_REF] or hydraulic reservoirs [START_REF] Dupuis | Vertical seismoelectric profiling in a borehole penetrating glaciofluvial sediments[END_REF][START_REF] Dupuis | Seismoelectric imaging of the vadose zone of a sand aquifer[END_REF][START_REF] Dupuis | Anatomy of a seismoelectric conversion: Measurements and conceptual modeling in boreholes penetrating a sandy aquifer[END_REF][START_REF] Strahser | Polarisation and slowness of seismoelectric signals: a case study[END_REF]Haines et al. 2007a,b;[START_REF] Strahser | Dependence of seismoelectric amplitudes on water-content[END_REF][START_REF] Garambois | Seismoelectric wave conversions in porous media: Field measurements and transfer function analysis[END_REF]. It has been shown using these investigations that not only the depth of the reservoir can be deduced, but also the geometry of the reservoir can be imaged using the amplitudes Frequency-dependent streaming potentials: a review 3 of the electro-seismic signals [START_REF] Thompson | Electromagnetic-to-seismic conversion: A new direct hydrocarbon indicator[END_REF]). Moreover fractured zones can be detected and permeability can be measured using seismo-electrics in borehole [START_REF] Singer | Electrokinetic logging has the potential to measure the permeability, Society of Petrophysicists and Well Log Analysts[END_REF][START_REF] Pain | A mixed finite-element method for solving the poroelastic Biot equations with electrokinetic coupling[END_REF][START_REF] Mikhailov | Using borehole electroseismic measurements to detect and characterize fractured (permeable) zones[END_REF][START_REF] Jouniaux | Electrokinetic techniques for the determination of hydraulic conductivity[END_REF]). This method is especially appealing to hydrogeophysics for the detection of subsurface interfaces induced by contrasts in permeability, in porosity, or in electrical properties (salinity and water content) [START_REF] Schakel | Seismoelectric interface response: Experimental results and forward model[END_REF][START_REF] Schakel | Seismoelectric reflection and transmission at a fluid/porousmedium interface[END_REF][START_REF] Garambois | Full waveform numerical simulations of seismoelectromagnetic wave conversions in fluid-saturated stratified porous media[END_REF].

The analytical interpretation of the seismoelectromagnetic phenomenon has been described by [START_REF] Pride | Governing equations for the coupled electromagnetics and acoustics of porous media[END_REF], by connecting the theory of [START_REF] Biot | Theory of propagation of elastic waves in a fluid-saturated porous solid: I. low frequency range[END_REF] for the seismic wave propagation in a two phases medium with Maxwell's equations, using dynamic electrokinetic couplings. The seismoelectromagnetic conversions have been modeled in homogeneous or layered saturated media [START_REF] Haartsen | Electroseismic waves from point sources in layered media[END_REF][START_REF] Haartsen | Dynamic streaming currents from seismic point sources in homogeneous poroelastic media[END_REF][START_REF] Garambois | Seismoelectric wave conversions in porous media: Field measurements and transfer function analysis[END_REF], 2002;[START_REF] Gao | Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium[END_REF] with applications to reservoir geophysics [START_REF] Saunders | A new numerical model of electrokinetic potential response during hydrocarbon recovery[END_REF].

Theoretical developments showed that the electrical field induced by the P -waves propagation is related to the acceleration [START_REF] Garambois | Seismoelectric wave conversions in porous media: Field measurements and transfer function analysis[END_REF]. The electrokinetic coupling is created at the interface between grains and water, when there is a relative motion of electrolyte ions with respect to the mineral surface. Thus, seismic wave propagation in fluidfilled porous media generates conversions from seismic to electromagnetic energy which can be observed at the macroscopic scale, due to this electrokinetic coupling at the pore scale.

