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GEOMETRIC SATAKE, SPRINGER CORRESPONDENCE,

AND SMALL REPRESENTATIONS II

PRAMOD N. ACHAR, ANTHONY HENDERSON, AND SIMON RICHE

Abstract. For a split reductive group scheme Ǧ over a commutative ring k
with Weyl group W , there is an important functor Rep(Ǧ, k) → Rep(W, k)
defined by taking the zero weight space. We prove that the restriction of this

functor to the subcategory of small representations has an alternative geomet-

ric description, in terms of the affine Grassmannian and the nilpotent cone of
the Langlands dual group G. The translation from representation theory to

geometry is via the Satake equivalence and the Springer correspondence. This
generalizes the result for the k = C case proved by the first two authors, and

also provides a better explanation than in that earlier paper, since the current

proof is uniform across all types.

1. Introduction

1.1. Let Ǧ be a split reductive group scheme over a commutative ring k, and let W
be its Weyl group. A representation of Ǧ is said to be small if its weights belong to
the root lattice of Ǧ, and the convex hull of its weights does not contain the double
of any root. In [AH], it was shown that when k = C, a number of remarkable
features of small representations can be explained in terms of geometry related to
the Langlands dual group G: specifically, the geometry of its affine Grassmannian
Gr and its nilpotent cone N .

These are, of course, the varieties appearing in the geometric Satake equivalence
and the Springer correspondence, respectively. Consider these four functors:

• The geometric Satake equivalence SG defined in [MV2] restricts to an
equivalence S sm

G between PervG(O)(Gr
sm,k), where Grsm is a certain closed

subvariety of Gr, and the category Rep(Ǧ,k)sm of small representations.
• By [AH, Theorem 1.1], there is a finite map π :M→N where M is open

in Grsm, giving rise to a functor ΨG : PervG(O)(Gr
sm,k)→ PervG(N ,k).

• W acts on the zero weight space of any representation of Ǧ. Tensoring this
action with the sign character, we obtain a functor ΦǦ : Rep(Ǧ,k)sm →
Rep(W, k).

• W also acts on the Springer sheaf Spr in PervG(N ,k), giving rise to a functor
SG = Hom(Spr,−) : PervG(N ,k)→ Rep(W, k).

All notation will be defined fully in Section 2.
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These functors form the diagram:

(1.1)

PervG(O)(Gr
sm,k)

ΨG

��

S sm
G

∼
// Rep(Ǧ,k)sm

ΦǦ

��
PervG(N ,k)

SG // Rep(W, k).

One of the main results of [AH] implies that this diagram commutes when k = C.
The proof given in [AH] was not totally satisfactory: after reducing to the case of
simple G and irreducible small representations, it relied on case-by-case arguments,
including Reeder’s computations of zero weight spaces [R1, R2].

The main result of this paper is that (1.1) commutes for any ring k for which
the geometric Satake equivalence holds.

Theorem 1.1. Let k be any Noetherian commutative ring of finite global dimen-
sion. Then there is a canonical isomorphism of functors:

ΦǦ ◦S sm
G ⇐⇒ SG ◦ΨG.

(The sense in which the isomorphism is canonical will be explained in §3.4.) Theo-
rem 1.1 provides a geometric construction of the functor ΦǦ, valid in much greater
generality than in [AH]. Notably, our result applies in the setting of modular repre-
sentation theory, when k is a field of positive characteristic; see §1.4. In the k = C
case, it provides a new proof of Reeder’s results and Broer’s covariant restriction
theorem; see §1.5.

Moreover, our proof of Theorem 1.1 is uniform, and thus provides a better ex-
planation of the commutativity of (1.1) than [AH] did. Indeed, for general k, a
case-by-case argument does not seem feasible: the irreducibles in Rep(Ǧ,k)sm and
Rep(W, k) are poorly understood, and in any case, calculations with irreducibles
would be insufficient, since the categories in (1.1) need not be semisimple.

1.2. Instead, our approach is based on the following elementary observation: Any
representation of W is determined by the action of the simple reflections. The proof
of Theorem 1.1 can be thought of as having just two steps:

(1) For G of semisimple rank 1, (1.1) commutes by direct computation.
(2) Every functor in (1.1) commutes with ‘restriction to a Levi subgroup’.

Together, these two statements imply that (1.1) becomes commutative after com-
position with any forgetful functor Rep(W, k)→ Rep(WL,k), where WL is the Weyl
group of a rank-1 Levi subgroup. The elementary observation above says that an
object of Rep(W, k) can be recovered from its images in the various Rep(WL,k), so
one might think that the commutativity of (1.1) follows.

However, there is a subtlety here, which makes the proof far more difficult than
this sketch suggests. Of course, a representation of W is not determined by objects
in the various Rep(WL,k) alone; rather, we need those objects together with identi-
fications of their underlying k-modules. The two paths around (1.1) each yield such
identifications, but for the proof to go through, we need to know that both paths
give the same identifications. As a consequence, when showing that a diagram of
functors ‘commutes’, as in Step (2), it is insufficient to show the existence of an
isomorphism of functors; rather, we must keep track of what the isomorphism is.

Our arguments are therefore forced to be 2-categorical. Most of the ‘commuta-
tive diagrams’ in the paper are not ordinary 1-dimensional commutative diagrams,
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but rather ‘labelled 2-computads’, which contain 0-cells (categories), 1-cells (func-
tors), and 2-cells (natural transformations). For such a diagram, commutativity
is an assertion about equality of compositions of 2-cells, rather than isomorphism
of compositions of 1-cells. We explain the necessary 2-categorical background in
Appendix A.

We believe that our method will be useful in proving other isomorphisms of
functors in geometric representation theory. With this in mind, we have collected
in Appendix B the commutativity lemmas that we invoke throughout the paper,
expressing the compatibilities of fundamental functors between derived categories.

Note that the method of reducing to the case of SL(2) using geometric restric-
tion functors is not new in the context of the geometric Satake equivalence, see
e.g. [BFM, BF, BrF]. However, in these instances this idea is used at the level of
objects rather than categories and functors, so that the 2-categorical subtleties do
not arise.

1.3. Consider the case when G = GL(n,C), so that W = Sn and Ǧ ∼= GL(n,k). In
this case, Grsm has two irreducible components (at least when n ≥ 3 – see [AH, §4.1]
for details). For convenience, replace Grsm with its irreducible component Grsm,+,
which is essentially the compactification of N introduced by Lusztig in [L1]. The
corresponding category Rep(Ǧ,k)sm,+ consists of representations of GL(n, k) whose
dominant weights are of the form (λ1 − 1, . . . , λn − 1) where λ = (λ1 ≥ · · · ≥ λn)
is a partition of n. An important object of this category is E = (kn)⊗n ⊗ det−1.

What makes the GL(n) case special is that the functor PervG(O)(Gr
sm,+,k) →

PervG(N ,k) obtained by restricting ΨG is an equivalence of categories [Mau, §1.3].
Mautner’s results in [Mau, §1.4] imply that ΨG(S −1

G (E)) ∼= Spr, and that the
action of Sn on Spr corresponds to the action of Sn on E defined by permutation
of the tensor factors. Given this, the commutativity of (1.1) (or rather, its analogue
for Grsm,+) is equivalent to a purely representation-theoretic statement:

(1.2) ΦǦ : Rep(Ǧ,k)sm,+ → Rep(W, k) is isomorphic to Hom(E,−).

This follows easily from a well-known analogous isomorphism between two defini-
tions of the Schur functor; see [Ja, A.23(5)].

In a sense, then, Theorem 1.1 can be regarded as a generalization to all Ǧ of the
property (1.2) of GL(n), with the Springer sheaf Spr playing the role of E.

1.4. Suppose that k is a field of characteristic `. The irreducible representations
of Ǧ are parametrized by their highest weights: let L(λ) denote a small irreducible

representation with highest weight λ. We have L(λ) ∼= S sm
G (IC(Grλ,k)) where

IC(Grλ,k) is the simple perverse sheaf supported on the closure of the G(O)-orbit

Grλ. Applying Theorem 1.1, we obtain an isomorphism of representations of W :

(1.3) ΦǦ(L(λ)) ∼= SG(ΨG(IC(Grλ,k)).

The obvious question is whether we can compute the right-hand side of (1.3) in the
` > 0 case, to obtain new information about modular representations of Ǧ and W .

We emphasize that the geometry involved in the right-hand side is of varieties
over C, and k occurs solely as the field of coefficients. Hence the computation of
ΨG(IC(Grλ,k)) is largely the same as that carried out in [AH] for the k = C case:
since the finite map π : M → N , for simple G, is generically 1-to-1 or 2-to-1,
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subtleties can arise only when ` = 2. In particular, when ` 6= 2 we know that the
perverse sheaf ΨG(IC(Grλ,k)) is semisimple.

What remains is to determine the value of SG on simple objects of PervG(N ,k).
This will be the goal of a subsequent work, relating SG to the modular Springer
correspondence of Juteau [Ju]. See Remark 2.1.

1.5. When k = C, the main result of the present paper, Theorem 1.1, is very sim-
ilar to [AH, Theorem 1.3]. The difference is that the horizontal arrows in (1.1) are
reversed from those in the diagram in [AH, Theorem 1.3]. Our current equivalence
S sm
G is inverse to the equivalence that was called ‘Satake’ in [AH]. Our current SG

is left inverse to the functor called ‘Springer’ in [AH] (which in general has no right
inverse). The result of this change is that the k = C case of Theorem 1.1 is slightly
weaker than [AH, Theorem 1.3]. The additional content of the latter result may
be restated as follows: when k = C, the functor SG is faithful on the image of ΨG,
unless G has factors of type G2.

However, as mentioned above, our new proof of Theorem 1.1 has an advantage
even in the k = C case: it is independent of Reeder’s calculation of the functor
ΦǦ in [R1, R2], and thus provides an alternative way to carry out that calculation.
Namely, one can compute the right-hand side of (1.3) by combining the computation

of ΨG(IC(Grλ,k)) done in [AH] with the known values of SG on simple objects
(dictated by the ordinary Springer correspondence). For the exceptional groups,
this is not markedly more complex than Reeder’s method.

Finally, we remark that one of the motivations for [AH] was the search for a
geometric proof of Broer’s covariant theorem [Bro]. This theorem can be interpreted
in terms of local equivariant cohomology on Gr and on N , and [AH, §6.4] explains
how to deduce Broer’s result from the commutativity of (1.1) for k = C. In the
context of [AH], this argument was circular, because some of Reeder’s calculations
used Broer’s result. With our independent proof of Theorem 1.1, the geometric
proof of Broer’s covariant theorem is now complete.

1.6. Here is a brief outline of the paper. In Section 2 we set forth our notation and
conventions, and define the categories and functors in the main diagram (1.1). In
Section 3 we explain the method of proof of Theorem 1.1, showing how to reduce to
the case when G has semisimple rank 1, modulo a certain property of the functors
in (1.1). A precise statement of the required property is given there: in essence,
what we need is that each functor in (1.1) commutes with restriction to a Levi
subgroup, in a way that is compatible with transitivity of restriction.

The remainder of the paper verifies the various ingredients of the main proof.
In Section 4 we define restriction functors for each of the four categories in (1.1),
and the transitivity isomorphisms that they satisfy. In Sections 5, 6, 7 we prove
the required commutativity statements for the functors in (1.1). In Section 8 we
complete the proof by considering the rank-1 case.

Finally, Appendix A is a survey of the 2-categorical formalism that is used in the
paper, and Appendix B contains the basic commutativity lemmas for sheaf functors
on which our arguments rely.

Acknowledgments. This work was greatly assisted by discussions with D. Juteau,
whose modular Springer correspondence [Ju] was a key inspiration. The authors
are also grateful to S. Lack for helpful advice on 2-categories, and to C. Mautner
for explaining the results in [Mau].
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2. Preliminaries

In this section, we recall and define the principal notation and conventions of
this paper, with the goal of explaining (1.1).

Fix a Noetherian commutative ring k of finite global dimension. All our sheaves
will have coefficients in k. If X is a complex algebraic variety (or ind-variety)
and H is a complex algebraic group (or pro-algebraic group) acting on X, we
write Db(X,k) for the bounded constructible derived category of X with coeffi-
cients in k (for the strong topology), and PervH(X,k) for its full abelian subcat-
egory of H-equivariant perverse k-sheaves on X, as considered, for example, by
Mirković–Vilonen [MV2]. We write Db

H(X,k) for the constructible equivariant de-
rived category, defined by Bernstein–Lunts [BL]. To abbreviate the notation for
these categories, we will sometimes omit k.

Some of the results we will use or prove are better known in the context of Q`-
sheaves for the étale topology, but we will avoid any use of comparison theorems,
referring to the étale setting only in side-remarks.

Given a morphism f : X → Y of varieties, we have functors f∗, f! : Db(X,k)→
Db(Y,k) and f∗, f ! : Db(Y,k)→ Db(X,k) as defined in [KaS], and equivariant ver-
sions of these defined in [BL]. (We omit the letter R indicating derived functors.)
The isomorphisms and adjunctions satisfied by these functors, and the compatibili-
ties between these, will be our basic computational tools; Appendix B contains the
precise statements that we need.

We use the double arrows =⇒,
∼

=⇒, ⇐⇒ for natural transformations and nat-
ural isomorphisms of functors, except in specific sorts of diagrams explained in
Appendix A. If α : G =⇒ H is a natural transformation, and the domain of the
functor F equals the codomain of G and H, then the induced natural transformation
F◦G =⇒ F◦H is written F◦α (following [MacL, §XII.3]); similarly for composition
on the other side.

We write Mod(k) for the category of finitely-generated k-modules. If Γ is a group
scheme over k (for instance, a finite group), we write Rep(Γ,k) for the category of

representations of Γ over k that are finitely generated over k, and ForΓ for the
forgetful functor Rep(Γ,k)→ Mod(k).

Throughout the paper, we let G be a connected reductive algebraic group over
C. We choose a Borel subgroup B of G and a maximal torus T of B. Let g ⊃ b ⊃ t
denote the Lie algebras of these groups. Let U be the unipotent radical of B, and
n its Lie algebra. We write WG for the Weyl group NG(T )/T .

We will often consider a parabolic setting, where we have chosen a parabolic
subgroup P of G containing B, with Levi decomposition P = LUP where the Levi
subgroup L contains T . In this context, we let C denote B ∩ L, which is a Borel
subgroup of L containing T .

Of course, L and T are also connected reductive groups, so any notation we define
in terms of the triple G ⊃ B ⊃ T applies also to L ⊃ C ⊃ T and to T ⊃ T ⊃ T .
We generally use subscripts to indicate which group is meant, as for example in the
Weyl groups WG, WL and WT . When only the one group G is under consideration,
the subscript G may be omitted (as in Section 1, where we wrote W for WG).

2.1. The geometric Satake equivalence. Let K = C((t)), O = C[[t]]. The
affine Grassmannian GrG is defined to be the ind-variety G(K)/G(O), on which
G(O) acts by left translation. We define GrH for an arbitrary algebraic group H



6 PRAMOD N. ACHAR, ANTHONY HENDERSON, AND SIMON RICHE

in the same way; observe that any homomorphism H → H ′ of algebraic groups
induces a morphism GrH → GrH′ , which is injective if H → H ′ is injective.

Recall that PervG(O)(GrG,k) has the structure of a tensor category under the
convolution product ? (see [MV2]), and that the functor

FG := H•(GrG,−) : PervG(O)(GrG,k) → Mod(k)

is a tensor functor (see [MV2, Proposition 6.3]). Consider the k-group scheme

Ǧ := Aut?(FG)

of automorphisms of the tensor functor FG. It follows from [MV2] and [DM, Propo-
sition 2.8] that Ǧ is a split connected reductive group scheme over k, dual to G in
the sense of Langlands. Moreover, the action of Ǧ on FG gives rise to an equivalence
of tensor categories

SG : PervG(O)(GrG,k)
∼−→ Rep(Ǧ,k),

known as the geometric Satake equivalence. By definition, ForǦ ◦SG = FG.
Let X = X∗(T ) be the cocharacter lattice of T , which we can identify with GrT .

For λ ∈ X, we let tλ be the image of λ under the embedding X = GrT ↪→ GrG.
Recall [MV2] that GrG is the union of the G(O)-orbits

Grλ := G(O) · tλ,

and that Grλ = Grµ if and only if λ and µ are in the same WG-orbit. Furthermore,
GrG is the disjoint union of the U(K)-orbits

Tλ := U(K) · tλ,

as λ runs over X. Let tλ : Tλ ↪→ GrG be the inclusion. (Note that in [MV2],
the notation Tλ is used for orbits of the unipotent radical of the opposite Borel
subgroup instead.)

Using the identification of GrT with X, the group Ť (of automorphisms of the
tensor functor FT ) is identified with the k-torus HomZ(X,k×). In particular, the
character lattice X∗(Ť ) is canonically identified with X. Define the functor

FX :=
⊕
λ∈X

H•
(
Tλ, (tλ)!(−)

)
: PervG(O)(GrG,k) → Rep(Ť ,k),

where we identify Rep(Ť ,k) with the category of X-graded finitely-generated k-
modules. By [MV2, Theorems 3.5 and 3.6], we have a canonical isomorphism of
functors

(2.1) ForŤ ◦ FX ⇐⇒ FG.

Moreover, FX is a tensor functor, and (2.1) is an isomorphism of tensor functors.
So FX is the composition of SG with a tensor functor Rep(Ǧ,k) → Rep(Ť ,k)
compatible with forgetful functors. By [DM, Corollary 2.9], the latter functor is

induced by a group morphism ιǦ
Ť

: Ť → Ǧ. It is proved in [MV2] that ιǦ
Ť

is injective,

and identifies Ť with a maximal torus of Ǧ.
Let Ř ⊂ X denote the set of roots of (Ǧ, Ť ), or in other words coroots of (G,T ).

The Weyl group WǦ = NǦ(Ť )/Ť is identified, as a subgroup of the group of
automorphisms of X, with WG. We will call it WG (or W ) rather than WǦ.
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2.2. The base connected component of the affine Grassmannian. Let Gr◦

be the connected component of Gr containing the base-point t0. This is the union
of the G(O)-orbits Grλ where λ runs over ZŘ. Let zG : Gr◦ ↪→ Gr denote the
inclusion. We have a fully faithful functor

(zG)∗ : PervG(O)(Gr
◦,k) → PervG(O)(Gr,k).

The essential image of SG ◦ (zG)∗ is the subcategory Rep(Ǧ,k)Z(Ǧ) of Rep(Ǧ,k)
consisting of representations whose Ť -weights belong to ZŘ, or in other words
representations on which the centre Z(Ǧ) acts trivially. Let

IǦ : Rep(Ǧ,k)Z(Ǧ) ↪→ Rep(Ǧ,k)

denote the inclusion; then by definition there is a unique equivalence of categories

S ◦G : PervG(O)(Gr
◦,k)

∼−→ Rep(Ǧ,k)Z(Ǧ)

such that

(2.2) IǦ ◦S ◦G = SG ◦ (zG)∗.

Now (zG)∗ is left adjoint to (zG)!, and IǦ is left adjoint to

(−)Z(Ǧ) : Rep(Ǧ,k) → Rep(Ǧ,k)Z(Ǧ),

the functor of taking Z(Ǧ)-invariants. We therefore obtain a canonical isomorphism
of functors

(2.3) (−)Z(Ǧ) ◦SG ⇐⇒ S ◦G ◦ (zG)!.

2.3. The functor S sm
G . Recall that λ ∈ X is said to be small for Ǧ if it belongs

to the root lattice ZŘ and if the convex hull of W · λ does not contain any element
of the form 2α̌ for α̌ ∈ Ř. We denote by Grsm the closed subvariety of Gr which
is the union of the G(O)-orbits Grλ for small λ ∈ X. Let fG : Grsm ↪→ Gr be the
inclusion. We have a fully faithful functor

(fG)∗ : PervG(O)(Gr
sm,k) → PervG(O)(Gr,k).

The essential image of SG ◦ (fG)∗ is the subcategory Rep(Ǧ,k)sm of Rep(Ǧ,k)
consisting of small representations, that is, representations whose Ť -weights are
small. Let

IǦ : Rep(Ǧ,k)sm ↪→ Rep(Ǧ,k)

denote the inclusion; then by definition there is a unique equivalence of categories

S sm
G : PervG(O)(Gr

sm,k)
∼−→ Rep(Ǧ,k)sm

such that

(2.4) IǦ ◦S sm
G = SG ◦ (fG)∗.

We denote by f◦G : Grsm ↪→ Gr◦ and I◦
Ǧ

: Rep(Ǧ,k)sm ↪→ Rep(Ǧ,k)Z(Ǧ) the
inclusions, so that we have fG = zGf

◦
G and IǦ = IǦ ◦ I◦Ǧ. Then there is a unique

isomorphism of functors

(2.5) I◦
Ǧ
◦S sm

G ⇐⇒ S ◦G ◦ (f◦G)∗
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that makes the following diagram of isomorphisms commutative:

(2.6)

IǦ ◦S ◦G ◦ (f◦G)∗ ks
(2.2) +3

KS

(2.5)

��

SG ◦ (zG)∗ ◦ (f◦G)∗KS

(Co)

��
IǦ ◦ I◦Ǧ ◦S sm

G IǦ ◦S sm
G
ks (2.4) +3 SG ◦ (fG)∗.

Here (Co) denotes the composition isomorphism defined in §B.1.1.

2.4. The functor ΦǦ. For any V ∈ Rep(Ǧ,k), we have a natural action of W =

NǦ(Ť )/Ť on the zero weight space V0 = V Ť . It is convenient for us to tensor this
action by the sign character ε : W → k× (which we declare to be trivial if k has
characteristic 2). The resulting map from representations of Ǧ to representations
of W , together with the obvious map on morphisms, constitutes an exact functor

Φ0
Ǧ

: Rep(Ǧ,k) → Rep(W, k).

The composition ForW ◦ Φ0
Ǧ

: Rep(Ǧ,k)→ Mod(k) is the functor of Ť -invariants.
We define

ΦǦ := Φ0
Ǧ
◦ IǦ : Rep(Ǧ,k)sm → Rep(W, k)

to be the restriction of Φ0
Ǧ

to the subcategory of small representations.

2.5. The functor ΨG. Following [AH], we let Gr−0 := G(O−) · t0, where O− :=
C[t−1] ⊂ K. Let G be the kernel of the evaluation map G(O−) → G at t = ∞.
Then there is a natural morphism from G to the kernel of the evaluation map
G(C[t−1]/t−2)→ G, which we can identify with the Lie algebra g of G. Moreover,

we have an isomorphism G
∼−→ Gr−0 : g 7→ g · t0. Hence we obtain a G-equivariant

morphism π†G : Gr−0 → g.
We define

M := Grsm ∩ Gr−0 ,

an open subvariety of Grsm, and denote by jG :M ↪→ Grsm the inclusion. Note that
M is G-stable, so we have an exact functor

(jG)! : PervG(O)(Gr
sm,k) → PervG(M,k).

Let N ⊂ g be the nilpotent cone. By [AH, Theorem 1.1], we have π†G(M) ⊆ N ,
and the restriction

πG : M → N

is a finite morphism. (The assumption in [AH] is that G is simply connected and
simple, but the result for general G follows immediately.) It follows that πG induces
an exact functor (πG)∗ : PervG(M,k)→ PervG(N ,k) (see [BBD, Corollaire 4.1.3]).
We then obtain an exact functor

ΨG := (πG)∗ ◦ (jG)! : PervG(O)(Gr
sm,k) → PervG(N ,k).
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2.6. The functor SG. Recall the Grothendieck–Springer simultaneous resolution

µg : G×B b → g : (g, x) 7→ g · x.
It is well known that µg is proper and small, so

Groth := (µg)!kG×Bb[dim g]

is an object of PervG(g,k). More explicitly, we have a canonical isomorphism

Groth ∼= (jg)!∗
(
(µrs

g )!kµ−1
g (grs)[dim g]

)
where jg : grs ↪→ g is the inclusion of the open set consisting of regular semisimple
elements, and µrs

g denotes the restriction of µg to µ−1
g (grs). Since µrs

g is a Galois
covering with group W , we obtain an action of W on Groth by automorphisms in
PervG(g,k).

Let ig : N ↪→ g be the inclusion of the nilpotent cone, and let r = dim g−dimN
be the rank of G. Let µN : G ×B n → N be the Springer resolution, i.e. the
restriction of µg to G×B n. Since µN is proper and semi-small, the Springer sheaf

Spr := (µN )!kG×Bn[dimN ]

is an object of PervG(N ,k). By base change applied to the cartesian square

G×B n G×B b

NG g

µN µg

ig

we obtain a canonical isomorphism

(2.7) Spr ∼= (ig)∗Groth[−r].
We use this isomorphism to define an action of W on Spr by automorphisms in
PervG(N ,k). This induces a functor

SG : PervG(N ,k) → Rep(W, k),

defined on objects by M 7→ HomPervG(N )(Spr,M). We will show in Proposition 7.10
that SG is exact, or in other words that Spr is a projective object in PervG(N ,k).

Remark 2.1. The above W -action on Groth was defined by Lusztig [L1] (although
he worked in the étale setting, with k = Q`). From it one may obtain a W -action
on Spr in two ways: via the restriction functor (ig)∗ as above, following [BM], or
via the Fourier–Deligne transform, following [Bry] (under some assumptions on k).

When k is a field of characteristic zero, it is known that these two actions coincide
up to tensoring with the sign character; the easiest proof uses the fact that the
homomorphism End(Spr) → End(H•(G/B, k)) obtained by taking the stalk at 0
is injective. It follows that the ring homomorphism kW → End(Spr) resulting
from the restriction definition is an isomorphism (this was first proved in [BM]).
Hence, for any simple object M of PervG(N ,k), SG(M) is either an irreducible
representation of W or zero, with each irreducible representation of W occurring
for a unique M . This is the Springer correspondence, as formulated by Lusztig.

For general k, the homomorphism End(Spr)→ End(H•(G/B, k)) is not injective.
Nevertheless, we will show in a subsequent paper that the two W -actions on Spr
coincide up to tensoring with the sign character, and hence relate the functor SG
to Juteau’s modular Springer correspondence [Ju], which uses the Fourier–Deligne
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transform definition. This result is not required for the proof of Theorem 1.1, but
may be necessary for the application of Theorem 1.1 envisaged in §1.4.

3. Plan of the proof of Theorem 1.1

In this section, we will show how to deduce Theorem 1.1 from certain statements
that will be proved in subsequent sections. From this section on, 2-categorical
methods will be ubiquitous. Before proceeding, the reader may wish to consult
Appendix A for a survey of the notions we need.

3.1. An easy result. For any subgroup W ′ of W , let

RWW ′ : Rep(W, k) → Rep(W ′,k)

denote the restriction functor. Note that we have ForW
′
◦RWW ′ = ForW . In particu-

lar, we will use the functor RWW ′ in the case where W ′ is the subgroup Ws generated
by a simple reflection s.

Proposition 3.1. Suppose we have two k-linear functors G,H : A → Rep(W, k),
where A is some k-linear category, and a given isomorphism of functors

φ : ForW ◦ G ∼
=⇒ ForW ◦ H.

Assume that for any simple reflection s ∈W there is an isomorphism of functors

φWs : RWWs
◦ G ∼

=⇒ RWWs
◦ H such that ForWs ◦ φWs = φ.

Then there is a unique isomorphism of functors

φW : G
∼

=⇒ H

such that ForW ◦ φW = φ.

Proof. The isomorphism φ consists of isomorphisms of k-modules

φX : G(X)
∼−→ H(X)

for all X in A (with compatibility conditions). This isomorphism can be lifted to
an isomorphism φW as in the statement if and only if φX is a morphism of kW -
modules for any X. However, our assumption ensures that φX commutes with the
action of any simple reflection in W . As simple reflections generate W , this implies
that φX commutes with the W -actions. The uniqueness of φW is obvious. �

3.2. Restriction, transitivity and intertwining. To prove Theorem 1.1, we
must define an isomorphism of functors

(3.1) αG : ΦǦ ◦S sm
G

∼
=⇒ SG ◦ΨG.

As foreshadowed in the introduction, we will construct αG in a way that is com-
patible with certain restriction functors from each of the four categories involved
to the corresponding category for a Levi subgroup L:

RG
L : PervG(O)(Gr

sm
G ,k) → PervL(O)(Gr

sm
L ,k),

RǦ
Ľ

: Rep(Ǧ,k)sm → Rep(Ľ,k)sm,

RGL : PervG(NG,k) → PervL(NL,k),

RWG

WL
: Rep(WG,k) → Rep(WL,k).
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The last functor RWG

WL
has already been defined. The other three functors will be

defined in general in Section 4. For now, we will just define them in the special
case where L = T . Note that Rep(Ť ,k)sm is the category of trivial representations

of Ť . We define RǦ
Ť

to be the functor that assigns to any Ǧ-representation its zero

weight space. Next, GrsmT and NT are both just single points, so any k-module can
be regarded as a perverse sheaf on one of these spaces. With this in mind, we put

RG
T = H0

T0
(GrG,−) and RGT = H0

n(NG,−).

For all of the above restriction functors we will define transitivity isomorphisms:

RG
T ⇐⇒ RL

T ◦RG
L ,

RǦ
Ť
⇐⇒ RĽ

Ť
◦ RǦ

Ľ
,

RGT ⇐⇒ RLT ◦ RGL ,

RWG

WT
⇐⇒ RWL

WT
◦ RWG

WL
.

Note thatWT is trivial, so Rep(WT ,k) = Mod(k), and RWG

WT
is the same as ForWG . So

we can (and do) define the last of these transitivity isomorphisms to be the identity

isomorphism from ForWG to itself. The other three transitivity isomorphisms will
be defined in Section 4.

Remark 3.2. In each case, a more general transitivity isomorphism exists, where T
is replaced by a Levi subgroup contained in L. As this generality is not needed for
the proof of Theorem 1.1, we do not consider it.

The bulk of our work will be in showing that the four functors in (1.1) intertwine
the restriction functors in a way that is compatible with the transitivity isomor-
phisms. More precisely, we will define intertwining isomorphisms:

RWG

WL
◦ ΦǦ ⇐⇒ ΦĽ ◦ RǦ

Ľ
,

RGL ◦ΨG ⇐⇒ ΨL ◦RG
L ,

RǦ
Ľ
◦S sm

G ⇐⇒ S sm
L ◦RG

L ,

RWG

WL
◦ SG ⇐⇒ SL ◦ RGL

and show that the following four prisms commute, in the sense explained in Exam-
ple A.5. Here we label each triangular face by the appropriate transitivity isomor-
phism, and each square face by the appropriate intertwining isomorphism, whether
that is the general (G,L) version or either of the (G,T ) and (L, T ) versions that
are entailed as special cases.

(3.2) (InTw) (Tr)

Rep(Ǧ,k)sm Rep(WG,k)

Rep(WL,k)

Rep(Ť ,k)sm Rep(WT ,k)

R
WG
WT

ΦǦ

RǦ
Ť

R
WG
WL

ΦŤ

R
WL
WT

(InTw)

(InTw)

(Tr)
Rep(Ľ,k)sm

RǦ
Ľ

RĽ
Ť

ΦĽ
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(3.3) (InTw) (Tr)

PervG(O)(Gr
sm
G ,k) PervG(NG,k)

PervL(NL,k)

PervT (O)(Gr
sm
T ,k) PervT (NT ,k)

RG
T

ΨG

RG
T

RG
L

ΨT

RL
T

(InTw)

(InTw)

(Tr)PervL(O)(Gr
sm
L ,k)

RG
L

RL
T

ΨL

(3.4) (InTw) (Tr)

PervG(O)(Gr
sm
G ,k) Rep(Ǧ,k)sm

Rep(Ľ,k)sm

PervT (O)(Gr
sm
T ,k) Rep(Ť ,k)sm

RǦ
Ť

S sm
G

RG
T

RǦ
Ľ

S sm
T

RĽ
Ť

(InTw)

(InTw)

(Tr)PervL(O)(Gr
sm
L ,k)

RG
L

RL
T

S sm
L

(3.5) (InTw) (Tr)

PervG(NG,k) Rep(WG,k)

Rep(WL,k)

PervT (NT ,k) Rep(WT ,k)

R
WG
WT

SG

RG
T

R
WG
WL

ST

R
WL
WT

(InTw)

(InTw)

(Tr) PervL(NL,k)

RG
L

RL
T

SL

The definitions of the intertwining isomorphisms for ΦǦ and ΨG, and the proofs
that (3.2) and (3.3) commute, will be given in Section 5. The definition of the
intertwining isomorphism for S sm

G and the proof that (3.4) commutes will be given
in Section 6. The definition of the intertwining isomorphism for SG and the proof
that (3.5) commutes will be given in Section 7.

3.3. Constructing αG. Assuming all the definitions and commutativity results
referred to in §3.2, the construction of the isomorphism (3.1) proceeds as follows.

First, we construct an analogous isomorphism for T . Observe that the functor
ΨT : PervT (O)(Gr

sm
T ,k) → PervT (NT ,k) is the obvious isomorphism of categories.

Moreover, recalling that Rep(WT ,k) = Mod(k), we have that ΦŤ : Rep(Ť ,k)sm →
Mod(k) is also an obvious isomorphism. The composition ΦŤ ◦S sm

T is the equiv-
alence of categories H0 : PervT (O)(Gr

sm
T ,k) → Mod(k). Since Spr

T
is canonically

isomorphic to the constant sheaf kNT
, we have a canonical isomorphism

(3.6) αT : ΦŤ ◦S sm
T

∼
=⇒ ST ◦ΨT .

We can now state a more precise version of Theorem 1.1.
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Theorem 3.3. There is a unique isomorphism αG : ΦǦ ◦S sm
G

∼
=⇒ SG ◦ ΨG that

makes the following cube commutative:

(3.7)

Rep(Ť ,k)sm

(InTw)

(InTw)

αT

PervG(O)(Gr
sm
G ,k) Rep(Ǧ,k)sm

Rep(WG,k)

Rep(WT ,k)PervT (NT ,k)

PervT (O)(Gr
sm
T ,k)

RǦ
Ť

S sm
T

ΦŤ

S sm
G

ΦǦ

R
WG
WT

ST

ΨT

RG
T

(InTw)

αG

(InTw)

PervG(NG,k)

ΨG

SG

RG
T

Here the top face is to be labelled by αG, the bottom face by αT , and the other faces
by the appropriate intertwining isomorphisms.

In Section 8, we will prove Theorem 3.3 in the special case that G has semisimple
rank 1. Assuming that, the proof of Theorem 3.3 in general is as follows.

Proof. First, note that from the isomorphisms already defined we have an isomor-
phism

(3.8) φG,T : RWG

WT
◦ ΦǦ ◦S sm

G
∼

=⇒ RWG

WT
◦ SG ◦ΨG,

namely that obtained as the composition of the five already constructed edges of
the hexagon (A.6) associated to our cube:

(3.9)

RWG

WT
◦ ΦǦ ◦S sm

Gdl

$,
RWG

WT
◦ SG ◦ΨG
KS

��

ΦŤ ◦ RǦ
Ť
◦S sm

GKS

��
SG ◦ RGT ◦ΨGdl

$,

ΦŤ ◦S sm
G ◦RG

T2:

rz
SG ◦ΨT ◦RG

T

Saying that αG makes the cube (3.7) commutative is the same as saying that

RWG

WT
◦ αG = φG,T .

By Proposition 3.1, the existence and uniqueness of such αG will follow if we can
show that whenever L has semisimple rank 1, there exists an isomorphism

φWL : RWG

WL
◦ ΦǦ ◦S sm

G
∼

=⇒ RWG

WL
◦ SG ◦ΨG such that RWL

WT
◦ φWL = φG,T .

For the remainder of the proof, let L have semisimple rank 1. By the special case
of Theorem 3.3 that we are assuming, there is an isomorphism αL : ΦĽ ◦S sm

L
∼

=⇒
SL ◦ ΨL such that the cube (3.7), with G replaced by L, is commutative; in other

words, such that RWL

WT
◦ αL = φL,T . Then we can glue to this commutative cube

the four commutative prisms (3.2), (3.3), (3.4), (3.5) to produce the labelled 2-
computad shown in Figure 3.1.
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PG(O)(Gr
sm
G )

S sm
G //

RG
T

��

ΨG

))
RG

L

��

Rep(Ǧ)sm

RǦ
Ľ

�� RǦ
Ť

��

Φ
Ǧ

**
PG(NG)

SG //

RG
T

��

RG
L

��

Rep(WG)

R
WG
WT

��

R
WG
WL

��

Rep(WG)

R
WG
WT

��

R
WG
WL

~~

PL(O)(Gr
sm
L )

S sm
L //

RL
T

��

ΨL

((

Rep(Ľ)sm

RĽ
Ť

��

Φ
Ľ

((
PL(NL)

SL //

RL
T

��

Rep(WL)

R
WL
WT

��

PT (O)(Gr
sm
T )

S sm
T //

ΨT ))

Rep(Ť )sm

Φ
Ť

((
PT (NT )

ST
// Rep(WT )

Figure 3.1. Diagram for the proof of Theorem 3.3. (Here, to save
space, we abbreviate P = Perv.)