The seismoelectric coupling is directly dependent on the fluid conductivity, the fluid density and the electric double-layer (the electrical interface between the grains and the water) (see the tutorial by (Jouniaux & Ishido this issue), in this special issue "Electrokinetics in Earth Sciences' for more details). For more details on the surface complexation reactions see [START_REF] Davis | Surface ionization and complexation at the oxide/water interface[END_REF] or [START_REF] Guichet | Modification of streaming potential by precipitation of calcite in a sand-water system: laboratory measurements in the pH range from 4 to 12[END_REF]. It can be accurately quantified in the broad band by a dynamic coupling [START_REF] Pride | Governing equations for the coupled electromagnetics and acoustics of porous media[END_REF] which can be linked in the low frequency limit to the steady-state streaming potential coefficient largely studied in porous media [START_REF] Ishido | Experimental and theoretical basis of electrokinetic phenomena in rock water systems and its applications to geophysics[END_REF]Pozzi & Jouniaux 1994;Jouniaux & Pozzi 1995a,b, 1997;[START_REF] Jouniaux | Changes in the permeability, streaming potential and resistivity of a claystone from the Nankai prism under stress[END_REF][START_REF] Jouniaux | Detection of fluid flow variations at the Nankai trough by electric and magnetic measurements in boreholes or at the seafloor[END_REF][START_REF] Jouniaux | Streaming potential in volcanic rocks from Mount Peleé[END_REF][START_REF] Guichet | Streaming potential of a sand column in saturation conditions[END_REF][START_REF] Guichet | Modification of streaming potential by precipitation of calcite in a sand-water system: laboratory measurements in the pH range from 4 to 12[END_REF][START_REF] Jaafar | Measurement of streaming potential coupling coefficient in sandstones saturated with high salinity nacl brine[END_REF][START_REF] Jouniaux | Review of self-potential methods in hydrogeophysics[END_REF][START_REF] Vinogradov | Measurement of streaming potential coupling coefficient in sandstones saturated with natural and artificial brines at high salinity[END_REF][START_REF] Jackson | Multiphase electrokinetic coupling: Insights into the impact of fluid and charge distribution at the pore scale from a bundle of capillary tubes model[END_REF][START_REF] Allègre | Streaming Potential dependence on water-content in fontainebleau sand[END_REF].

Laboratory experiments have also been investigated for a better understanding of the seismoelectric conversions [START_REF] Migunov | Dynamic properties of the seismoelectric effect of watersaturated rocks[END_REF][START_REF] Chandler | Transient streaming potential measurements on fluid-saturated porous structures: An experimental verification of Biot's slow wave in the quasi-static limit[END_REF][START_REF] Mironov | Seismoelectric effect in rocks containing gas or fluid hydrocarbon (english translation)[END_REF][START_REF] Jiang | A method for measuring electrokinetic coefficients of porous media and its potential application in hydrocarbon exploration[END_REF][START_REF] Zhu | Experimental studies of electrokinetic conversions in fluid-saturated borehole models[END_REF][START_REF] Zhu | Experimental studies of seismoelectric conversions in fluid-saturated porous media[END_REF][START_REF] Zhu | Crosshole seismoelectric measurements in borehole models with fractures[END_REF][START_REF] Chen | Experimental studies of seismoelectric effects in fluid-saturated porous media[END_REF][START_REF] Bordes | First laboratory measurements of seismo-magnetic conversions in fluid-filled Fontainebleau sand[END_REF][START_REF] Block | Conductivity dependence of seismoelectric wave phenomena in fluid-saturated sediments[END_REF][START_REF] Zhu | Electroseismic and seismoelectric measurements of rock sample in a water tank[END_REF][START_REF] Bordes | Evidence of the theoretically predicted seismo-magnetic conversion[END_REF]). These papers describe the laboratory studies performed to investigate this dynamic coupling. An oscillating pore pessure must be applied to a rock sample, and because of the relative motion between the rock and the fluid, an induced streaming potential can be measured. Depending on the oscillating frequency of the fluid, the fluid makes a transition from viscous dominated flow to inertial dominated flow. As the frequency increases, the motion of the fluid within the rock is delayed and larger pressure is needed. In order to know the dynamic coupling, both real and imaginary part of the streaming potential must be measured.