Notice that we have glued the prisms together along the triangular faces that
they share, except that we have left unglued the two copies of the face labelled by
the transitivity isomorphism RWG

WT
⇐⇒ RWL

WT
◦ RWG

WL
. Recall that this isomorphism

is in fact just an equality.
By the gluing principle of §A.3, the labelled 2-computad in Figure 3.1 is commu-

tative. Its boundary consists of two pasting diagrams with domain RWG

WT
◦ΦǦ ◦S sm

G

and codomain RWG

WT
◦ SG ◦ΨG, one of which (on the underside of the picture, from

an imagined viewpoint above and to the right) has composite φG,T and the other of

which has composite RWL

WT
◦φG,L, where φG,L : RWG

WL
◦ΦǦ◦S sm

G
∼

=⇒ RWG

WL
◦SG◦ΨG is

defined in the same way as φG,T but with L in place of T . Hence RWL

WT
◦φG,L = φG,T ,

and φG,L is the required isomorphism φWL . �

Having constructed the isomorphism αG : ΦǦ◦S sm
G

∼
=⇒ SG◦ΨG to be compatible

with restriction to the maximal torus T , in the sense of Theorem 3.3, we can easily
deduce that it is compatible with restriction to any Levi subgroup L containing T .
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Proposition 3.4. For any Levi subgroup L containing T , the following cube is
commutative:

Rep(Ľ,k)sm

(InTw)

(InTw)

αL

PervG(O)(Gr
sm
G ,k) Rep(Ǧ,k)sm

Rep(WG,k)

Rep(WL,k)PervL(NL,k)

PervL(O)(Gr
sm
L ,k)

RǦ
Ľ

S sm
L

ΦĽ

S sm
G

ΦǦ

R
WG
WL

SL

ΨL

RG
L

(InTw)

αG

(InTw)

PervG(NG,k)

ΨG

SG

RG
L

Here the top face is labelled by αG, the bottom face by αL, and the other faces by
the appropriate intertwining isomorphisms.

Proof. Consider once again the commutative labelled 2-computad of Figure 3.1.
(We no longer need to assume that L has semisimple rank 1 to construct this,
because Theorem 3.3 is now proved for any connected reductive group, and in
particular for L.) It shows that RWL

WT
◦ φG,L = φG,T where φG,L and φG,T are

defined as above. We also know that RWL

WT
◦ RWG

WL
◦ αG = RWG

WT
◦ αG = φG,T . Since

RWL

WT
is faithful, it follows that RWG

WL
◦αG = φG,L. This equality is equivalent to the

commutativity of the cube in the statement. �

3.4. Canonicity of αG. In Section 2, we fixed a choice B ⊃ T , but the isomor-
phism αG of Theorem 3.3 is actually independent of this choice. We conclude this
section by briefly explaining why.

To make sense of this assertion, we must first replace the various categories and
functors in (3.7) by versions that do not depend on the choice of Borel subgroup
and maximal torus. If G ⊃ B′ ⊃ T ′ is another such choice, then of course there
are g ∈ G such that gBg−1 = B′ and gTg−1 = T ′. The key observation is that
although g is not unique, the induced map of quotients

B/[B,B] → B′/[B′, B′]

is independent of g. Thus, the groups B/[B,B] and B′/[B′, B′] are canonically
identified. Let T denote either one of them. We call T the universal maximal
torus for G. Its Lie algebra H, the universal Cartan algebra, is acted on by a
reflection group W, the universal Weyl group. (See [CG, Lemma 3.1.26] and the
discussion following it.) The pair B ⊃ T determines a unique isomorphism WG

∼=
W. Moreover, the induced action of W on Spr is independent of this choice, so the
Springer functor SG can be regarded as taking values in Rep(W,k).

Similar considerations lead to the notion of the universal zero weight space of a
Ǧ-module V . Let B̌ ⊂ Ǧ be the Borel subgroup corresponding to B ⊂ G. This
group contains Ť and determines a partial order on the set of characters of Ť .
Let V≥0 (resp. V>0) be the submodule on which Ť acts with weights that are ≥ 0
(resp. > 0) in this partial order. Define V ′≥0 and V ′>0 similarly, but with respect to

another pair B̌′ ⊃ Ť ′. As above, suitable elements of Ǧ give rise to noncanonical
isomorphisms V≥0 → V ′≥0 and V>0 → V ′>0, and to a unique isomorphism

V≥0/V>0 → V ′≥0/V
′
>0.
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Moreover, the universal Weyl group W and the dual universal maximal torus Ť
act on these spaces (the latter acting trivially), and the isomorphism is W- and Ť-
equivariant. We therefore have a universal version of ΦǦ taking values in Rep(W,k),

as well as a functor RǦ
Ť

taking values in Rep(Ť,k)sm.

The existence of a universal version of RG
T , taking values in PervT(O)(Gr

sm
T ,k),

is proved in [MV2, Theorem 3.6]. This result is less elementary than the situations
considered above: roughly, as the choice B′ ⊃ T ′ varies, the various functors RG

T ′

(perhaps better denoted RG
B′⊃T ′) can be assembled into a local system on G/T .

That local system is trivial because G/T is simply connected, so the various functors
RG
B′⊃T ′ are canonically isomorphic to one another. The same argument shows that

RGT has a universal version as well.
For the remaining functors in (3.7), the independence of the choice of B ⊃ T

is obvious. Taken together, the preceding paragraphs describe how to construct a
version of (3.7) whose 1-skeleton is universal. A priori, the top face is labelled by
a 2-cell αG = αG⊃B⊃T that depends on the choice of B ⊃ T , but the uniqueness
asserted in Theorem 3.3 implies that αG⊃B⊃T = αG⊃B′⊃T ′ for any other choice
B′ ⊃ T ′. In other words, αG is independent of this choice.

4. Restriction to a Levi subgroup

Throughout Sections 4–7, we fix a parabolic subgroup P ⊂ G containing B,
and we let L be the unique Levi factor of P containing T . We denote by UP
the unipotent radical of P . Of course, any notation or construction for the triple
G ⊃ P ⊃ L can be used for G ⊃ B ⊃ T or L ⊃ C ⊃ T , where C = B ∩ L.

In this section, after reviewing some well-known properties of the Satake equiv-
alence with respect to restriction to a Levi subgroup, we define the restriction
functors (from the category associated to G to the category associated to L) for the
categories Rep(Ǧ,k)sm, PervG(O)(Gr

sm
G ,k) and PervG(NG,k), and the transitivity

isomorphisms for these restriction functors.

4.1. Review of the Satake equivalence and restriction. Consider the diagram

(4.1) GrL GrP
qPoo iP // GrG

where qP is induced by the projection P � L whose kernel is the unipotent radical
UP , and iP is induced by the embedding P ↪→ G. Define the functor

R̃G
L := (qP )∗ ◦ (iP )! : Db(GrG,k) → Db(GrL,k).

This functor does not map the subcategory PervG(O)(GrG,k) of Db(GrG,k) into the

subcategory PervL(O)(GrL,k) of Db(GrL,k); however, the following modification of
this functor has this property.

Recall that the connected components of GrL are parametrized by characters of

Z(L̃), where L̃ ⊂ Ǧ is the Levi subgroup containing Ť whose roots are dual to those

of L (and Z(L̃) is its centre), see [BD, Proposition 4.5.4]. If M is in Db(GrL,k)

and χ ∈ X∗(Z(L̃)), we denote by Mχ the restriction of M to the corresponding
connected component. Define the functor

R
G

L : Db(GrG,k) → Db(GrL,k)
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by the formula

R
G

L (M) =
⊕

χ∈X∗(Z(L̃))

(
R̃G
L (M)

)
χ
[〈χ, 2ρL − 2ρG〉],

where ρG and ρL are the half sums of positive roots of G and L. (Here we use that

the cocharacter 2ρL − 2ρG of Ť factors through Z(L̃).) Then it is proved in [BD,

Proposition 5.3.29] that R
G

L restricts to a functor

R
G

L : PervG(O)(GrG,k) → PervL(O)(GrL,k).

Moreover, it is explained in [BD, §5.3.30] that this functor is a tensor functor.
Applying base change for the cartesian square

(4.2)

GrB GrP

GrC GrL

we obtain a natural isomorphism of functors:

(4.3) R̃G
T ⇐⇒ R̃L

T ◦ R̃G
L : Db(GrG,k) → Db(GrT ,k).

More precisely, this isomorphism is defined by the following pasting diagram:

(4.4)

(Co)

(Co)

(BC)

Db(GrG) Db(GrP ) Db(GrL)

Db(GrB) Db(GrC)

Db(GrT )

(·)!

(·)!

(·)!

(·)∗

(·)!

(·)∗

(·)∗

(·)∗

For simplicity, we have not indicated the morphisms; all of them are the obvious
ones (induced by the inclusions of groups for the (·)! functors, or by projections
for the (·)∗ functors). The notations (Co) and (BC), and similar notations for
isomorphisms of functors used in later diagrams, are explained in Appendix B.

Restricting to perverse sheaves and taking shifts into account, one can easily
check that isomorphism (4.3) induces an isomorphism of functors

(4.5) R
G

T ⇐⇒ R
L

T ◦R
G

L : PervG(O)(GrG,k) → PervT (O)(GrT ,k).

Consider the case P = B, L = T . The morphism iB : GrB → GrG is a bijection
and a locally closed embedding, which factors through a natural identification

GrB
∼−→

⊔
λ∈X

Tλ.

Using this identification, the composition of R
G

T with the equivalence

ST : PervT (O)(GrT ,k)
∼−→ Rep(Ť ,k)
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is identified with the functor FX of §2.1, so that (2.1) induces an isomorphism

(4.6) FG ⇐⇒ ForŤ ◦ST ◦R
G

T = FT ◦R
G

T .

Hence, composing isomorphism (4.5) with FT provides an isomorphism of functors

(4.7) FG ⇐⇒ FL ◦R
G

L .

It is explained in [BD, §5.3.30] that this isomorphism is an isomorphism of tensor
functors. If Ľ is the k-algebraic group provided by the constructions of §2.1 for the
group L, we obtain using (4.7) a morphism of algebraic groups

ιǦ
Ľ

: Ľ = Aut?(FL) → Aut?(FL ◦R
G

L ) ∼= Aut?(FG) = Ǧ.

It is known that ιǦ
Ľ

is injective, and that its image is the subgroup denoted L̃ above

(see [BD, Lemma 5.3.31]). We can therefore identify Ľ with L̃. Note that the
following diagram of isomorphisms of functors is commutative by construction of
isomorphism (4.7):

(4.8)

FG ks
(4.6)G +3

KS

(4.7)

��

FT ◦R
G

TKS

(4.5)

��

FL ◦R
G

L
ks (4.6)L +3 FT ◦R

L

T ◦R
G

L

Let

R
Ǧ

Ľ : Rep(Ǧ,k) → Rep(Ľ,k)

be the restriction functor (i.e. inverse image for the morphism ιǦ
Ľ

). We have

(4.9) ForĽ ◦ R
Ǧ

Ľ = ForǦ.

By construction, isomorphism (4.7) lifts to an isomorphism of functors

(4.10) R
Ǧ

Ľ ◦SG ⇐⇒ SL ◦R
G

L .

In the case P = B, L = T the morphism ιǦ
Ť

: Ť → Ǧ is the morphism considered

in §2.1. Moreover, by commutativity of (4.8) we have

ιǦ
Ľ
◦ ιĽ

Ť
= ιǦ

Ť
.

It follows that we have

(4.11) R
Ǧ

Ť = R
Ľ

Ť ◦ R
Ǧ

Ľ : Rep(Ǧ,k) → Rep(Ť ,k).

Lemma 4.1. The following prism is commutative:

(4.10) (4.11)

PervG(O)(GrG,k) Rep(Ǧ,k)

Rep(Ľ,k)

PervT (O)(GrT ,k) Rep(Ť ,k)

R
Ǧ
Ť

SG

R
G
T

R
Ǧ
Ľ

ST

R
Ľ
Ť

(4.10)

(4.10)

(4.5) PervL(O)(GrL,k)

R
G
L

R
L
T

SL
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Proof. In more down-to-earth terms, we have to prove that the following diagram
of isomorphisms of functors is commutative:

R
Ľ

Ť ◦ R
Ǧ

Ľ ◦SG
ks (4.11) +3

KS
(4.10)G,L

��

R
Ǧ

Ť ◦SG
ks
(4.10)G,T +3 ST ◦R

G

TKS

(4.5)

��

R
Ľ

Ť ◦SL ◦R
G

L
ks

(4.10)L,T

+3 ST ◦R
L

T ◦R
G

L .

As the functor ForŤ : Rep(Ť ,k) → Mod(k) is faithful, it is enough to prove the

commutativity of the diagram obtained by composing each functor with ForŤ . But
the resulting diagram can be identified (using (4.9)) with diagram (4.8), which is
commutative by construction. �

4.2. Restriction functor for small representations. Consider now the functor

RǦ
Ľ := (−)Z(Ľ) ◦ R

Ǧ

Ľ ◦ IǦ : Rep(Ǧ,k)Z(Ǧ) → Rep(Ľ,k)Z(Ľ).

By (4.11) and the fact that Z(Ǧ) ⊂ Z(Ľ) ⊂ Z(Ť ) = Ť , we have

(4.12) RǦ
Ť = RĽ

Ť ◦ RǦ
Ľ : Rep(Ǧ,k)Z(Ǧ) → Rep(Ť ,k)Z(Ť ).

Lemma 4.2. There is a unique functor

RǦ
Ľ

: Rep(Ǧ,k)sm → Rep(Ľ,k)sm

such that

(4.13) RǦ
Ľ ◦ I

0
Ǧ

= I0
Ľ
◦ RǦ

Ľ
.

Proof. We have to show that for any V ∈ Rep(Ǧ,k)sm, the object V ′ := (R
Ǧ

ĽV )Z(Ľ)

is in Rep(Ľ,k)sm. By definition, the Ľ-action on V ′ factors through Ľ/Z(Ľ), hence
all the Ť -weights of V ′ are in ZŘ. Moreover, the convex hull of weights of V ′ is
included in the convex hull of weights of V , hence does not contain any weight of
the form 2α̌ for a root α̌ of Ľ. In other words, the Ť -weights of V ′ are small for Ľ,
which proves the lemma. �

We deduce from (4.12) that we have

(4.14) RǦ
Ť

= RĽ
Ť
◦ RǦ

Ľ
.

We therefore define the transitivity isomorphism for RǦ
Ľ

to be simply this equality.

4.3. Restriction functor for PervG(O)(Gr
sm
G ). As an intermediate step, we first

construct restriction functors for connected components of base points in affine
Grassmannians. Let us consider the diagram

(4.15) Gr◦L Gr◦P
q◦Poo i◦P // Gr◦G

obtained by restriction of diagram (4.1) to connected components of the base points,
and the functor

RG
L := (q◦P )∗ ◦ (i◦P )! : Db(Gr◦G,k) → Db(Gr◦L,k).

Recall that zG denotes the inclusion Gr◦G ↪→ GrG; define zP , zL similarly.
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Lemma 4.3. There is a canonical isomorphism of functors

(4.16) (zL)! ◦RG

L ⇐⇒ RG
L ◦ (zG)!.

In particular, the functor RG
L restricts to a functor (denoted similarly) from the

category PervG(O)(Gr
◦
G,k) to PervL(O)(Gr

◦
L,k).

Proof. We have a cartesian square

(4.17)

Gr◦P Gr◦L

GrP GrL

q◦P

zP zL

qP

Then the pasting diagram

(4.18) (Co) (BC)

Db(GrG) Db(GrP ) Db(GrL)

Db(Gr◦G) Db(Gr◦P ) Db(Gr◦L)

(iP )!

(i◦P )!

(qP )∗

(q◦P )∗

(zG)! (zP )! (zL)!

defines the desired isomorphism, since (zL)! ◦RG

L = (zL)! ◦ R̃G
L . �

Restricting the cartesian square (4.2) to connected components of base points
produces the cartesian square

(4.19)

Gr◦B Gr◦P

Gr◦C Gr◦L

Then, using the pasting diagram

(4.20)

(Co)

(Co)

(BC)

Db(Gr◦G) Db(Gr◦P ) Db(Gr◦L)

Db(Gr◦B) Db(Gr◦C)

Db(Gr◦T )

(·)!

(·)!

(·)!

(·)∗

(·)!

(·)∗

(·)∗

(·)∗

and restricting to perverse sheaves we obtain a canonical isomorphism of functors

(4.21) RG
T ⇐⇒ RL

T ◦R
G
L : PervG(O)(Gr

◦
G,k) → PervT (O)(Gr

◦
T ,k).

Since P is not reductive, we have not hitherto defined the notation GrsmP . We set

GrsmP := Gr◦P ∩ (iP )−1(GrsmG ),
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and denote by fP : GrsmP ↪→ GrP the inclusion. Note that although GrsmP depends on
G, we omit G from the notation for brevity; we have analogous definitions of GrsmB
(omitting G from the notation) and GrsmC (omitting L from the notation).

The following result is a geometric counterpart of Lemma 4.2.

Lemma 4.4. There is a unique morphism

qsmP : GrsmP → GrsmL

such that fL ◦ qsmP = qP ◦ fP .

Proof. We have to show that qP (GrsmP ) ⊂ GrsmL ; assume the contrary. As GrsmP is
L(O)-stable and qP is L(O)-equivariant, there exists λ ∈ X which is not small for
Ľ and such that tλ ∈ qP (GrsmP ). Then qP (GrsmP ) ∩ TLλ 6= ∅, where TLλ is the locally
closed subvariety of GrL defined in §2.1 (for the group L instead of G). This implies
that GrsmP ∩ (qP )−1(TLλ ) 6= ∅, hence that

GrsmG ∩ iP
(
(qP )−1(TLλ )

)
6= ∅

(since iP
(
GrsmP ∩ (qP )−1(TLλ )

)
⊂ GrsmG ∩ iP

(
(qP )−1(TLλ )

)
).

However we have iP
(
(qP )−1(TLλ )

)
= TGλ (see the cartesian square (4.2)), hence

GrsmG ∩ TGλ 6= ∅. This means that there exists µ ∈ X which is small for Ǧ and such
that GrµG ∩TGλ 6= ∅. By [MV2, Theorem 3.2] we deduce that λ is in the convex hull

of WG · µ, which contradicts the fact that λ is not small for Ľ. �

Using the lemma we can consider the diagram

(4.22) GrsmL GrsmP
qsmPoo ismP // GrsmG

where ismP denotes the restriction of iP to GrsmP , and thus define the functor

RG
L := (qsmP )∗ ◦ (ismP )! : Db(GrsmG ,k) → Db(GrsmL ,k).

Let us denote by f◦P : GrsmP ↪→ Gr◦P the (closed) inclusion; recall the notation f◦G
and f◦L for the analogous inclusions.

Lemma 4.5. There is a canonical isomorphism of functors

(f◦L)∗ ◦RG
L ⇐⇒ RG

L ◦ (f◦G)∗.

In particular, the functor RG
L restricts to a functor (denoted similarly) from the

category PervG(O)(Gr
sm
G ,k) to PervL(O)(Gr

sm
L ,k).

Proof. By definition of GrsmP , we have a cartesian square

(4.23)

GrsmP GrsmG

Gr◦P Gr◦G

ismP

f◦P f◦G

i◦P
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Then the pasting diagram

(4.24) (BC) (Co)

Db(GrsmG ) Db(GrsmP ) Db(GrsmL )

Db(Gr◦G) Db(Gr◦P ) Db(Gr◦L)

(ismP )!

(i◦P )!

(qsmP )∗

(q◦P )∗

(f◦G)∗ (f◦P )∗ (f◦L)∗

produces the desired isomorphism. �

Now we construct a transitivity isomorphism for RG
L . We need some preparation.

First, observe that the morphism GrB → GrP induced by the inclusion B ↪→ P
induces a morphism GrsmB → GrsmP . Similarly, as the composition GrB → GrC → GrL
coincides with the composition GrB → GrP → GrL, one can deduce from Lemma
4.4 that the natural morphism GrB → GrC induces a morphism GrsmB → GrsmC .

Lemma 4.6. The following square is cartesian:

GrsmB GrsmP

GrsmC GrsmL

a

b qsmP

ismC

Proof. Let x ∈ GrsmP and y ∈ GrsmC be such that qsmP (x) = ismC (y). As (4.19) is
cartesian, there exists z ∈ Gr◦B such that a(z) = x and b(z) = y. The fact that
x ∈ GrsmP implies that iP (x) = iB(z) ∈ GrsmG . This proves that z ∈ GrsmB , hence the
lemma. �

Using Lemma 4.6, the pasting diagram

(4.25)

(Co)

(Co)

(BC)

Db(GrsmG ) Db(GrsmP ) Db(GrsmL )

Db(GrsmB ) Db(GrsmC )

Db(GrsmT )

(·)!

(·)!

(·)!

(·)∗

(·)!

(·)∗

(·)∗

(·)∗

produces (by restriction to perverse sheaves) the desired isomorphism of functors

(4.26) RG
T ⇐⇒ RL

T ◦RG
L : PervG(O)(Gr

sm
G ,k) → PervT (O)(Gr

sm
T ,k).

4.4. Restriction functor for PervG(NG). Consider the diagram

(4.27) NL NP
pPoo mP // NG

where NP ⊂ p denotes the nilpotent cone of P (as with our notation for reductive
groups), pP is induced by the projection P → L, and mP is induced by the inclusion
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P ↪→ G. We define the functor

RGL := (pP )∗ ◦ (mP )! : Db(NG,k) → Db(NL,k).

Our first goal in this subsection is to prove the following result. (The analogue
for Q`-sheaves is due to Lusztig; we need a different proof since in our context the
categories are not semisimple.)

Proposition 4.7. The functor RGL restricts to an exact functor (denoted similarly)
from PervG(NG,k) to PervL(NL,k).

In order to prove this result, it is convenient to consider the functor defined
similarly on equivariant derived categories. First, a general remark on equivariant
perverse sheaves: although we have defined PervH(X) as a full subcategory of
Db(X), there is also the full subcategory of the equivariant derived category Db

H(X)
consisting of perverse sheaves (see [BL, §5.1]), which we will denote Perv′H(X).
Recall that for connected H, the forgetful functor For : Db

H(X)→ Db(X) restricts
to an equivalence For : Perv′H(X)→ PervH(X) (see [MV1, Theorem A.3(i)]).

We denote by R̃GL the composition of functors

Db
G(NG)

ForGP // Db
P (NG)

(mP )!

// Db
P (NP )

(pP )∗ // Db
P (NL)

ForPL // Db
L(NL).

Here, P acts on NL via the projection P → L, and the functors are defined as in

§B.9 and §B.10.1. The functor R̃GL liftsRGL in the sense that there is an isomorphism

(4.28) RGL ◦ For ⇐⇒ For ◦ R̃GL
obtained from the following pasting diagram:

(Tr)

(For) (For)
(Tr)

Db
G(NG) Db

P (NG) Db
P (NP ) Db

P (NL) Db
L(NL)

Db(NG) Db(NP ) Db(NL)

ForGP (mP )! (pP )∗ ForPL

(mP )! (pP )∗

For
For For For

For

The functor R̃GL has a left adjoint ĨGL : Db
L(NL) → Db

G(NG), defined as the
following composition:

Db
G(NG) oo

γG
P Db

P (NG) oo
(mP )! Db

P (NP ) oo
(pP )∗

Db
P (NL) oo

γP
L Db

L(NL).

Here, γHK is the left adjoint of ForHK (see [BL, §3.7.1] or §B.10.1). Note that since
UP is contractible and acts trivially on NL, the functor γPL : Db

L(NL) → Db
P (NL)

is an equivalence, with inverse ForPL (see [BL, Theorem 3.7.3]).

Lemma 4.8. The functor ĨGL is right exact for the perverse t-structure.

Proof. For any L-orbit O ⊂ NL, we denote by jO : O ↪→ NL the inclusion. Then,
for any L-equivariant local system E on O, we consider the object

∆(O, E) := (jO)!E [dim O]

of Db
L(NL). (By a local system, we mean a locally constant sheaf of finitely-

generated k-modules, not necessarily free.) These objects can be used to describe
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the perverse t-structure on Db
L(NL) as follows: pD≤0

L (NL) is the smallest full sub-
category of Db

L(NL) that contains all ∆(O, E)[n] with n ≥ 0 and is stable under
extensions. Hence to prove the lemma it is sufficient to prove that

(4.29) ĨGL∆(O, E) ∈ pD≤0
G (NG)

for all O and E .
Let us fix such a pair (O, E). Consider the map

nO : G×P (O + uP ) → NG
induced by the (adjoint) G-action on NG, where uP is the Lie algebra of UP .
For x ∈ NG, an estimate of the dimension of the fiber n−1

O (x) is given in [L2,
Proposition 1.2(b)]:

(4.30) dim
(
n−1

O (x)
)
≤ 1

2

(
dimG− dim(G · x)− dimL+ dim O

)
.

Now, by definition we have ĨGL∆(O, E) ∼= γGPMO,E , where

MO,E := (j′O)!

(
E � kuP

)
[dim O]

and j′O : O + uP ↪→ NG is the inclusion. Let also iO : O + uP ↪→ G×P (O + uP ) be
the natural inclusion. Then we have

γGPMO,E ∼= γGP (nO)!(iO)!

(
E � k

)
[dim O]

(Int)∼= (nO)!γ
G
P (iO)!

(
E � k

)
[dim O]

where (Int) is defined in §B.10.1. As explained in §B.17, the composition γGP (iO)! :
Db
P (O +uP )→ Db

G(G×P (O +uP )) is an equivalence of categories, and is inverse to

(iO)∗ForGP [−dim(G)+dim(L)]. It follows that γGP (iO)!

(
E�k

)
[dim O] is concentrated

in degree −dim(O) − dim(G) + dim(L). Hence, using (4.30), we deduce that, for
any x ∈ NG,

Hi
(
(ĨGL∆(O, E))|x

) ∼= Hi
c

(
n−1

O (x), (γGP (iO)!

(
E � k

)
[dim O])|n−1

O (x)

)
vanishes unless i ≤ −dim(G · x), see [Iv, Proposition X.1.4]. This proves (4.29),
hence the lemma. �

Remark 4.9. The dimension estimate (4.30) amounts to saying that nO is semismall.
That notion is usually applied to proper maps, where it implies that the push-
forward of the constant sheaf is (a suitable shift of) a perverse sheaf. Here, since
nO is not proper, we obtain only a one-sided statement.

Let P− be the parabolic subgroup of G which is opposite to P (i.e. the T -weights
of the Lie algebra of P− are opposite to those of the Lie algebra of P ). We have a
diagram

NL NP−
pP−oo mP− // NG

hence we can consider the functor

′RGL := (pP−)! ◦ (mP−)∗ : Db(NG) → Db(NL).

As for RGL , this functor has a lift ′R̃GL to equivariant derived categories, which is
the composition

Db
G(NG)

ForG
P− // Db

P−(NG)
(mP− )∗// Db

P−(NP−)
(pP− )! // Db

P−(NL)
ForP

−
L // Db

L(NL).
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The functor ′R̃GL has a right adjoint ′ĨGL , defined as the composition

Db
G(NG) oo

ΓG
P− Db

P−(NG) oo
(mP− )∗

Db
P−(NP−) oo

(pP− )!

Db
P−(NL) oo

ΓP−
L Db

L(NL).

Here, ΓHK is the right adjoint of ForHK (see [BL, §3.7.1]).

Lemma 4.10. The functor ′ĨGL is left exact for the perverse t-structure.

Proof. Similar to the proof of Lemma 4.8, using the objects

∇(O, E) := (jO)∗E [dim O]

instead of ∆(O, E). In this case, the required vanishing statement is provided by
Lemma 4.11 below. �

Lemma 4.11. Let X be a smooth variety, and Y ⊂ X a closed subvariety of
codimension d. Then for any local system E on X we have

Hi
Y (X, E) = 0

unless i ≥ 2d.

Sketch of proof. The case E is constant follows from [Iv, Theorem X.2.1]. One
deduces the general case using a covering of X which trivializes E together with the
excision exact sequence [Iv, II.9.5] and the excision isomorphism [Iv, II.9.6]. �

Proof of Proposition 4.7. As the left adjoint ĨGL of R̃GL is right exact (see Lemma

4.8), R̃GL is left exact. As the functor For : Perv′G(NG) → PervG(NG) is an equiv-
alence, using (4.28) and the definition of the perverse t-structure on Db

G(NG), it
follows that RGL sends PervG(NG) inside pD≥0(NL).

By the same argument (using Lemma 4.10), the functor ′R̃GL is right exact. As
above, it follows that ′RGL sends PervG(NG) inside pD≤0(NL).

Finally, by [Bra, Theorem 1], for any M in PervG(NG) there is an isomorphism

RGL (M) ∼= ′RGL (M),

hence both of these objects are in PervL(NL). �

Remark 4.12. Since by definition an object of the equivariant derived category is
a perverse sheaf if and only if its image under For is perverse (see [BL, §5.1]),

one deduces from Proposition 4.7 that the functor R̃GL restricts to a functor from
Perv′G(NG) to Perv′L(NL).

Finally we must explain how to construct a transitivity isomorphism

(4.31) RGT ⇐⇒ RLT ◦ RGL : PervG(NG,k) → PervT (NT ,k).

In fact, using the cartesian square

(4.32)

NB NP

NC NL
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(where all morphisms are the natural ones), the pasting diagram

(4.33)

(Co)

(Co)

(BC)

Db(NG) Db(NP ) Db(NL)

Db(NB) Db(NC)

Db(NT )

(·)!

(·)!

(·)!

(·)∗

(·)!

(·)∗

(·)∗

(·)∗

produces the desired isomorphism of functors (by restriction to perverse sheaves).

5. The functors ΦǦ and ΨG and restriction to a Levi

Our aim in this section is to define intertwining isomorphisms RWG

WL
◦ ΦǦ ⇐⇒

ΦĽ ◦ RǦ
Ľ

and RGL ◦ ΨG ⇐⇒ ΨL ◦ RG
L that are compatible with the transitivity

isomorphisms we have defined, in the sense that the prisms (3.2) and (3.3) are
commutative.

5.1. The functor ΦǦ. Let V be an object of Rep(Ǧ,k). Since Z(Ľ) ⊂ Ť , the zero

weight space of V is the same as the zero weight space of V Z(Ľ). Of course, the
sign character of WG restricts to that of WL. Hence we in fact have an equality

(5.1) RWG

WL
◦ ΦǦ = ΦĽ ◦ RǦ

Ľ
,

and we declare this to be the intertwining isomorphism.
Since all the isomorphisms labelling faces of the prism (3.2) are equalities, the

prism is trivially commutative.

5.2. Intertwining isomorphism for the functor ΨG. We need some prepara-
tory results. In the next lemma, we identify GrL with its image in GrG.

Lemma 5.1. We have equalities

Gr−0,G ∩ GrL = Gr−0,L, MG ∩ GrL = ML.

Proof. The first equality follows from the fact that

Gr−0,G = {x ∈ GrG | lim
s→∞

s · x = t0},

where the Gm-action considered here is the loop rotation. (This fact follows from
the Birkhoff decomposition.) The second equality is a consequence, using the ob-
vious inclusion GrsmG ∩ Gr◦L ⊂ GrsmL . �

Lemma 5.2. The following square is cartesian:

ML MG

NL NG

πL πG
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Proof. Note first that the square commutes by [AH, Lemma 2.4]. Let Z◦(L) denote
the identity component of the center of L, and let x ∈ NL. Since x is fixed by Z◦(L)
and π−1

G (x) is a finite set, each point y ∈ π−1
G (x) must be fixed by Z◦(L) as well.

It is known that the fixed-point set of Z◦(L) on GrG is precisely GrL. In view of
Lemma 5.1, we have y ∈ MG ∩ GrL =ML. But then πL(y) = x. In other words,
y ∈ π−1

L (x), so π−1
L (x) = π−1

G (x), as desired. �

Now recall the diagram (4.22) relating GrsmL and GrsmG , and the diagram (4.27)
relating NL and NG. We need a similar diagram relating ML and MG. Since P
is not reductive, the notationMP does not yet have a meaning; we therefore make
the definition

MP := (qsmP )−1(ML)

and denote by jP :MP ↪→ GrsmP the inclusion. Note thatMP depends on L and G
also; for brevity, we omit these from the notation. We have analogous definitions
of MB (when (G,L) is replaced by (G,T )) and MC (when (G,L) is replaced by
(L, T )).

The following is a generalization of [AH, Proposition 6.9] (with a similar proof).

Proposition 5.3. We have iP (MP ) ⊂MG, and there is a morphism πP :MP →
NP making the following square cartesian:

MP MG

NP NG

iP

πP πG

mP

Proof. By definition, iP (MP ) is contained in iP (q−1
P (Gr−0,L)) = L(O−) ·UP (K) · t0.

Now we have UP (K) = UP (O−) · UP (O) since UP is unipotent, so UP (K) · t0 =
UP (O−) · t0. Therefore

(5.2) iP (MP ) ⊂ P (O−) · t0 ⊂ Gr−0,G.

Also iP (MP ) ⊂ iP (GrsmP ) ⊂ GrsmG , so iP (MP ) ⊂MG. Moreover, (5.2) implies that
πG(iP (MP )) ⊂ p ∩NG = NP . Let πP :MP → NP be the restriction of πG ◦ iP .

To prove that the square is cartesian, we have to show that if x ∈ MG and
πG(x) ∈ NP , then x ∈ iP (MP ). So, consider some x ∈MG such that πG(x) ∈ NP .
For convenience of notation, we identify ML and MP with their images in MG.
First, if πG(x) ∈ NL, then by Lemma 5.2 we have x ∈ML, which proves the result.

Assume now that πG(x) ∈ NP r NL. Assume also, for a contradiction, that
x /∈ MP . Let λ = (2ρ̌G − 2ρ̌L) ∈ X, where ρ̌G, respectively ρ̌L, is the half sum of
positive coroots of G, respectively of L. Consider the point

y := lim
s→0

λ(s) · x.

As x /∈MP , we have y /∈ML. As y ∈ GrL, we deduce from the second equality in
Lemma 5.1 that y /∈MG. Similarly, consider

z := lim
s→∞

λ(s) · x.

If z ∈ML, then x ∈MP− (whereMP− is defined in the same way asMP , but for
the parabolic P− opposite to P ), hence we would have πG(x) ∈ NP ∩ NP− = NL,
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which is not the case by assumption. Hence z /∈ ML, which implies as above that
z /∈MG. It follows from these considerations that the orbit

{λ(s) · x | s ∈ C×} ⊂ MG

is closed in MG. As πG is a finite morphism, we deduce that the orbit

{λ(s) · πG(x) | s ∈ C×} ⊂ NG

is closed inNG. This is absurd since πG(x) ∈ NPrNL, which finishes the proof. �

Let iMP : MP → MG and qMP : MP → ML be the restrictions of iP and qP
respectively. We now have a diagram of commutative squares

(5.3)

GrsmG MG NG

GrsmP MP NP

GrsmL ML NL

mPiMPismP

pPqMPqsmP

jG πG

jP πP

jL πL

where the top right square is cartesian by Proposition 5.3 and the bottom left
square is cartesian by definition of MP .

Recall that the functors ΨG, ΨL, RG
L , and RGL are obtained by restricting, to

the appropriate perverse subcategories, functors that are defined on the level of the
derived categories. So to define our intertwining isomorphism, it suffices to define
an isomorphism RGL ◦ΨG ⇐⇒ ΨL ◦RG

L of functors from Db(GrsmG ) to Db(NL). We
define this isomorphism by the following pasting diagram:

(5.4)

(BC) (Co)

(Co) (BC)

Db(GrsmG ) Db(MG) Db(NG)

Db(GrsmP ) Db(MP ) Db(NP )

Db(GrsmL ) Db(ML) Db(NL)

(·)!(·)!(·)!

(·)∗(·)∗(·)∗

(·)! (·)∗

(·)! (·)∗

(·)! (·)∗

where the morphisms are those in (5.3).

5.3. Proof that the prism (3.3) is commutative. It suffices to prove the anal-
ogous statement with the categories of perverse sheaves replaced by their ambient
derived categories.
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Proposition 5.4. The following prism is commutative:

(5.4) (4.33)

Db(GrsmG ) Db(NG)

Db(NL)

Db(GrsmT ) Db(NT )

RG
T

ΨG

RG
T

RG
L

ΨT

RL
T

(5.4)

(5.4)

(4.25) Db(GrsmL )

RG
L

RL
T

ΨL

Proof. By Lemmas B.6(d), B.7(d) and B.8(d), the constituent prisms and cube in
the following prism are all commutative, so the prism as a whole is commutative
by the gluing principle:
(5.5)

Db(GrsmG ) Db(MG)

Db(GrsmB ) Db(MB)

Db(GrsmT ) Db(MT )

Db(GrsmP ) Db(MP )

Db(GrsmC ) Db(MC)

Db(GrsmL ) Db(ML)

(·)!

(·)∗

(·)!

(·)∗

(·)!

(·)!

(·)∗

(·)!

(·)!

(·)∗

(·)!

(·)∗

(·)∗

(jB)!

(·)!

(·)∗

(·)∗

(jG)!

(jT )!

(jP )!

(jC)!

(jL)!