FROM DYNAMIC STREAMING POTENTIAL TO SEISMOELECTROMAGNETIC COUPLING

The steady-state streaming potential coefficient is defined as the ratio of the streaming potential to the driving pore pressure:

C s0 = ∆V ∆P = ǫζ ησ f (1)
which is called the Helmholtz-Smoluchowski equation, where σ f , ǫ and η are the fluid conductivity, the dielectric constant of the fluid, and the fluid dynamic viscosity respectively (see the tutorial by (Jouniaux & Ishido this issue)). In this formula the surface electrical conductivity is neglected compared to the fluid electrical conductivity. The potential ζ is the electrical potential within the double-layer on the slipping plane. Although the zeta potential can hardly be modeled for a rock and although it can not be direclty measured within a rock, the steady-state streaming potential coefficient can be measured in laboratory, by applying a fluid pressure difference (∆P ) and by measuring the induced streaming electric potential (∆V ) [START_REF] Jouniaux | Streaming potential in volcanic rocks from Mount Peleé[END_REF][START_REF] Guichet | Streaming potential of a sand column in saturation conditions[END_REF][START_REF] Guichet | Modification of streaming potential by precipitation of calcite in a sand-water system: laboratory measurements in the pH range from 4 to 12[END_REF][START_REF] Allègre | Streaming Potential dependence on water-content in fontainebleau sand[END_REF][START_REF] Allègre | Streaming potential dependence on water-content in fontainebleau sand[END_REF]. The electrical potential ζ itself depends on fluid composition and pH, and the water conductivity [START_REF] Davis | Surface ionization and complexation at the oxide/water interface[END_REF][START_REF] Ishido | Experimental and theoretical basis of electrokinetic phenomena in rock water systems and its applications to geophysics[END_REF][START_REF] Lorne | Streaming potential measurements. 1. properties of the electrical double layer from crushed rock samples[END_REF][START_REF] Jouniaux | Streaming potential in volcanic rocks from Mount Peleé[END_REF][START_REF] Guichet | Modification of streaming potential by precipitation of calcite in a sand-water system: laboratory measurements in the pH range from 4 to 12[END_REF][START_REF] Jaafar | Measurement of streaming potential coupling coefficient in sandstones saturated with high salinity nacl brine[END_REF][START_REF] Vinogradov | Measurement of streaming potential coupling coefficient in sandstones saturated with natural and artificial brines at high salinity[END_REF][START_REF] Allègre | Streaming Potential dependence on water-content in fontainebleau sand[END_REF].

2.1 Packard's model [START_REF] Packard | Streaming potentials across capillaries for sinusoidal pressure[END_REF] proposed a model for the frequency-dependent streaming potential coefficient for capillary tubes, assuming that the Debye length is negligible compared to the capillary radius, based on the Navier-Stokes equation:

C s0 (ω) = ∆V (ω) ∆P (ω) = ( ǫζ ησ f )( 2 a iωρ f η J 1 (a iωρ f η ) J 0 (a iωρ f η ) e -iωt ) (2) 
where ω is the angular frequency, a is the capillary radius, J 1 and J 0 are the Bessel functions of the first order and the zeroth order, respectively,and ρ f is the fluid density.

The transition angular frequency for a capillary is:

ω c = η ρ f a 2 (3) 
More recently [START_REF] Reppert | Frequency-dependent streaming potentials[END_REF] used the low-and high-frequency approximations of the Bessel functions to propose the following formula, which corresponds to their eq.26 corrected with the right exponents -2 and -1/2:

C s0 (ω) = ǫζ ησ f 1 + -2 a η ωρ f 1 √ 2 - 1 √ 2 i -2 -1 2 (4)
with the transition angular frequency

ω c = 8η ρ f a 2 (5)
and showed that this model was not very different from the model proposed by [START_REF] Packard | Streaming potentials across capillaries for sinusoidal pressure[END_REF].

The complete development relating the Biot's theory and the Maxwell's equations has been published by Pride in 1994.