The only new cartesian squares required to define (5.5) are

(5.6)

MB MC

GrsmB GrsmC

and

MB MP

MC ML

The first one follows from the cartesian squares giving the definitions of MB and
MC , namely:

MB MT

GrsmB GrsmT

and

MC MT

GrsmC GrsmT

The second cartesian square follows from the one of Lemma 4.6, the first cartesian
square in (5.6) and the bottom left cartesian square in (5.3).
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By Lemmas B.6(a), B.7(c) and B.8(b), the constituent prisms and cube in the
following prism are all commutative, so the prism as a whole is commutative:
(5.7)

Db(MG) Db(NG)

Db(MB) Db(NB)

Db(MT ) Db(NT )

Db(MP ) Db(NP )

Db(MC) Db(NC)

Db(ML) Db(NL)

(·)!

(·)∗

(·)!

(·)∗

(·)!

(·)!

(·)∗

(·)!

(·)!

(·)∗

(·)!

(·)∗

(·)∗

(πB)∗

(·)!

(·)∗

(·)∗

(πG)∗

(πT )∗

(πP )∗

(πC)∗

(πL)∗

The only new cartesian square required to define (5.7) is

(5.8)

MB NB

MP NP

which follows from the cartesian square in Proposition 5.3 and its analogue with B
in place of P .

We can then glue the prisms (5.5) and (5.7) together along the face with vertices
Db(MG),Db(ML),Db(MT ) to obtain the desired commutative prism. �

6. The Satake equivalence and restriction to a Levi

Our aim in this section is to define an intertwining isomorphism RǦ
Ľ
◦S sm

G ⇐⇒
S sm
L ◦ RG

L making the prism (3.4) commutative. As with the definition of the

transitivity isomorphisms for RǦ
Ľ

and RG
L in Section 4, we need to consider first

the analogous situation for the connected components Gr◦G, Gr◦L and the categories

Rep(Ǧ,k)Z(Ǧ), Rep(Ľ,k)Z(Ľ).

6.1. Intertwining isomorphism for S ◦G. We begin with the compatibility be-

tween the transitivity isomorphism for R
G

L : PervG(O)(GrG,k) → PervL(O)(GrL,k),

defined in (4.5), and that for RG
L : PervG(O)(Gr

◦
G,k)→ PervL(O)(Gr

◦
L,k), defined in

(4.21).
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Lemma 6.1. The following prism is commutative:

(4.16) (4.21)

PervG(O)(GrG) PervG(O)(Gr
◦
G)

PervL(O)(Gr
◦
L)

PervT (O)(GrT ) PervT (O)(Gr
◦
T )

RG
T

(zG)!

R
G
T

RG
L

(zT )!

RL
T

(4.16)

(4.16)

(4.5) PervL(O)(GrL)

R
G
L

R
L
T

(zL)!

Proof. Since every functor and isomorphism in this prism extends to the ambient

derived categories, and since (zT )! ◦ RG

T = (zT )! ◦ R̃G
T and so forth, it suffices to

prove the commutativity of:

(6.1) (4.18) (4.20)

Db(GrG) Db(Gr◦G)

Db(Gr◦L)

Db(GrT ) Db(Gr◦T )

RG
T

(zG)!

R̃G
T

RG
L

(zT )!

RL
T

(4.18)

(4.18)

(4.4) Db(GrL)

R̃G
L

R̃L
T

(zL)!

But, by definition, the prism (6.1) is obtained by gluing together two prisms and
a cube that are known to be commutative by Lemmas B.6(d), B.7(d), and B.8(d).
The gluing picture is identical to (5.5), but with jH : MH ↪→ GrsmH replaced by
zH : Gr◦H ↪→ GrH for all groups H. The only new cartesian square required here is

(6.2)

Gr◦B Gr◦C

GrB GrC

which follows from the (G,T ) and (L, T ) cases of (4.17). �

Recall that we have defined an isomorphism R
Ǧ

Ľ ◦SG ⇐⇒ SL ◦ R
G

L in (4.10).

To define an analogous isomorphism RǦ
Ľ ◦S ◦G ⇐⇒ S ◦L ◦R

G
L , we use the following

cube:

(6.3)

Rep(Ľ)

(4.10)

=

(2.3)

PervG(O)(GrG) Rep(Ǧ)

Rep(Ǧ)Z(Ǧ)

Rep(Ľ)Z(Ľ)PervL(O)(Gr
◦
L)

PervL(O)(GrL)

R
Ǧ
Ľ

SL

(−)Z(Ľ)

SG

(−)Z(Ǧ)

RǦ
Ľ

S ◦L

(zL)!

R
G
L

(4.18)

(2.3)

?

PervG(O)(Gr
◦
G)

(zG)!

S ◦G

RG
L

Here every face is labelled with an already-defined isomorphism of functors (or an
obvious equality of functors, in the case of the hidden face on the right) except the
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front face marked with ‘?’. Since (zG)! : PervG(O)(GrG)→ PervG(O)(Gr
◦
G) is full and

essentially surjective (being the projection onto a direct summand of the category
PervG(O)(GrG)), there is a unique isomorphism with which to label the front face
so as to make the cube commutative; see Example A.4 for this principle.

We now prove that the isomorphism RǦ
Ľ ◦S ◦G ⇐⇒ S ◦L ◦R

G
L defined by (6.3) is

compatible with the relevant transitivity isomorphisms.

Lemma 6.2. The following prism is commutative:

(6.3) (4.12)

PervG(O)(Gr
◦
G) Rep(Ǧ)Z(Ǧ)

Rep(Ľ)Z(Ľ)

PervT (O)(Gr
◦
T ) Rep(Ť )Z(Ť )

RǦ
Ť

S ◦G

RG
T

RǦ
Ľ

S ◦T

RĽ
Ť

(6.3)

(6.3)

(4.21) PervL(O)(Gr
◦
L)

RG
L

RL
T

S ◦L

Proof. By the essential surjectivity of (zG)! : PervG(O)(GrG) → PervG(O)(Gr
◦
G), it

suffices to prove the commutativity of the prism obtained by gluing together those
in Lemmas 6.1 and 6.2 along their common triangular face; see Example A.7 for
this principle. This glued prism has the following form:

(6.4)

PervG(O)(GrG) Rep(Ǧ)Z(Ǧ)

Rep(Ľ)Z(Ľ)

PervT (O)(GrT ) Rep(Ť )Z(Ť )

RǦ
Ť

S ◦G◦(zG)!

R
G
T

RǦ
Ľ

S ◦T ◦(zT )!

RĽ
Ť

PervL(O)(GrL)

R
G
L

R
L
T

S ◦L◦(zL)!

The same prism can be obtained by an alternative gluing procedure, in which the
pieces to be glued are the commutative prism in Lemma 4.1, the commutative cube
(6.3) in its (G,L), (L, T ), and (G,T ) versions, and the following prism which is
trivially commutative because every face is labelled by an equality:

(6.5)

Rep(Ǧ) Rep(Ǧ)Z(Ǧ)

Rep(Ľ)Z(Ľ)

Rep(Ť ) Rep(Ť )Z(Ť )

RǦ
Ť

(−)Z(Ǧ)

R
Ǧ
Ť

RǦ
Ľ

(−)Z(Ť )

RĽ
Ť

Rep(Ľ)

R
Ǧ
Ľ

R
Ľ
Ť

(−)Z(Ľ)

Hence (6.4) is commutative as required. �

6.2. Intertwining isomorphism for S sm
G . We now want to pass from the setting

of the functor S ◦G to that of the functor S sm
G . Recall the transitivity isomorphism

for RG
L , defined via the diagram (4.25), and the isomorphism relating RG

L and RG
L ,

defined via the diagram (4.24).
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Lemma 6.3. The following prism is commutative:

(4.24) (4.20)

PervG(O)(Gr
sm
G ) PervG(O)(Gr

◦
G)

PervL(O)(Gr
◦
L)

PervT (O)(Gr
sm
T ) PervT (O)(Gr

◦
T )

RG
T

(f◦G)∗

RG
T

RG
L

(f◦T )∗

RL
T

(4.24)

(4.24)

(4.25) PervL(O)(Gr
sm
L )

RG
L

RL
T

(f◦L)∗

Proof. Since every functor and isomorphism in this prism extends to the ambient
derived categories, it suffices to prove the commutativity of the prism obtained by
replacing PervG(O), PervL(O), PervT (O) with Db. By definition, that prism is ob-
tained by gluing together two prisms and a cube that are known to be commutative
by Lemmas B.6(a), B.7(c) and B.8(b). The gluing picture is identical to (5.7), but
with πH : MH → NH replaced by f◦H : GrsmH ↪→ Gr◦H for all groups H. The only
new cartesian square required here is

(6.6)

GrsmB GrsmP

Gr◦B Gr◦P

which follows from (4.23) and its analogue with P replaced by B. �

We come now to the definition of the intertwining isomorphism RǦ
Ľ
◦S sm

G ⇐⇒
S sm
L ◦RG

L . Consider the following cube:

(6.7)

Rep(Ľ)Z(Ľ)

(6.3)

(4.13)

(2.5)

PervG(O)(Gr
◦
G) Rep(Ǧ)Z(Ǧ)

Rep(Ǧ)sm

Rep(Ľ)smPervL(O)(Gr
sm
L )

PervL(O)(Gr
◦
L)

RǦ
Ľ

S ◦L

I◦
Ľ

S ◦G

I◦
Ǧ

RǦ
Ľ

S sm
L

(f◦L)∗

RG
L

(4.24)

(2.5)

?

PervG(O)(Gr
sm
G )

(f◦G)∗

S sm
G

RG
L

Here every face is labelled with an already-defined isomorphism of functors except

the front face marked with ‘?’. Since I◦
Ľ

: Rep(Ľ)sm → Rep(Ľ)Z(Ľ) is full and
faithful, there is a unique isomorphism with which to label the front face so as to
make the cube commutative; see Example A.4 for this principle.
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6.3. Proof that the prism (3.4) is commutative. Consider the following prism,
which is trivially commutative because every face is labelled by an equality:

(6.8)

Rep(Ǧ)sm Rep(Ǧ)Z(Ǧ)

Rep(Ľ)Z(Ľ)

Rep(Ť )sm Rep(Ť )Z(Ť )

RǦ
Ť

I0
Ǧ

RǦ
Ť

RǦ
Ľ

I0
Ť

RĽ
Ť

Rep(Ľ)sm

RǦ
Ľ

RĽ
Ť

I0
Ľ

Since I0
Ť

: Rep(Ť )sm → Rep(Ť )Z(Ť ) is faithful (indeed, an equivalence), to prove

that (3.4) is commutative it suffices, by the principle of Example A.7, to prove the
following result.

Proposition 6.4. The prism

PervG(O)(Gr
sm
G ) Rep(Ǧ)Z(Ǧ)

Rep(Ľ)Z(Ľ)

PervT (O)(Gr
sm
T ) Rep(Ť )Z(Ť )

RǦ
Ť

I0
Ǧ
◦S sm

G

RG
T

RǦ
Ľ

I0
Ť
◦S sm

T

RĽ
Ť

PervL(O)(Gr
sm
L )

RG
L

RL
T

I0
Ľ
◦S sm

L

obtained by gluing (3.4) and (6.8) is commutative.

Proof. This prism can be obtained by an alternative gluing procedure, in which
the pieces to be glued are the commutative prisms in Lemmas 6.2 and 6.3 and the
commutative cube (6.7) in its (G,L), (L, T ), and (G,T ) versions. �

7. The Springer functor and restriction to a Levi

In this section our aim is to define an intertwining isomorphism RWG

WL
◦ SG ⇐⇒

SL◦RGL that makes the prism (3.5) commutative, with the transitivity isomorphisms

for RWG

WL
and RGL defined as in Section 4.

7.1. Restriction for equivariant derived categories. Our first step is to pass
from categories of equivariant perverse sheaves to equivariant derived categories.

Recall the functor R̃GL : Db
G(NG)→ Db

L(NL) defined in §4.4. There is a transitivity
isomorphism for this functor, namely an isomorphism

(7.1) R̃GT ⇐⇒ R̃LT ◦ R̃GL : Db
G(NG) → Db

T (NT ),
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defined by the following elaboration of (4.33):

(7.2)

(Tr)

(Co)

(Co)

(Tr)

(Tr)

(Tr)

(For) (For)

(BC) (For)

(For)

Db
G(NG) Db

P (NG) Db
P (NP ) Db

P (NL) Db
L(NL)

Db
B(NG) Db

B(NP ) Db
B(NL) Db

C(NL)

Db
B(NB) Db

B(NC) Db
C(NC)

Db
B(NT ) Db

C(NT )

Db
T (NT )

ForGP (·)! (·)∗ ForPL

(·)! (·)∗ ForBC

(·)∗ ForBC

ForBC

ForPB ForPB ForPB ForLC

(·)! (·)! (·)!

(·)∗ (·)∗

ForCT

ForGB

(·)!

(·)∗

ForBT

ForPC

Recall also that we have defined an isomorphism RGL ◦ For⇐⇒ For ◦ R̃GL in (4.28).

Lemma 7.1. Isomorphism (4.28) is compatible with transitivity in the sense that
the following prism is commutative:

(4.28) (4.31)

Db
G(NG) Db(NG)

Db(NL)

Db
T (NT ) Db(NT )

RG
T

For

R̃G
T

RG
L

For

RL
T

(4.28)

(4.28)

(7.1) Db
L(NL)

R̃G
L

R̃L
T

For

Proof. By definition, this prism is obtained by gluing together cubes and prisms
whose left faces are the squares and triangles in (7.2), and whose right faces are the
non-equivariant analogues. These are commutative by Lemmas B.12(a), B.12(c),
B.12(f), B.13(a), B.13(d) and B.14(a). (Recall that For : Db

H(X) → Db(X) is the

same as ForH{1}.) �

Now consider the diagram

(7.3)

Perv′G(NG)

R̃G
L

��

For
∼
// PervG(NG)

RG
L

��

SG // Rep(WG)

R
WG
WL

��
Perv′L(NL)

For
∼
// PervL(NL)

SL // Rep(WL)

(where the left-hand square is well defined by Proposition 4.7 and Remark 4.12).
Our goal in this section is to define an isomorphism for the right-hand square in
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(7.3) and show that it is compatible with transitivity. We already have such an
isomorphism for the left-hand square, and it is compatible with transitivity by
Lemma 7.1. Since For : Perv′G(NG) → PervG(NG) is an equivalence, it suffices
to define an isomorphism for the outer square in (7.3), namely an isomorphism

RWG

WL
◦ SG ◦ For⇐⇒ SL ◦ For ◦ R̃GL , and show that it is compatible with transitivity

(see Example A.7 for the principle involved here).
Now SG ◦ For : Perv′G(NG) → Rep(WG) is clearly isomorphic to the functor

S′G : Perv′G(NG) → Rep(WG) defined on objects by M 7→ HomPerv′G(NG)(SprG,M),

where by abuse of notation we let Spr
G

denote the object of Perv′G(NG) defined in

the same way as the object of PervG(NG) with that name. The following observation
allows us to consider S′G instead of SG ◦ For.

Lemma 7.2. Suppose we have an isomorphism

(7.4) RWG

WL
◦ S′G ⇐⇒ S′L ◦ R̃GL

that is compatible with transitivity in the sense that the following prism is commu-
tative:

(7.4) (Tr)

Perv′G(NG,k) Rep(WG,k)

Rep(WL,k)

Perv′T (NT ,k) Rep(WT ,k)

R
WG
WT

S′G

R̃G
T

R
WG
WL

S′T

R
WL
WT

(7.4)

(7.4)

(7.1)
Perv′L(NL,k)

R̃G
L

R̃L
T

S′L

Then the isomorphism RWG

WL
◦SG ◦For⇐⇒ SL ◦For ◦ R̃GL defined as the composition

(7.5) RWG

WL
◦ SG ◦ For ⇐⇒ RWG

WL
◦ S′G

(7.4)⇐⇒ S′L ◦ R̃GL ⇐⇒ SL ◦ For ◦ R̃GL

is also compatible with transitivity.

Proof. This is immediate from the pentagon interpretation (A.8) of commutativity
of a prism. �

The functor S′G extends to a functor Db
G(NG) → Rep(WG) defined on objects

by M 7→ HomDb
G(NG)(SprG,M). We will denote the latter functor by S′G also. Our

conclusion is that it suffices to define an intertwining isomorphism

(7.6) ?

Db
G(NG)

Db
L(NL)

Rep(WG)

Rep(WL)

S′G

R̃G
L

S′L

R
WG
WL

and show that it is compatible with transitivity.
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7.2. Induction. Now, recall the left adjoint ĨGL of R̃GL defined in §4.4. There is a
transitivity isomorphism

(7.7) ĨGT ⇐⇒ ĨLT ◦ ĨGL : Db
T (NT ) → Db

G(NG)

defined by the following pasting diagram:

(7.8)

(Tr)

(Co)

(Co)

(Tr)

(Tr)

(Tr)

(Int) (Int)

(BC) (Int)

(Int)

Db
G(NG) Db

P (NG) Db
P (NP ) Db

P (NL) Db
L(NL)

Db
B(NG) Db

B(NP ) Db
B(NL) Db

C(NL)

Db
B(NB) Db

B(NC) Db
C(NC)

Db
B(NT ) Db

C(NT )

Db
T (NT )

γGP (·)! (·)∗ γPL

(·)! (·)∗ γBC

(·)∗ γBC

γBC

γPB γPB γPB γLC

(·)! (·)! (·)!

(·)∗ (·)∗

γCT

γGB

(·)!

(·)∗

γBT

γPC

We can express the functor S′G as the following composition:

Db
G(NG)

Y−→ Mod(k)D
b
G(NG)op −(Spr

G
)

−−−−−→ Rep(WG)

where Y is the Yoneda embedding for Db
G(NG) (see §B.1.3) and −(Spr

G
) is the

functor of evaluating on the object Spr
G

of Db
G(NG), on which WG acts. Thus we

are led to consider the diagram:

(7.9)

Db
G(NG)

R̃G
L

��

Y // Mod(k)D
b
G(NG)op

−◦(ĨGL )op

��

−(Spr
G

)
// Rep(WG)

R
WG
WL

��
Db
L(NL)

Y // Mod(k)D
b
L(NL)op −(Spr

L
)
// Rep(WL)

Note that − ◦ (ĨGL )op has its own transitivity isomorphism, defined by the pasting

diagram obtained from (7.8) by replacing every category C with ModC
op

and every
functor α with −◦αop, reversing all arrows. We will still refer to this isomorphism
as isomorphism (7.7).
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We have an isomorphism for the left-hand square in (7.9), namely the following
composition of adjunction isomorphisms:
(7.10)

(Adj) (Adj) (Adj) (Adj)

Db
G(NG) Db

P (NG) Db
P (NP ) Db

P (NL) Db
L(NL)

MD
b
G(NG)op

MD
b
P (NG)op

MD
b
P (NP )op

MD
b
P (NL)op

MD
b
L(NL)op

ForGP (mP )! (pP )∗ ForPL

Y Y Y Y Y

− ◦ (γGP )op − ◦ (mP )
op
! − ◦ (pP )∗,op − ◦ (γPL )op

(Here, to save space we have written M for Mod(k).)