Pride's model

Pride (1994) derived the equations governing the coupling between seismic and electromagnetic wave propagation in a fluid-saturated porous medium from first principles for porous media. The following transport equations express the coupling between the mechanical and electromagnetic wavefields [ [START_REF] Pride | Governing equations for the coupled electromagnetics and acoustics of porous media[END_REF] equations ( 174), ( 176), and ( 177)]:

J = σ(ω)E + L(ω) -∇p + iω 2 ρ f u s (6) -iωw = L(ω)E + k(ω) η -∇p + iω 2 ρ f u s (7) 
In the first equation the macroscopic electrical current density J is the sum of the average conduction and streaming current densities. The fluid flux w of the second equation is separated into electrically and mechanically induced contributions. The electrical fields and mechanical forces that create the current density J and fluid flux w are, respectively, E and (-∇p + iω 2 ρ f u s ), where p is the pore-fluid pressure, u s is the solid displacement, and E is the electric field. The complex and frequency-dependent electrokinetic coupling L(ω), which describes the coupling between the seismic and electromagnetic fields [START_REF] Pride | Governing equations for the coupled electromagnetics and acoustics of porous media[END_REF][START_REF] Reppert | Frequency-dependent streaming potentials[END_REF] is the most important parameter in these equations. The other two coefficients, σ(ω) and k(ω), are the electric conductivity and dynamic permeability of the porous material, respectively.

The seismoelectric coupling that describes the coupling between the seismic and electromagnetic fields is complex and frequency-dependent [START_REF] Pride | Governing equations for the coupled electromagnetics and acoustics of porous media[END_REF]:

L(ω) = L 0 1 -i ω ω c m 4 1 -2 d Λ 2 1 -i 3/2 d ωρ f η 2 -1 2 (8)
where L 0 is the low frequency electrokinetic coupling, d is related to the Debye-length, Λ is

Frequency-dependent streaming potentials: a review 7 a porous-material geometry term [START_REF] Johnson | Theory of dynamic permeability in fluid saturated porous media[END_REF], and m is a dimensionless number (detailed in [START_REF] Pride | Governing equations for the coupled electromagnetics and acoustics of porous media[END_REF]).

The transition angular frequency ω c separating low-frequency viscous flow and highfrequency inertial flow is defined as:

ω c = φη α ∞ k 0 ρ f (9)
where φ is the porosity, k 0 is the intrinsic permeability, α ∞ is the tortuosity.

Further considerations

The low-frequency electrokinetic coupling L 0 is related to the steady-state streaming potential coefficient C s0 by:

L 0 = -C s0 σ r (10) 
where σ r is the rock conductivity. The electrokinetic coupling L(ω) can be estimated by considering that steady-state models of C s0 can be applied to the calculation of L 0 . When writting σ r = σ f /F with surface conductivity neglected, the steady-state electrokinetic coupling can be written as:

L 0 = - ǫζ ηF (11) 
We can see that the steady-state electrokinetic coulping is inversely proportional to the formation factor.

The transition angular frequency separating viscous and inertial flows in porous medium can be rewritten by inserting α ∞ = φ F with F the formation factor that can be deduced from resistivity measurements using Archie's law, as:

ω c = 1 F η k 0 ρ f ( 12 
)
where F is the formation factor that can be deduced from resistivity measurements using Archie's law.

Since the permeability and the formation factor are not independent, but can be related by k 0 = CR 2 /F [START_REF] Paterson | The equivalent channel model for permeability and resistivity in fluidsaturated a re-appraisal[END_REF] with C a geometrical constant usually in the range 0.3-0.5 and R the hydraulic radius, the transition angular frequency can be written as:

ω c = η ρ f CR 2 (13)
The equation 13 shows that the transition angular frequency in porous medium is inversely proportional to the square of the hydraulic radius.