Lemma 7.3. Isomorphism (7.10) is compatible with transitivity in the sense that
the following prism is commutative:

(7.10) (7.7)

Db
G(NG) Mod(k)D

b
G(NG)op

Mod(k)D
b
L(NL)op

Db
T (NT ) Mod(k)D

b
T (NT )op

−◦(ĨGT )op

Y

R̃G
T

−◦(ĨGL )op

Y

−◦(ĨLT )op

(7.10)

(7.10)

(7.1) Db
L(NL)

R̃G
L

R̃L
T

Y

Proof. By definition, this prism is obtained by gluing together cubes and prisms
whose left faces are the squares and triangles in (7.2), and whose left-to-right edges
are all Y. These are commutative by Lemmas B.2(a), B.2(b), B.3, B.11(a), B.11(b),
B.11(c). �

By Lemma 7.3 and the gluing principle, what remains in order to construct
isomorphism (7.6) and prove its compatibility with transitivity is to define an
isomorphism for the right-hand square in (7.9) and prove its compatibility with
transitivity. Note that we can think of WG and WL as one-object categories, and
then Rep(WG) = Mod(k)WG , Rep(WL) = Mod(k)WL . So it suffices to define an
isomorphism

(7.11) ?

WG

WL

Db
G(NG)

Db
L(NL)

Spr
G

Spr
L

ĨGL

(where the left vertical arrow is the inclusion, and the left-to-right arrows are those
giving the WG-action on Spr

G
and the WL-action on Spr

L
) and to prove that this
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isomorphism is compatible with transitivity in the sense that the prism

(7.11) (7.7)

WG Db
G(NG)

Db
L(NL)

WT Db
T (NT )

ĨGT

Spr
G

ĨGL

Spr
T

ĨLT

(7.11)

(7.11)

=
WL Spr

L

is commutative. In plain terms, this amounts to defining a WL-equivariant isomor-

phism ĨGL (Spr
L

)
∼→ Spr

G
such that the following square of isomorphisms in Db

G(NG)
commutes:

(7.12)

ĨGL (Spr
L

)
∼ //

OO

o

Spr
GOO

o

ĨGL (ĨLT (Spr
T

))
∼ // ĨGT (Spr

T
)

Remark 7.4. In the case k = Q`, the existence of a WL-equivariant isomorphism

ĨGL (Spr
L

)
∼→ Spr

G
is a special case of [L2, Theorem 8.3].

7.3. From Spr to Groth. By definition of the WG-action on Spr
G

, we have a WG-

equivariant isomorphism Spr
G
∼= (ig)∗GrothG[−r] where ig : NG ↪→ g is the inclu-

sion and r = rank(G). So the functor Spr
G

: WG → Db
G(NG) is isomorphic to the

composition

WG
GrothG−−−−→ Db

G(g)
(ig)♦−−−→ Db

G(NG).

(Here and below we use the notation (·)♦ := (·)∗[−r].) Using the same principle as
in Lemma 7.2, it suffices to define an isomorphism

?

WG

WL

Db
G(NG)

Db
L(NL)

(ig)♦GrothG

(il)
♦GrothL

ĨGL

and show that it is compatible with transitivity. Thus we are led to consider the
diagram:

(7.13)

WG

GrothG // Db
G(g)

(ig)♦ // Db
G(NG)

WL

OO

GrothL // Db
L(l)

(il)
♦

//

IGL

OO

Db
L(NL)

ĨGL

OO

where IGL is defined as the composition

Db
L(l)

γP
L // Db

P (l)
(·)∗ // Db

P (p)
(·)! // Db

P (g)
γG
P // Db

G(g).
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(Here, as usual, the morphism p → g is the inclusion, the morphism p → l is the

projection, and P acts on l via the projection P → L.) Note that IGL has its own
transitivity isomorphism

(7.14) IGT ⇐⇒ IGL ◦ I
L

T

defined by a diagram analogous to (7.8) where NH is replaced by h throughout.
We have an isomorphism for the right-hand square in (7.13), given by the fol-

lowing pasting diagram:
(7.15)

(Int) (Co) (BC) (Int)

Db
G(g)Db

P (g)Db
P (p)Db

P (l)Db
L(l)

Db
G(NG)Db

P (NG)Db
P (NP )Db

P (NL)Db
L(NL)

γGP(·)!(·)∗γPL

(ig)♦(ig)♦(ip)♦(il)
♦(il)

♦

γGP
(mP )!(pP )∗γPL

(where ip : NP → p is the inclusion).

Lemma 7.5. Isomorphism (7.15) is compatible with transitivity in the sense that
the following prism is commutative:

(7.15) (7.7)

Db
G(g) Db

G(NG)

Db
L(NL)

Db
T (t) Db

T (NT )

ĨGT

(ig)♦

IGT

ĨGL

(it)♦

ĨLT

(7.15)

(7.15)

(7.14) Db
L(l)

IGL

ILT

(il)
♦

Proof. By definition, this prism is obtained by gluing together cubes and prisms
that are commutative by Lemmas B.6(c), B.7(b), B.8(c), B.12(g), B.13(e) and
B.14(b). All the required cartesian squares are obvious. �

So all that remains is to define an isomorphism for the left-hand square in (7.13)
and show that it is compatible with transitivity. In plain terms, this amounts to
defining a WL-equivariant isomorphism

(7.16) IGL (GrothL)
∼→ GrothG

such that the following square of isomorphisms in Db
G(g) commutes:

(7.17)

IGL (GrothL)
∼ //

OO

o

GrothGOO

o

IGL (ILT (GrothT ))
∼ // IGT (GrothT )

7.4. Another induction functor. Now recall that GrothG = (µg)!kG×Bb[dim g]

where µg : G ×B b → g is the Grothendieck–Springer simultaneous resolution,
and kG×Bb denotes the constant sheaf on G×B b. This motivates us to introduce
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another kind of induction functor, IGL : Db
L(L×C c)→ Db

G(G×B b), as the following
composition:

Db
L(L×C c)

γP
L−−→ Db

P (L×C c)
(·)∗−−→ Db

P (P ×B b)
(·)!−−→ Db

P (G×B b)

γG
P−−→ Db

G(G×B b).

(Here, the morphism P ×B b→ L×C c ∼= P ×B c is induced by the projection b→ c,
the morphism P ×B b→ G×B b is the natural inclusion, and P acts on L×C c via
the projection P → L.) This functor has its own transitivity isomorphism, defined
by the following pasting diagram (where all morphisms are the natural ones):

(7.18)

(Tr)

(Co)

(Co)

(Tr)

(Tr)

(Tr)

(Int) (Int)

(BC) (Int)

(Int)

Db
G(G×B b) Db

P (G×B b) Db
P (P ×B b) Db

P (L×C c) Db
L(L×C c)

Db
B(G×B b) Db

B(P ×B b) Db
B(L×C c) Db

C(L×C c)

Db
B(B ×B b) Db

B(C ×C c) Db
C(C ×C c)

Db
B(T ×T t) Db

C(T ×T t)

Db
T (T ×T t)

γGP (·)! (·)∗ γPL

(·)! (·)∗ γBC

(·)∗ γBC

γBC

γPB γPB γPB γLC

(·)! (·)! (·)!

(·)∗ (·)∗

γCT

γGB

(·)!

(·)∗

γBT

γPC

We have an isomorphism (µg)! ◦ IGL ⇐⇒ I
G

L ◦ (µl)!, defined by the following
pasting diagram:
(7.19)

(Int) (BC) (Co) (Int)

Db
G(G×B b)Db

P (G×B b)Db
P (P ×B b)Db

P (L×C c)Db
L(L×C c)

Db
G(g)Db

P (g)Db
P (p)Db

P (l)Db
L(l)

γGP(·)!(·)∗γPL

(µg)!(µg)!(µp)!(µl)!(µl)!

γGP
(·)!(·)∗γPL

(Here, µp : P ×B b→ p is the morphism induced by the adjoint action of P on p.)
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Lemma 7.6. Isomorphism (7.19) is compatible with transitivity in the sense that
the following prism is commutative:

(7.19) (7.14)

Db
G(G×B b) Db

G(g)

Db
L(l)

Db
T (T ×T t) Db

T (t)

IGT

(µg)!

IGT

IGL

(µt)!

ILT

(7.19)

(7.19)

(7.18) Db
L(L×C c)

IGL

ILT

(µl)!

Proof. By definition, this prism is obtained by gluing together cubes and prisms
that are commutative by Lemmas B.6(b), B.7(a), B.8(a), B.12(h), B.13(f) and
B.14(b). All the required cartesian squares are easy. �

7.5. Definition of (7.16) and commutativity of (7.17). Neglecting the WG-
action for now, we may think of GrothG as the composition

1
k[dim g]−−−−−→ Db

G(G×B b)
(µg)!−−−→ Db

G(g)

where 1 is the trivial group regarded as a one-object category. So to define an

isomorphism IGL (GrothL)
∼→ GrothG, we need to consider the diagram:

(7.20)

1
k[dim g] //

k[dim l]
((

Db
G(G×B b)

(µg)! // Db
G(g)

Db
L(L×C c)

(µl)! //

IGL

OO

Db
L(l)

IGL

OO

We have just defined an isomorphism for the square in (7.20). An isomorphism for

the triangle, or in other words an isomorphism IGL (k[dim l])
∼→ k[dim g], may be

defined by the following pasting diagram (see §B.1.4, §B.10.3 and §B.18.4 for the
notation):

(7.21)

(CI)

(CIE)

(CII)

Db
L(L×C c)

Db
P (L×C c)1

Db
P (P ×B b)Db

G(G×B b)

γP
L

(·)∗

γG
P (·)!

k[dim l]

k[dim l]

k[dim l]
k[dim g]
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Lemma 7.7. Isomorphism (7.21) is compatible with transitivity in the sense that
the following tetrahedron is commutative:

(7.21) (7.18)

Db
G(G×B b)

1 Db
L(L×C c)

Db
T (T ×T t)

IGT

(7.21)

(7.21)

k[dim g]

k[dim t]

IGL

ILT

k[dim l]

Proof. By definition, this tetrahedron is obtained by gluing together things that are
commutative by Lemmas B.5, B.15(b), B.16(b), B.19(c), B.20(c) and B.21(c). �

The diagram (7.20) is now complete, so we have our isomorphism IGL (GrothL)
∼→

GrothG. Gluing together the prism in Lemma 7.6 and the tetrahedron in Lemma 7.7,
we obtain a tetrahedron whose commutativity means exactly that diagram (7.17)
commutes. At this point, there are no further compatibilities with transitivity to

check. All that remains is to prove that our isomorphism IGL (GrothL)
∼→ GrothG is

WL-equivariant.

7.6. WL-equivariance. Now let jg : grs ↪→ g be the inclusion of the open subset
of regular semisimple elements. Recall that j∗g : End(GrothG) → End(j∗gGrothG)
is injective (and even an isomorphism). So it suffices to prove that the induced

isomorphism j∗gI
G

L (GrothL)
∼→ j∗gGrothG is WL-equivariant.

By base change, we have an isomorphism

(7.22) j∗gGrothG
∼→ (µrs

g )!k[dim g],

where µrs
g : G ×B (b ∩ grs) → grs denotes the restriction of µg to µ−1

g (grs). It is
well known that µrs

g is a Galois covering with group WG, so (µrs
g )!k is isomorphic to

a rank-|WG| local system on grs, and carries a natural WG-action (see e.g. §B.22).
By definition of the WG-action on GrothG, isomorphism (7.22) is WG-equivariant.

Define a functor rsIGL : Db
L(l ∩ grs)→ Db

G(grs) as the composition

Db
L(l ∩ grs)

γP
L // Db

P (l ∩ grs)
(·)∗ // Db

P (p ∩ grs)
(·)! // Db

P (grs)
γG
P // Db

G(grs).

Here we have simply taken the definition of IGL and intersected every variety with
grs. Note that l ∩ grs is an open subset of lrs. Let j′l denote the inclusion of l ∩ grs

in l, and µrs,′
l the restriction of µl to µ−1

l (l ∩ grs).

We have an isomorphism j∗g◦I
G

L ⇐⇒ rsIGL ◦(j′l)∗, defined by the following pasting
diagram:
(7.23)

(Int) (Co) (BC) (Int)

Db
G(g)Db

P (g)Db
P (p)Db

P (l)Db
L(l)

Db
G(grs)Db

P (grs)Db
P (p ∩ grs)Db

P (l ∩ grs)Db
L(l ∩ grs)

γGP(·)!(·)∗γPL

(jg)∗(jg)∗(j′p)∗(j′l)
∗(j′l)

∗

γGP
(·)!(·)∗γPL
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(Here, j′p : p ∩ grs ↪→ p is the inclusion.)

We can modify the definition of IGL in exactly the same way to obtain a functor
rsIGL : Db

L(L×C (c ∩ grs))→ Db
G(G×B (b ∩ grs)). This functor is related to IGL by

a diagram analogous to (7.23), namely we have an isomorphism

(7.24) (kg)∗ ◦ IGL ⇐⇒ rsIGL ◦ (k′l)
∗

where kg : G ×B (b ∩ grs) ↪→ G ×B b and k′l : L ×C (c ∩ grs) ↪→ L ×C c are the

inclusions. The functor rsIGL is also related to rsIGL by a diagram analogous to
(7.19), namely we have an isomorphism

(7.25) (µrs
g )! ◦ rsIGL ⇐⇒ rsIGL ◦ (µrs,′

l )!.

Lemma 7.8. The cube

(7.26)

Db
L(l)

(7.19)

(7.23)

(BC)

Db
G(G×B b) Db

G(g)

Db
G(grs)

Db
L(l ∩ grs)Db

L(L×C (c ∩ grs))

Db
L(L×C c)

IGL

(µl)!

(j′l)
∗

(µg)!

(jg)∗

rsIGL

(µrs,′
l )!

(k′l)
∗

IGL

(7.24)

(BC)

(7.25)

Db
G(G×B (b ∩ grs))

(kg)∗

(µrs
g )!

rsIGL

is commutative.

Proof. By definition, this cube is obtained by gluing together cubes that are com-
mutative by Lemmas B.8(a), B.8(c) and B.14(b) (used twice). �

We also have an isomorphism

(7.27) rsIGL (k[dim l])
∼→ k[dim g],

defined by the obvious analogue of (7.21).

Lemma 7.9. The pyramid

Db
L(L×C c)

(7.21)

(CII)

1

Db
G(G×B b)

Db
L(L×C (c ∩ grs))

k[dim l]

IGL

(k′l)
∗

k[dim g]

k[dim l]

(7.2
4)

(7.27)

(CII)

Db
G(G×B (b ∩ grs))

(kg)∗

rsIGL

k[dim g]

is commutative.

Proof. By definition, this pyramid is obtained by gluing together things that are
commutative by Lemmas B.5, B.16(b) and B.21(c). �
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Combining isomorphisms (7.25) and (7.27) we obtain an isomorphism

(7.28) rsIGL
(
(µrs,′

l )!k[dim l]
) ∼→ (µrs

g )!k[dim g].

Gluing together the cube in Lemma 7.8 and the pyramid in Lemma 7.9, we obtain
the following commutative pyramid:

(7.29)

Db
L(l)

(7.16)

1

Db
G(g)

Db
L(l ∩ grs)

GrothL

IGL

(j′l)
∗

GrothG

(µrs,′
l )!k[dim l]

(7.2
4)

(7.28)

(7.22)

Db
G(grs)

(jg)∗

rsIGL

(µrs
g )!k[dim g]

where the hidden face on the bottom is labelled by the obvious analogue of (7.22).
This means that the following diagram of isomorphisms in Db

G(g) commutes:

(7.30)

j∗gI
G

L (GrothL)

(II)o
��

(I)∼ // j∗gGrothG

o(III)

��
rsIGL

(
(j′l)
∗GrothL

) (IV)∼ // rsIGL
(
(µrs,′

l )!k[dim l]
) (V)∼ // (µrs

g )!k[dim g]

All the objects in this diagram are endowed with an action of WL. (In partic-
ular, the action on (µrs,′

l )!k[dim l] is induced by the WL-action on L ×C (c ∩ grs)
obtained by restriction of the action on L×C (c∩ lrs) considered in §2.6.) We want
to prove that isomorphism (I) in (7.30) is WL-equivariant. Isomorphism (II) is
clearly WL-equivariant, because it arises from an isomorphism of functors applied
to GrothL, and the WL-actions are those induced by the WL-action on GrothL.
As remarked above, isomorphism (III) is WG-equivariant by definition of the WG-
action on GrothG, and isomorphism (IV) is WL-equivariant for the same reason. So
it suffices to prove that isomorphism (V), namely (7.28), is WL-equivariant.

Now (7.28) is by definition the composition

rsIGL
(
(µrs,′

l )!k[dim l]
) ∼ // (µrs

g )!
rsIGL (k[dim l])

∼ // (µrs
g )!k[dim g],

where the first isomorphism comes from (7.25), and the second comes from (7.27).
The second isomorphism is obviously WG-equivariant, because the WG-actions on
its domain and codomain come about purely because µrs

g is a Galois covering with
group WG. So it suffices to show that the first isomorphism is WL-equivariant. Un-
ravelling the definition of this isomorphism similarly, we see that it suffices to prove
the WL-equivariance of the isomorphism γGP u!(µ

rs
p )′!k[dim l]

∼→ (µrs
g )!γ

G
P v!k[dim l]
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coming from the following pasting diagram:

(Co) (Int)

Db
G(G×B (b ∩ grs))Db

P (G×B (b ∩ grs))Db
P (P ×B (b ∩ grs))

Db
G(grs)Db

P (grs)Db
P (p ∩ grs)

γGPv!

(µrs
g )!(µrs

g )!(µ
rs,′
p )!

γGP
u!

Here, u and v are the inclusions and µrs,′
p is the obvious restriction of µp, which is

a Galois covering with group WL. This is a special case of Lemma B.22.

7.7. Exactness of SG. As a consequence of the intertwining isomorphism for SG,
we have:

Proposition 7.10. The functor SG : PervG(NG,k)→ Rep(WG,k) is exact.

Proof. Since RWG

WT
is exact and faithful, it suffices to show that RWG

WT
◦ SG is exact.