Recently [START_REF] Walker | Permeability models of porous media: characteristic length scales, scaling constants and time-dependent electrokinetic coupling[END_REF] proposed a simplified equation of Pride's development assuming that the Debye length is negligible compared to the characteristic pore size, and assuming the parameter:

m = 8 Λ r ef f 2 (14)
leading to the equation:

L(ω) = L 0 1 -2i ω ω c Λ r ef f 2 -1 2 (15)
with r ef f the effective pore radius, and a transition angular frequency [START_REF] Garambois | Seismoelectric wave conversions in porous media: Field measurements and transfer function analysis[END_REF] studied the low frequency assumption valid at seismic frequencies, meaning at frequencies lower than the Biot's frequency separating viscous and inertial flows and gave the coseismic transfer function for low frequency longitudinal plane waves. In this case, and assuming the Biot's moduli C << H, they showed that the seismoelectric field E is proportional to the grain acceleration:

ω c = 8η ρ f r 2 ef f (16)
E ≃ - L 0 σ r ρ f ü = ǫζ ησ f ρ f ü (17)
Equations 17, 10 and 1 show that transient seismo-electric magnitudes will be affected by the bulk density of the fluid, and the streaming potential coefficient which is inversely proportional to the water conductivity and proportional to the zeta potential (which depends on the water pH).

2.4

The electrokinetic transition frequency compared to the hydraulic's one

The theory of dynamic permeability in porous media has been studied by many authors [START_REF] Auriault | Dynamics of porous saturated media, checking of the generalized law of darcy[END_REF][START_REF] Johnson | Theory of dynamic permeability in fluid saturated porous media[END_REF]Sheng & Zhou 1988;Sheng et al. 1988;[START_REF] Smeulders | Dynamic permeability: reformulation of theory and new experimental and numerical data[END_REF]).

The frequency behavior of the permeability is given by [START_REF] Pride | Governing equations for the coupled electromagnetics and acoustics of porous media[END_REF] by:

k(ω) k 0 = 1 -i ω ω c 4 m 1 2 -i ω ω c -1 (18) 
The transition angular frequency for a porous medium is the same as eq. 9. [START_REF] Charlaix | Experimental study of dynamic permeability in porous media[END_REF] measured the behavior of permeability with frequency on capillary tube, glass beads and crushed glass. The dynamic permeability is constant up to the transition frequency above which it decreases, and the more permeable the sample is, the lower the transition frequency is. Other measurements have been performed on glass beads and sand grains [START_REF] Smeulders | Dynamic permeability: reformulation of theory and new experimental and numerical data[END_REF]). The transition frequency (f c = ω c /2π) varies from 4.8 Hz to 149

Hz for samples having permeability in the range 10 -8 to 10 -10 m 2 (see Table 1), which are extremely high permeabilities.

The transition frequency indicates the beginning of the transition for both the permeability and the electrokinetic coupling. However the transition behavior and the cuttoff frequency are different between permeability and electrokinetic coupling (eq. 8 and eq.18), both depending on the pore-space geometry term m but in different manner.

We calculated the predicted transition frequency f c = ω c /2π with ω c from eq. 12 with η = 10 -3 Pa.s and ρ f = 10 3 kg/m 3 . The other parameters F and k 0 are measured from different authors cited in [START_REF] Bernabé | Pore geometry and pressure dependence of the transport properties in sandstones[END_REF] (see Table 2). We also calculated the parameters for four Fontainebleau sandstone samples. It has been shown for these samples that F = φ -2.01

(from [START_REF] Ruffet | Complex conductivity and fractal microstructures[END_REF]) and that k 0 = aφ n with different values for n according to the porosity. The following laws were chosen: k 0 = 1.66x10 -4 φ 8 for φ < 6% and k 0 = 2.5x10 -10 φ 3

for φ ranging between 8 and 25% [START_REF] Bourbié | Acoustic of porous media[END_REF]. We can see that the transition frequencies are of the order of kHz and MHz and no more from 0.2 to 150 Hz as measured or calculated on glass beads, sand grains, crushed glass or capillaries. We plotted the results of the transition frequency as a function of the permeability on these various samples in Fig. 1. Although the formation factor is not constant with the permeability, it is clear that the transition frequency is inversely poportional to the permeability as:

log 10 (f c ) = -0.78log 10 (k) -5.5 (19) 
and varies from about 100 MHz for 10 -17 m 2 to about 10 Hz for 10 -8 m 2 , so by seven orders of magnitude for nine orders of magnitude in permeability.

EXPERIMENTAL APPARATUS AND PROCEDURE

Several experimental setups were proposed to provide the sinusoidal pressure variations.

The first experimental apparatus proposed a sinusoidal motion delivered by a sylphon bellows which was driven by a geophone-type push-pull driver (Fig. 2 from [START_REF] Packard | Streaming potentials across capillaries for sinusoidal pressure[END_REF]).

The low frequency oscillator (0.01 Hz to 1 kHz) was used for operation of the push-pull geophone driver. Similar setups were proposed by Thurston (1952b) (Fig. 3) and [START_REF] Cooke | Study of electrokinetic effects using sinusoidal pressure and voltage[END_REF], so that frequency of this kind of source was 1-400 Hz [START_REF] Cooke | Study of electrokinetic effects using sinusoidal pressure and voltage[END_REF], 20-200 Hz [START_REF] Packard | Streaming potentials across capillaries for sinusoidal pressure[END_REF]) and 10-700Hz (Thurston 1952b). The induced pressure was up to 2 kPa. (1975); [START_REF] Sears | The use of oscillating laminar flow streaming potential measurements to determine the zeta potential of a capillary surface[END_REF]). The piston was mounted on a Scotch Yoke drive attached to a controllable speed AC motor [START_REF] Cerda | The use of sinusoidal streaming flow measurements to determine the electrokinetic properties of porous media[END_REF]. The frequency range of this source was then 0.4Hz to 21 Hz and the pressure up to 15 kPa. [START_REF] Pengra | Determination of rock properties by low frequency ac electrokinetics[END_REF] used a piston rod attached to a loudspeaker driven by an audio power amplifier (Fig. 5).

More recently

They performed measurements up to 100Hz, with an applied pressure of 5 kPa RMS. More recently it was proposed by [START_REF] Reppert | Frequency-dependent streaming potentials[END_REF] to use an electromechanical transducer (fig. 6), and these authors covered a frequency range 1-500 Hz. The electromagnetic noise radiating from such equipment must be suppressed by shielding the set-up and wires (shielded twisted cable pairs) [START_REF] Tardif | Frequency-dependent streaming potential of ottawa sand[END_REF][START_REF] Schoemaker | Electrokinetic effect: Theory and measurement[END_REF]). Moreover it is essential to have a rigid framework. A mechanical resonance can occur in the cell/transducer system (at 70Hz in [START_REF] Pengra | Determination of rock properties by low frequency ac electrokinetics[END_REF]), and the noise associated with mechanical vibration can be suppressed puting an additional mass to the frame [START_REF] Tardif | Frequency-dependent streaming potential of ottawa sand[END_REF].

Once the oscillatory pressure is applied, the pressure must be measured. Most of the setups include piezoelectric transducers to measure the pressure difference over the capillary or the porous sample. [START_REF] Reppert | Frequency-dependent streaming potentials[END_REF] proposed to use hydrophones that have a flat response from 1 to 20 kHz. [START_REF] Tardif | Frequency-dependent streaming potential of ottawa sand[END_REF] proposed to use dynamic transducers with a low-frequency limit 0.08 Hz and a maximum frequency of 170 kHz.

The electrodes are usually Ag/AgCl or platinium electrodes. The electrodes used by [START_REF] Schoemaker | Electrokinetic effect: Theory and measurement[END_REF] were sintered plates of Monel (composed of nickel and copper).

The electrical signal must be measured using pre-amplifiers or a high-input impedance acquisition system. Since the impedance of the sample depends on the frequency, one must correct the measurements from this varying-impedance to be able to have a correct streaming potential coefficient [START_REF] Reppert | Frequency-dependent streaming potentials[END_REF]. Moreover the electrodes at top and bottom of the sample can behave as a capacitor, requiring a correction using impedance measurements too [START_REF] Schoemaker | Electrokinetic effect: Theory and measurement[END_REF]).