But we now know that RWG

WT
◦ SG is isomorphic to ST ◦ RGT . As seen in §3.3, ST is

an equivalence, and RGT is exact by Proposition 4.7. �

8. Computations in rank 1

What remains is to prove Theorem 3.3 in the special case where G has semisimple
rank 1. Since all the functors involved in the statement of Theorem 3.3 are invariant
under the replacement of G by G/Z(G), it suffices to consider the case where
G = PGL(2), and we assume this throughout Section 8. The arguments for this
group exploit the following two key facts:

(1) There is a specific object T2 ∈ PervG(O)(Gr
sm
G ,k) that plays a role analogous

to that of Spr ∈ PervG(NG,k). There is an action of WG on T2, and this
enables us to define a functor

T = Hom(T2,−) : PervG(O)(Gr
sm
G ,k) → Rep(WG,k),

which acts as an intermediary between S sm
G and SG.

(2) Because WG is abelian, the action of its nontrivial element s on a represen-
tation is actually a morphism in the category Rep(WG,k).

8.1. Notation and preliminaries on T2. For brevity, we will write Gr for GrG,
W for WG, and likewise for other notation involving G. The nontrivial element
of W is denoted s. Fix T ⊂ G to be the maximal torus consisting of images of
diagonal matrices, and fix B ⊂ G to be the Borel subgroup consisting of images
of upper-triangular matrices. The coweights (resp. dominant coweights) of G are
naturally identified with Z (resp. the nonnegative integers).

We will make particular use of the geometry of the three G(O)-orbits Gr0, Gr1,

and Gr2. For i ∈ {0, 1, 2}, let ji : Gri ↪→ Gr be the inclusion map. For any finitely-
generated k-module M , we write

ICi(M) = (ji)!∗(M), ∆i(M) = p(ji)!(M), ∇i(M) = p(ji)∗(M).

These are perverse sheaves supported on Gri. Because Gr1 ⊂ Gr is closed and
isomorphic to P1, there is a canonical isomorphism

(8.1) IC1(k) ∼= kGr1 [1].
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Set V := H•(IC1(k)). This is a free k-module of rank 2. Moreover, the action
of Ǧ on V defines a canonical isomorphism

Ǧ
∼−→ SL(V ).

The torus Ť is the subgroup of Ǧ consisting of elements which stabilize the decom-
position V = H1(IC1(k)) ⊕H−1(IC1(k)). By definition, the category Rep(Ǧ,k)sm
is the category of Ǧ-modules whose Ť -weights belong to {−2, 0, 2}, and Grsm =
Gr0 t Gr2.

The following object will play a key role throughout this section:

T2 := IC1(k) ? IC1(k).

Since SG is a tensor functor, we have SG(T2) ∼= V ⊗ V , which clearly belongs to
Rep(Ǧ,k)sm. Let

η : T2 → T2

be the involution induced by the commutativity constraint on PervG(O)(Gr), or in
other words the unique endomorphism of T2 such that

SG(η) : V ⊗ V → V ⊗ V is given by x⊗ y 7→ y ⊗ x.

The involution η defines a W -action on T2, and hence a functor T = Hom(T2,−) :
PervG(O)(Gr

sm,k)→ Rep(W, k), as mentioned above.
We now recall the definition of η given in [MV2]. The construction involves

global versions of the affine Grassmannian over various schemes. Consider the
diagonal embedding A1 → A2, and let U ⊂ A2 be its complement. Let W act
on A2 by exchanging the two copies of A1, and let A(2) = A2/W . Finally, let
U ′ = U/W ⊂ A(2). We have the following commutative diagram in which every
square is cartesian.

(8.2)

Gr1 ×̃ Gr1
ẽ //

m

��

Gr1A1 ×̃ Gr1A1

m′

��

(Gr1A1 × Gr1A1)|U
ũoo

Grsm
e′ // GrsmA2

$′

��

(Gr1A1 × Gr1A1)|U
u′oo

$

��
Grsm

e
// GrsmA(2) GrsmU ′u

oo

Here, (Gr1A1 × Gr1A1)|U denotes the preimage of U ⊂ A2 under the natural map
Gr1A1 ×Gr1A1 → A2. This diagram is explained in a general setting in [MV2, §5]. For
a concrete description in the case of PGL(2), see the proof of Lemma 8.2 below.

Next, let σ : (Gr1A1 × Gr1A1)|U → (Gr1A1 × Gr1A1)|U be the involution of swapping
the factors, and let σ′ : GrsmA2 → GrsmA2 be the involution induced by the W -action on
A2. We have σ′e′ = e′ and σ′u′ = u′σ.

By definition, T2 = m!(IC1(k) �̃ IC1(k)) ∼= m!(kGr1×̃Gr1)[2], where the latter
isomorphism uses (8.1). By base change, we obtain an isomorphism

T2
∼= (e′)∗(m′)!(kGr1

A1 ×̃Gr1A1
)[2].

Since m′ is small and proper, this gives rise to an isomorphism

(8.3) T2
∼= (e′)∗u′!∗

(
k(Gr1

A1×Gr1A1 )|U [4]
)
[−2].
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The natural isomorphism k(Gr1
A1×Gr1A1 )|U

∼= σ∗k(Gr1
A1×Gr1A1 )|U induces an isomorphism

(8.4) u′!∗(k(Gr1
A1×Gr1A1 )|U [4]) ∼= (σ′)∗u′!∗(k(Gr1

A1×Gr1A1 )|U [4]).

Then the involution η is the composition

T2

(8.3)∼= (e′)∗u′!∗
(
k(Gr1

A1×Gr1A1 )|U [4]
)
[−2]

(8.4)∼= (e′)∗(σ′)∗u′!∗
(
k(Gr1

A1×Gr1A1 )|U [4]
)
[−2]

(Co)∼= (e′)∗u′!∗
(
k(Gr1

A1×Gr1A1 )|U [4]
)
[−2]

(8.3)∼= T2.

It is convenient to have an alternative description of η. By base change and
using the fact that $′ is a finite morphism, (8.3) can be rewritten as

T2
∼= e∗($′)!u

′
!∗
(
k(Gr1

A1×Gr1A1 )|U [4]
)
[−2]

∼= e∗u!∗
(
$!k(Gr1

A1×Gr1A1 )|U [4]
)
[−2].

Lemma 8.1. Consider the involution of $!k(Gr1
A1×Gr1A1 )|U resulting from the natural

isomorphism k(Gr1
A1×Gr1A1 )|U

∼= σ∗k(Gr1
A1×Gr1A1 )|U . The induced involution of T2

∼=
e∗u!∗($!k(Gr1

A1×Gr1A1 )|U [4])[−2] is exactly η.

Proof. This follows by applying the appropriate parts of Lemmas B.7 and B.8 to
the diagram

GrsmA(2) GrsmU ′

Grsm GrsmA2 (Gr1A1 × Gr1A1)|U

Grsm

(Gr1A1 × Gr1A1)|U

Grsm GrsmA(2) GrsmU ′

e

$′

u

$

e′ u′

σ

$

ue

Grsm GrsmA2

σ′

$′

e′ u′

in which every square is cartesian. �

8.2. Geometric properties of T2. For PGL(2), the map π : M → N is an
isomorphism of varieties. In this section, we will identify M with N via this map.
With this identification, we can extend the embedding j : N → Grsm to a ‘global’
version. Note thatN can also be identified with the nilpotent cone in the Lie algebra
gl(2) of the larger group GL(2), and that PGL(2) acts on gl(2). In the following

lemma we denote by g̃l(2) the Grothendieck–Springer resolution (see §2.6) for the
group GL(2).
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Lemma 8.2. There is a commutative diagram of PGL(2)-equivariant maps

gl(2) gl(2)rs

Ñ g̃l(2) g̃l(2)rs

N

(Gr1A1 × Gr1A1)|U

Grsm GrsmA(2) GrsmU ′

igl(2)

µgl(2)

j′ h

µrs
gl(2)

j′

i
g̃l(2) h̃

̃

$

ue

j

µN
Gr1 ×̃ Gr1 Gr1A1 ×̃ Gr1A1

̃

m

̃

$′m′

ẽ ũ

Every square in this diagram is cartesian. Moreover, the isomorphism

(8.5) Spr ∼= ΨG(T2)

defined using base change for the left-most square is W -equivariant.

Proof. For the commutativity and cartesianness, we give only a brief sketch of the
argument. (A closely related result for GL(n) is proved in [Mau, §1.4] using earlier
constructions in [MVy].) We start by interpreting the various affine Grassmannians
in terms of lattices. Specifically, let L0 := O2 ⊂ K2 be the standard O-lattice in K2

with natural basis (e1, e2). We have identifications

Grsm = Gr2 = {L2 ⊂ K2 | L2 ⊂ t−1L0 and dim(t−1L0/L2) = 2},

Gr1 ×̃ Gr1 = {(L1,L2) | L2 ⊂ L1 ⊂ t−1L0, dim(L1/L2) = dim(t−1L0/L1) = 1}
(where the Li’s are implicitly required to be O-lattices). The image of the embed-
ding j : N → Grsm is given by

N ∼= {L2 ∈ Grsm | the images of t−1e1 and t−1e2 form a basis of t−1L0/L2}.
The global versions can be described using C[t]-lattices in C(t)2. Let L0 := C[t]2

be the standard lattice. We have:

GrsmA(2) = {L2 ⊂ C(t)2 | L2 ⊂ t−1L0 and dim(t−1L0/L2) = 2},

Gr1A1 ×̃ Gr1A1 = {(L1,L2) | L2 ⊂ L1 ⊂ t−1L0, dim(L1/L2) = dim(t−1L0/L1) = 1}
(where Li’s are required to be C[t]-lattices). It is left to the reader to supply explicit
descriptions for the images of j′ and ̃ and for the maps e and ẽ. It follows from
those descriptions that the left-hand cube is commutative and that each square in
it is cartesian. The same holds for the right-hand cube because it is obtained by
forming pullbacks with respect to the inclusion U ′ → A(2).

Finally, recall that the W -action on Spr is defined using its action on g̃l(2)rs.

Since this is just the restriction of the W -action on (Gr1A1 × Gr1A1)|U , it can be
seen from Lemma 8.1 and several applications of Lemmas B.7 and B.8 that the
isomorphism (8.5) is W -equivariant. �

Lemma 8.3. The functor ΨG : PervG(O)(Gr
sm,k)→ PervG(N ,k) is fully faithful.

Proof. Let Z ⊂ Grsm be the complement of the open set j(N ) ⊂ Grsm. This is
a closed, G-stable (but not G(O)-stable) subset of Gr2. It is well known that
j!∗ : PervG(N ,k) → PervG(Grsm,k) is fully faithful, and that its essential image is
the full subcategory PZ ⊂ PervG(Grsm,k) of perverse sheaves with no quotient or
subobject supported on Z. Moreover, j! is left inverse to j!∗. In particular, j!|PZ is
fully faithful. It is clear that PervG(O)(Gr

sm,k) ⊂ PZ , so the result follows. �
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In fact, ΨG is an equivalence of categories (see [Mau, Theorem 1.3.1]), but we
will not need this stronger result. Lemmas 8.2 and 8.3 have the following immediate
consequence.

Corollary 8.4. There is a natural isomorphism of functors T⇐⇒ SG ◦ΨG.

8.3. Algebraic properties of T2. It is well known that T2 is a tilting object. In
particular, we have two exact sequences of perverse sheaves

(8.6) ∆2(k) ↪→ T2 � ∆0(k) and ∇0(k) ↪→ T2 � ∇2(k).

The representations corresponding to these perverse sheaves under the Satake
equivalence are described as follows. We have SG(∆0(k)) = SG(∇0(k)) ∼= k (the
trivial representation), and SG(T2) ∼= V ⊗ V . The sub-representation SG(∆2(k))
of SG(T2) consists of the symmetric tensors in V ⊗V , i.e. the invariant submodule
of SG(η). The quotient SG(∇2(k)) of SG(T2) is the symmetric square S2(V ).

The following result is a special case of a general fact about stratified spaces, see
[RSW, Lemma 2.1].

Lemma 8.5. Any object of PervG(O)(Gr
sm,k) is a successive extension of objects

of the form ICi(M) for i ∈ {0, 2} and M a finitely-generated k-module.

Lemma 8.6. The object T2⊕∆2(k) is a projective generator of PervG(O)(Gr
sm,k).

Proof. Recall from Proposition 7.10 that SG = Hom(Spr,−) is exact, so Spr is a
projective object in PervG(N ,k). It follows from Lemmas 8.2 and 8.3 that T2 is a
projective object in PervG(O)(Gr

sm,k).
Next, consider ∆2(k). For any object M in PervG(O)(Gr

sm,k), we have

Hom(∆2(k),M) ∼= Hom(kGr2 [2], p(j2)!M)

by adjunction. As Gr2 is open in Grsm, the functor p(j2)! = (j2)! is exact, and
p(j2)!M [−2] is a local system on Gr2. As kGr2 is projective in the category of local
systems on Gr2 (which is equivalent to the category of finitely-generated k-modules),
it follows that ∆2(k) is projective.

To finish the proof, it suffices, by Lemma 8.5, to prove the following claim: For
any finitely-generated k-module M and any i ∈ {0, 2}, there exists n ∈ Z≥0 and a

surjection
(
T2⊕∆2(k)

)⊕n
� ICi(M). As the functor ICi(−) preserves surjections,

it is enough to prove this when M = k. However, by definition we have a surjection
∆2(k)� IC2(k), and by (8.6) there is a surjection T2 � IC0(k). �

Lemma 8.7. (1) The action map kW → End(T2) is an isomorphism.
(2) The object T(∆2(k)) ∈ Rep(W, k) is a free k-module of rank one with trivial

W -action.
(3) The object T(T2) ∈ Rep(W, k) is a free k-module of rank two on which

s ∈W acts as T(η).

Proof. (1) Using the two exact sequences (8.6) together with adjunction and the
fact that T2 is projective, we find an exact sequence

0 → Hom(∆0(k),∇0(k)) → End(T2) → Hom(∆2(k),∇2(k)) → 0.

We also have Hom(∆0(k),∇0(k)) ∼= Hom(∆2(k),∇2(k)) ∼= k by adjunction, so it
follows that End(T2) is a free k-module of rank two. It is spanned by the identity
map together with the composition c : T2 → T2 given by

T2 � ∆0(k) = ∇0(k) ↪→ T2.
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It is easy to see from the above description of the representations corresponding to
these perverse sheaves that c is (up to multiplication by a unit in k) the action of
1− s ∈ kW . The result follows.

(2) By adjunction, we have Hom(∆2(k),∆0(k)) = 0. It then follows from the first

short exact sequence in (8.6) that we have an isomorphism Hom(∆0(k),∆0(k))
∼−→

Hom(T2,∆0(k)). In particular, the last term in the following short exact sequence
is a free k-module of rank one:

0 → Hom(T2,∆2(k)) → End(T2)
p→ Hom(T2,∆0(k)) → 0.

Thus, Hom(T2,∆2(k)) is identified with ker p, or, equivalently, with ker i ◦ p, where
i is the injective map Hom(T2,∆0(k)) → Hom(T2, T2) induced by the inclusion
∆0(k) = ∇0(k) ↪→ T2. Now, i ◦ p : End(T2) → End(T2) is induced by composition
with the map c defined above. It follows that

Hom(T2,∆2(k)) ∼= {a ∈ kW | (1− s)a = 0} = k · (1 + s) ⊂ kW.

Thus, Hom(T2,∆2(k)) is free of rank one over k, and W acts on it trivially.
(3) By definition, T(T2) = Hom(T2, T2), which is isomorphic to kW as seen in

part (1). The action of s on T(T2) comes from applying the involution η to the
first copy of T2 in Hom(T2, T2), so it corresponds to right multiplication by s on
kW . The action of T(η) on T(T2) comes from applying η to the second copy of T2

in Hom(T2, T2), so it corresponds to left multiplication by s on kW . Since kW is
commutative, left and right multiplication are the same. �

An easy calculation with explicit generators for V ⊗ V , left to the reader, yields
the following fact.

Lemma 8.8. The restriction of S sm
G (η) : V ⊗ V → V ⊗ V to (V ⊗ V )Ť is the

action of s ∈W on ΦǦ(V ⊗ V ).

8.4. Proof of Theorem 3.3 for G = PGL(2). As in §3.3, we have an isomorphism

φ : ForW ◦ ΦǦ ◦S sm
G

∼
=⇒ ForW ◦ SG ◦ΨG.

All we need to show is that for each object M ∈ PervG(O)(Gr
sm
G ,k), the map of

k-modules φM is actually W -equivariant. Let ψM : SG(ΨG(M)) → T(M) be the
isomorphism deduced from Corollary 8.4. By definition ψM is W -equivariant, so it
suffices to show that the composition

φ′M = ForW (ψM ) ◦ φM : ForW (ΦǦ(S sm
G (M))) → ForW (T(M))

is W -equivariant. The functors ΦǦ ◦S sm
G and T are exact, so by Lemma 8.6, it is

enough to prove this for M = T2 and M = ∆2(k).
Suppose first that M = ∆2(k). One can easily check that ΦǦ(S sm

G (∆2(k))) is
the trivial W -module (free of rank one over k). The same description applies to
T(∆2(k)) by Lemma 8.7(2), so any morphism of k-modules ΦǦ(S sm

G (∆2(k))) →
T(∆2(k)) is W -equivariant.

Now suppose that M = T2. Since φ′ is a morphism of functors, we have

(8.7) φ′T2
◦ ForW (ΦǦ(S sm

G (η))) = ForW (T(η)) ◦ φ′T2
.

By Lemmas 8.8 and 8.7(3), the maps ΦǦ(S sm
G (η)) and T(η) each coincide with the

action of s on the appropriate object. Thus, (8.7) says that φ′T2
commutes with the

action of s, as desired.
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Appendix A. Commutative diagrams in 2-categories

Many of the arguments in this paper require us to keep track of equalities of
natural isomorphisms of functors, which means that we are effectively working in
the 2-category Cat (see [MacL, §XII.3], [KS]). To carry out computations in this
setting, we need some basic facts about commutative diagrams in 2-categories. In
this section, we summarize these facts for the benefit of readers who are familiar
only with ordinary 1-categorical diagrams (as were the authors, before this project).

We apologize to category theorists for the informality and narrowness of our
exposition. The ‘correct’ level of generality is that of Power’s n-categorical pasting
theorem [P2], but the cases of that result that we need are so special that explaining
them in their own right is easier than explaining how to see them as special cases.