The sample is usually saturated and it is emphasized that the sample should be left until equilibrium with water. This equilibrium can be obtained by leaving the sample in contact with water for some time, and by flowing the water within the sample several times by checking the pH and the water conductivity until an equilibrium is reached [START_REF] Guichet | Streaming potential of a sand column in saturation conditions[END_REF]. The procedure including water flow is better because the properties of the water can be measured. When the properties of the water are measured only before saturating the sample, the resulting water once in contact with the sample is not known. Usually the water is more conductive when in contact with the sample, and the pH can change. Recalling that the streaming potential is proportional to the zeta potential (which depends on pH) and inversely proportional to the water conductivity (eq.1), it is essential to know properly the pH and the water conductivity.

MEASUREMENTS AND CALCULATIONS OF THE DYNAMIC ELECTROKINETIC COEFFICIENT

The absolute magnitude of the streaming potential coefficient normalized by the steady-state value was calculated by [START_REF] Packard | Streaming potentials across capillaries for sinusoidal pressure[END_REF] as: 20) which is equal to eq. 2, but expressed as a function of the parameter Y a = a ωρ f η , the transition frequency being obtained for Y a = 1 (Fig. 7). The streaming potential coefficient is constant up to the transition angular frequency, and then decreases with increasing frequency. [START_REF] Sears | The use of oscillating laminar flow streaming potential measurements to determine the zeta potential of a capillary surface[END_REF] measured the streaming potential coefficient on a capillary of radius 508 µm which was coated with clay-Adams Siliclad and then incubated with 1% bovine serum albumin, and filled with 0.02 M Tris-HCl at pH 7.32. They reported the streaming potential and the pressure difference as a function of frequency in the range 0 -20 Hz. We calculated the resulting streaming potential coefficient (see Fig. 8) which decreases from about 1.3x 10 -7 to 4x 10 -8 V/Pa. These authors computed the zeta potential and concluded that the zeta potential is independent of the frequency with an average value Frequency-dependent streaming potentials: a review 13 of 28.8 mV. Moreover they concluded that the zeta potential is also independent of the capillary radius and capillary length.

f (Y a ) = -2 Y a i √ iJ 1 ( √ iY a ) J 0 ( √ iY a ) e -iωt ( 
The value of the streaming potential coefficient on Ottawa sand measured at 5 Hz by [START_REF] Tardif | Frequency-dependent streaming potential of ottawa sand[END_REF] was -5.2x 10 -7 V/Pa using a 0.001 mol/L NaCl solution to saturate the sample. Values between 1 and 2x10 -8 V/Pa were measured on samples saturated by 0.1 M/L NaCl brine [START_REF] Pengra | Determination of rock properties by low frequency ac electrokinetics[END_REF]. A compilation of numerous streaming potential coefficients measured on sands and sandstones at various salinities in DC domain [START_REF] Allègre | Streaming Potential dependence on water-content in fontainebleau sand[END_REF] showed that C s0 = -1.2 x 10 -8 σ -1 f , where C s0 is in V/Pa and σ f in S/m. A zeta potential of -17mV can be inferred from these collected data, assuming the other parameters (see eq. 1)

independent of water conductivity. These assumptions are not exact, but the value of zeta is needed for numerous modellings which usually assume the other parameters independent of the fluid conductivity. Therefore an average value of -17 mV for such modellings can be rather exact, at least for medium with no clay nor calcite.

Reppert et al. ( 2001) calculated the real part and the imaginary part of the theoretical Packard's streaming potential coefficient (eq. 2) for different capillary radii. (see Fig. 9). It can be seen that the larger the radius is, the lower the transition frequency is, as shown above by the different theories. Recent developments by the group of Glover have been performed

to build a new setup and to make further measurements on porous samples: two papers detail these studies in this special issue on Electrokinetics in Earth Sciences.

CONCLUSION

Since the theory of Pride in 1994, the dynamic behavior of the streaming potential is known for porous media. However few experimental results are avalaible, because of the difficulty to perform correct measurements at high frequency. Up to now, measurements of the frequencydependence of the streaming potential have been performed up to 200 Hz on high-permeable samples. The main difficulty arises from electrical noise induced by mechanical vibration.

Moreover it has been emphasized that the measurements must be corrected by impedance measurements as a function of frequency too because the impedance of the sample de-pends on frequency. Further theoretical developments performed by [START_REF] Garambois | Seismoelectric wave conversions in porous media: Field measurements and transfer function analysis[END_REF] studied the low frequency assumption valid at frequencies lower than the transition frequency. We show that this transition frequency, on a various collection of samples for which both formation factor and permeability are measured, is predicted to depend on the permeability as inversely proportional to the permeability.

Table 1. Measured or predicted transition frequency for dynamic streaming potential and permeability, for samples of porosity φ, formation factor F , permeability k 0 , and half of the mean particle size r, from (SED) [START_REF] Smeulders | Dynamic permeability: reformulation of theory and new experimental and numerical data[END_REF], (CKS) [START_REF] Charlaix | Experimental study of dynamic permeability in porous media[END_REF], (SG) [START_REF] Sears | The use of oscillating laminar flow streaming potential measurements to determine the zeta potential of a capillary surface[END_REF], (P) [START_REF] Packard | Streaming potentials across capillaries for sinusoidal pressure[END_REF], (TGR) [START_REF] Tardif | Frequency-dependent streaming potential of ottawa sand[END_REF] 

  [START_REF] Schoemaker | Simultaneous determination of dynamic permeability and streaming potential[END_REF] used a so-called Dynamic Darcy Cell (DCC) with a mechanical shaker connected to a rubber membrane leading to a frequency range for the oscillating pressure 5 to 200 Hz. The sinusoidal fluid flow was also applied by a displacement piston pump directly connected to the electrodes chambers (fig. 4 from Groves & Sears

  The vibrating exciter proposed by[START_REF] Schoemaker | Electrokinetic effect: Theory and measurement[END_REF] was used from 5Hz to 200Hz. Recently[START_REF] Tardif | Frequency-dependent streaming potential of ottawa sand[END_REF] used an electromagnetic shaker operating in the range 1Hz to 1kHz and provided measurements up to 200Hz. Higher frequencies have been investigated[START_REF] Zhu | Experimental studies of electrokinetic conversions in fluid-saturated borehole models[END_REF][START_REF] Zhu | Experimental studies of seismoelectric conversions in fluid-saturated porous media[END_REF][START_REF] Chen | Experimental studies of seismoelectric effects in fluid-saturated porous media[END_REF][START_REF] Block | Conductivity dependence of seismoelectric wave phenomena in fluid-saturated sediments[END_REF][START_REF] Zhu | Electroseismic and seismoelectric measurements of rock sample in a water tank[END_REF] for the detection of the interfacial conversions.
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 123 Figure 1. The transition frequency f c = ω c /2π (in Hz) predicted in the present study with ω c from eq. 12 with η = 10 -3 Pa.s and ρ f = 10 3 kg/m 3 as a function of the permeability (in m 2 ). The transition frequency varies as log 10 (f c ) = -0.78log 10 (k) -5.5. The parameters of the samples, F and k 0 are measured from different authors on various samples cited in Tables1, 2 and 3

Figure 4 .

 4 Figure 4. Experimental setup used by Groves & Sears (1975) (modified from Groves & Sears (1975)).

Figure 5 .

 5 Figure 5. Experimental setup used by Pengra et al. (1999) for streaming potential and electroosmosis measurements (modified from Pengra et al. (1999)).

Figure 6 .

 6 Figure 6. Experimental setup used by Reppert et al. (2001) (modified from Reppert et al. (2001)).

Figure 7 .Figure 8 .

 78 Figure 7. The absolute magnitude of the normalized streaming potential coefficient calculated by Packard (1953) using eq. 20 where Y a = a ωρ f η , equivalent to eq. 2 (modified from Packard (1953))

Figure 9 .

 9 Figure 9. The real and imaginary part of the Packard's model (eq.2) calculated by Reppert et al. (2001) for three capillary radii: 100µm(continuous line), 50µm(dashed line), 10µm(point line) (modified from Reppert et al. (2001)).

Table 2 .

 2 Predicted transition frequency (from eq. 12) for dynamic streaming potential, for samples of porosity φ, formation factor F and permeability k 0 , from (1) calculated in the present study,

	, (RMLJ) Reppert et al. (2001). * indicates
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