A.1. The definition of commutativity. Let us first review the definition of a
commutative diagram in ordinary category theory. A diagram in a category A can
be defined as a pair (Γ, f), where Γ is a finite directed graph and f is a labelling
of Γ in A: to every vertex v of Γ we assign an object f(v) of A, and to every arc
e with source v and target v′ we assign a morphism f(e) : f(v) → f(v′). If γ is a
directed path in Γ with initial vertex v1 and final vertex v2, then the labelling f
(or more correctly, its restriction to γ) defines a morphism f(γ) : f(v1) → f(v2),
namely the composite of the labels of all the arcs in the path. One says that the
diagram (Γ, f) is commutative if, for any two directed paths γ, γ′ in Γ with the
same initial and final vertices, we have f(γ) = f(γ′).

The 2-categorical analogues of these concepts are as follows. A diagram in a
2-category A is a triple (Γ,∆, f), where (Γ,∆) is a 2-computad and f is a labelling
of (Γ,∆) in A. Here, following [P2], a 2-computad (Γ,∆) is a pair of finite directed
graphs where the vertex set of ∆ is a subset of the set of directed paths of Γ, and
every arc of ∆ joins two directed paths with the same initial and final vertices.
To define a labelling f of (Γ,∆) in A, we must first give a labelling of Γ in the
underlying 1-category of A, assigning a 0-cell (object) to every vertex and a 1-cell
(morphism) to every arc, as above; then, to every arc η of ∆, whose source is the
directed path γ of Γ and whose target is the directed path γ′ of Γ, we must assign
a 2-cell f(η) : f(γ)⇒ f(γ′).

Among all 2-computads, the 2-pasting schemes play the role that directed paths
play among all directed graphs, in that they describe the valid ways to define a
composite of 2-cells, allowing a mix of ‘horizontal’ and ‘vertical’ composition. We
refer to [P2, Definition 2.2] for the precise definition. Up to isomorphism, any 2-
pasting scheme (Γ,∆) arises from a polygonal decomposition of a convex polygon
in R2, as follows:

• Γ consists of the vertices and edges of the polygons, with every edge oriented
in the direction of increasing x-coordinate (assume that no two vertices have
the same x-coordinate);

• there is one arc of ∆ for every interior polygon, joining the two directed
paths that make up the boundary of that polygon, and oriented in the
direction of decreasing y-coordinate.
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Example A.1. The following is an example of a 2-pasting scheme, where dots and
single arrows represent Γ, and double arrows represent the arcs of ∆:

(A.1)

•

��

��
•

??

����

•

����
•

??

// •

??

// •

Note that the boundary of the exterior polygon is the union of two directed
paths with the same initial and final vertices. We call these paths the domain and
codomain of (Γ,∆), where the domain is the one with higher y-coordinates. We
are using x- and y-coordinates just to establish consistent orientations, and they
do not always correlate with the horizontal and vertical directions in our pictures.

It is shown in [P1, Theorem 3.3] (also appearing as [P2, Theorem 2.7]) that any
labelling f of a 2-pasting scheme (Γ,∆) in a 2-category defines a unique composite
2-cell f(Γ,∆) : f(α)⇒ f(β) where α and β are the domain and codomain of (Γ,∆)
respectively. We refer to a diagram (Γ,∆, f) where (Γ,∆) is a 2-pasting scheme
simply as a pasting diagram.

In displaying pasting diagrams, we often indicate the arcs of ∆ not by double
arrows but by shaded polygons on which a label (or reference number) can be
displayed more conveniently. This creates ambiguity about which is the domain
and which is the codomain of the 2-pasting scheme, but it does not matter since we
use this method of display only when the 2-cells under consideration are invertible.

Example A.2. A labelling of the 2-pasting scheme of Example A.1 in a 2-category
A might be depicted as:

(A.2)

χ

ψ

ω

A B C

D E

F

ε

α

γ

β

δ

θ

ζ

η

Here, the capital letters A, . . . , F denote 0-cells of A, and the lowercase Greek
letters α, . . . , θ denote 1-cells of A with domains and codomains as indicated. In
one of the two possible interpretations of the picture, the named 2-cells are

χ : δ ◦ α ⇒ γ, ψ : θ ◦ ζ ⇒ η and ω : ε ◦ β ⇒ ζ ◦ δ,
and the composite 2-cell defined by the pasting diagram has domain θ ◦ ε ◦ β ◦ α
and codomain η ◦ γ. In the other interpretation, the domains and codomains of all
2-cells are switched. If we replace each of χ, ψ and ω by a symbol indicating an
inverse pair of 2-cells, the two interpretations of the picture define an inverse pair
of 2-cells θ ◦ ε ◦ β ◦ α⇐⇒ η ◦ γ.
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We say that a diagram (Γ,∆, f) in a 2-category is commutative if, for any two
sub-2-computads (γ, δ) and (γ′, δ′) of (Γ,∆), which are both 2-pasting schemes and
have the same domain and codomain, we have f(γ, δ) = f(γ′, δ′). The definition
of sub-2-computad is the obvious one. To restate this definition more loosely, a
diagram in a 2-category is commutative if any two pasting diagrams included in it
that have the same boundary also have the same composite 2-cell.

A.2. Polyhedral 2-computads. Apart from 2-pasting schemes, almost all the 2-
computads encountered in this paper are of a special polyhedral kind, for which
the definition of commutativity can be rephrased in simpler terms.

A convex polyhedron in R3 (or rather, its boundary) gives rise to a 2-computad
(Γ,∆) as follows:

• Γ consists of the vertices and edges, with every edge oriented in the direction
of increasing x-coordinate (assume that no two vertices have the same x-
coordinate);
• there are two arcs of ∆ for every face, joining the two directed paths that

make up the boundary of that face, one arc each way.

When considering labellings of this 2-computad in a 2-categoryA, we always impose
the extra condition that, for each face of the polyhedron, the 2-cells assigned to
the two arcs on that face are inverse to each other, so that each determines the
other. (Thus, we really have a ‘2-computad with relations’.) For instance, when
A = Cat, such a labelling assigns a category to each vertex, a functor to each edge,
and a natural isomorphism of functors to each face. We simply refer to a cube,
tetrahedron, etc., meaning a diagram in a 2-category (specifically, Cat) obtained by
labelling the 2-computad associated with a cube, tetrahedron, etc. in R3.

Example A.3. Consider the case of a cube in a 2-category A. The 1-skeleton of this
cube, obtained by forgetting ∆, is a diagram in the underlying 1-category of A, of
the kind that one would ordinarily mean by a ‘cube’:

(A.3)

A
α //

ε

��

β
%%

B
ζ

��

γ

%%
C

δ //
η

��

D
θ

��
E

ι //

κ %%

F
λ
%%

G
µ

// H

That is, the letters A, . . . ,H denote 0-cells of A, and α, . . . , µ denote 1-cells of
A with domains and codomains as indicated. To specify the full cube in our 2-
categorical sense, we must also specify, for each face, an inverse pair of 2-cells
between the two compositions of 1-cells around the edges of that face. For example,
the face ABCD in the above picture should be labelled by an inverse pair of 2-cells
δ ◦ β ⇐⇒ γ ◦ α. When we want to display the names of these 2-cells (or, more
often, the reference numbers of the results or pasting diagrams that define them),
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we use a picture such as

(A.4)

F

τ
υ

φ

A B

D

HG

E

ζ

ι

λ

α

γ

θ

µ

κ

ε

χ

ψ

ω

C

β

δ

η

To avoid clutter, we sometimes display just the 1-skeleton, when the context makes
clear which 2-cells are meant.

Many of our results, such as the lemmas in Appendix B, assert that a particular
cube (or tetrahedron, etc.) is commutative. According to the definition of com-
mutativity given in §A.1, this appears to require a number of different equalities of
2-cells, but in fact the equalities are all equivalent because of our assumption that
the 2-cells assigned to each face are inverse to each other.

Example A.4. Continue with the cube of Example A.3. One of the equalities of
2-cells entailed by saying that this cube is commutative is

(A.5)

A
α //

ε

��

β

%%

B
γ

%%
C

δ //

η

��

5?

D

θ

��
E

κ %%

5?

G
µ

//

5?

H

=

A
α //

ε

��

B

ζ

��

γ

%%
D

θ

��
E

ι //

κ %%

5?

F
λ
%%

5>

G
µ

//
5?

H

Here we are abusing notation in a natural way, by letting these two pasting diagrams
stand for their composite 2-cells. Observe that these pasting diagrams are what
appear on the ‘front’ and ‘back’ of the cube when viewed from the angle suggested
by the picture (A.3), with a particular choice of which of the two directed paths in
the visual boundary is the domain and which is the codomain. Other such equations
could be obtained by making different choices of angles and orientations.

However, all of these equations are equivalent to the statement that the following
hexagon of invertible 2-cells commutes, in the ordinary sense of diagrams in the
category of 1-cells from A to H:

(A.6)

θ ◦ γ ◦ α5=

u}

ai

!)
θ ◦ δ ◦ βKS

��

λ ◦ ζ ◦ αKS

��
µ ◦ η ◦ βbj

"*

λ ◦ ι ◦ ε4<

t|
µ ◦ κ ◦ ε
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Here the vertices of the hexagon are the six 1-cells A→ H obtained by composing
1-cells labelling the edges of the cube, and the edges of the hexagon correspond to
the faces of the cube: for example, the 2-cell θ ◦ δ ◦ β ⇒ θ ◦ γ ◦α is the one induced
by the 2-cell δ◦β ⇒ γ◦α labelling the top face of the cube. The particular equation
(A.5) is obtained by breaking the hexagon (A.6) into its left and right halves.

This characterization of commutativity immediately implies statements of the
following kind: if the 1-skeleton of the cube has been specified, along with the 2-
cells labelling all faces other than the face ABCD, and if the 1-cell θ is such that
every 2-cell θ ◦ ϕ ⇒ θ ◦ ψ is induced by a unique 2-cell ϕ ⇒ ψ (for example, if θ
is a full and faithful functor in Cat), then there is a unique way to label the face
ABCD so that the cube is commutative. The reason is that, in this situation, we
have all but one of the edges of the hexagon (A.6), so the remaining edge can be
filled in uniquely so that the hexagon commutes.

Similarly, if the missing labels are those of the face EFGH, and if the 1-cell ε is
such that every 2-cell ϕ◦ε⇒ ψ◦ε is induced by a unique 2-cell ϕ⇒ ψ (for example,
if ε is a full and essentially surjective functor in Cat), then there is a unique way to
label the face EFGH so that the cube is commutative.

Example A.5. Because it plays an important role in the proof of Theorem 1.1, let
us examine also the case where the polyhedron is a triangular prism; we refer to a
2-category diagram of this shape simply as a prism. The 1-skeleton of a prism has
the form

(A.7)

A
α //

ε

��

β
%%

B
ζ

��

γ

%%
C

δ //

ηyy

D

θyy
E

ι
// F

In fact, a prism can be thought of as a cube in which one face is trivial: namely, in
(A.3) take G = E, H = F , κ = 1E , λ = 1F , µ = ι, and label the face EFGH by
the identity 2-cell ι⇒ ι.

The prism is commutative if and only if the following pentagon of invertible
2-cells commutes:

(A.8)

θ ◦ γ ◦ α5=

u}

`h

 (
θ ◦ δ ◦ βKS

��

ζ ◦ αKS

��
ι ◦ η ◦ β ks +3 ι ◦ ε

Notice that this condition uniquely determines the inverse 2-cells labelling the face
ABEF in terms of the rest of the data.

A.3. The gluing principle. An obvious yet important fact in ordinary category
theory is that a diagram composed of commutative triangles and squares (say)
joined together along their edges, in such a way that the result can be drawn in
R2, is commutative as a whole. We now want to explain a 2-categorical version of
this fact, which we call the gluing principle. We use this principle throughout the
paper to construct new commutative cubes, prisms, etc. from known ones.
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Example A.6. Let us examine in detail the case of gluing two cubes along a common
face. We suppose we have two consistently oriented cubes in our 2-category A,

A //

��

%%

B

��

%%
C //

��

D

��
E //

%%

F

%%
G // H

and

E //

��

%%

F

��

%%
G //

��

H

��
I //

%%
J

%%
K // L

where the 1-cells and 2-cells labelling the face EFGH are the same in both cubes.
Then we can glue these together to obtain a cube

(A.9)

A //

��

%%

B

��

%%
C //

��

D

��
E //

��

%%

F

��

%%
G //

��

H

��
I //

%%
J

%%
K // L

 

A //

��

%%

B

��

%%
C //

��

D

��
I //

%%
J

%%
K // L

by appropriate compositions of 1-cells and 2-cells as suggested by the picture. Our
claim is that if the original two cubes are commutative, so is the resulting cube.

One way to prove this is to write down the hexagon (A.6) for the resulting cube,
and show that it can be obtained by joining together two hexagons induced by those
for the original two cubes, and two squares whose commutativity follows from the
2-category axioms. This argument can be found in [HKK, §4]. A similar proof
could be given for every case of the gluing principle that we need, but it would be
tedious to write out when the gluing is more complicated.

A better way to prove the claim is to use pasting diagrams:

(A.10)
A //

��

%%
B

%%
C //

��

5>

D

��
E

%%

��

5>

G //

��

5>

H

��
I

%%

5>

K //

5>

L

=

A //

��

B

��

%%
D

��
E //

��

%%

5>

F

%%

5>

G //

��

5>

H

��
I

%%

5>

K //

5>

L

=

A //

��

B

��

%%
D

��
E //

��

5>

F

%%

��

5>

H

��
I //

%%

5>

J

%%

5>

K //
5>

L

Here, each step uses the commutativity of one of the two cubes, expressed in the
form (A.5). The conclusion that the composite 2-cell of the first pasting diagram
equals that of the third is equivalent to the commutativity of the resulting cube.

Notice how this argument works visually: the first pasting diagram is what
appears on the ‘front’ of the gluing picture (A.9), and the third is what appears on
the ‘back’. The intermediate stage is obtained by ‘passing through’ one of the two
original cubes but not the other.
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This observation suggests a more sophisticated way to express the proof, using
the formalism of 3-categorical pasting [P2]. We can think ofA as a 3-category where
the only 3-cells are identities. Then a commutative cube can be regarded as a 3-
computad labelled in A, where the 3-arrow joins the two 2-pasting schemes whose
labellings are the two sides of (A.5), and is labelled by the 3-cell that asserts the
equality of those two sides. The gluing picture (A.9) is a valid 3-pasting diagram, so
it does define a composite 3-cell (this is the composition of the equalities in (A.10)),
and that 3-cell asserts the commutativity of the glued cube.

The gluing principle we need is not much more general than Example A.6. An
informal statement is: if we take a collection of commutative labelled 2-computads
of the polyhedral kind, and glue them along matching faces in such a way that the
gluing can be depicted in R3, then the resulting labelled 2-computad is commutative.

We will not state the gluing principle more precisely, because we do not need
to give a general proof. For every case of the principle that appears in this paper,
it is evident that one could give a proof consisting of a chain of equalities of (the
composite 2-cells of) pasting diagrams along the lines of (A.10), starting with the
‘front’ of the picture and working through to the ‘back’ by ‘passing through’ one
constituent polyhedron at a time. From the more sophisticated viewpoint, what
this means is that every gluing picture is a valid 3-pasting diagram. Representative
examples of gluing pictures are Figure 3.1 and (5.5).

On a handful of occasions, we use a sort of converse to the gluing principle,
which allows us, under certain circumstances, to deduce the commutativity of one
of the constituent polyhedra in the gluing. Again, we content ourselves here with
the example of gluing two cubes.

Example A.7. Continue the notation of Example A.6. Suppose we know that the
cube ABCDEFGH and the glued cube ABCDIJKL are commutative; what can
we deduce about the cube EFGHIJKL? Under these assumptions we have the
first equality in (A.10) and the composition of the two equalities, so we can deduce
the second equality. If the 1-cell ε : A → E has the property that a 2-cell ϕ ⇒ ψ
is determined by the 2-cell ϕ ◦ ε ⇒ ψ ◦ ε it induces (when this induced 2-cell is
defined), then we can conclude that the cube EFGHIJKL is commutative. (For
example, an essentially surjective functor ε has this property in Cat.)

Similarly, if we know that the cube EFGHIJKL and the cube ABCDIJKL are
commutative, and that the 1-cell θ : H → L has the property that a 2-cell ϕ ⇒ ψ
is determined by the 2-cell θ ◦ ϕ ⇒ θ ◦ ψ it induces (when this induced 2-cell is
defined), then we can conclude that the cube ABCDEFGH is commutative. (For
example, a faithful functor θ has this property in Cat.)

Appendix B. Commutativity lemmas for sheaf functors

This appendix contains a collection of results asserting the commutativity of var-
ious 2-categorical diagrams. The diagrams, depicted in the figures on the following
pages, are all labelled 2-computads of the polyhedral kind described in §A.2, where
the 2-category is Cat and the categories involved are derived categories of sheaves
on varieties. Thus, the results concern equalities of natural isomorphisms between
sheaf functors.

All varieties and algebraic groups are defined over C, and all sheaves use the
strong topology and have coefficients in the fixed ring k, assumed to be Noetherian
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and of finite global dimension. A few of the analogous statements in the context of
étale sheaves are proved in [De, §5.1, §5.2] (see also [Rou, §12]).

Some explanation on the use of this appendix is needed. Because the results
are so numerous, they are not stated in the usual ‘Lemma—Proof’ format; instead,
references such as ‘Lemma B.4(d)’, here and in the main body of the paper, should
be understood as directing the reader to consult part (d) of Figure B.4. (The sole
exception is Lemma B.22.) Each figure in the appendix mentions a ‘Setting’, which
is usually a certain commutative diagram of varieties and morphisms of varieties,
giving context and notation for the accompanying polyhedral diagrams. The proof
that the diagrams in a given figure are commutative appears in the section with
the same number. (That is, the commutativity of the diagrams in Figure B.2 is
proved in §B.2, and so on.) In most cases, we will only give detailed arguments for
one or two diagrams in a figure, leaving the rest to the reader. We will frequently
use the gluing principle of §A.3.

Some lemmas in this appendix show only ordinary (nonequivariant) derived cat-
egories, but are invoked in situations involving equivariant derived categories. For
a justification of this, see §B.9 below.

B.1. Notation. Before beginning the proofs of commutativity results, we first ex-
plain and fix notation for the basic isomorphisms of functors we will encounter.

B.1.1. Composition. Suppose we have a commutative triangle of variety morphisms

X

Y

Z

f1

f

f2

or in other words an equality f = f2f1. Then we obtain composition isomorphisms
f∗ ⇐⇒ (f2)∗ ◦ (f1)∗ etc., which will be denoted as follows:

Db(X)

Db(Y )

Db(Z)

(f1)∗

f∗

(f2)∗

(Co)

Db(X)

Db(Y )

Db(Z)

(f1)!

f!

(f2)!

(Co)

Db(X)

Db(Y )

Db(Z)

(f1)∗

f∗

(f2)∗

(Co)

Db(X)

Db(Y )

Db(Z)

(f1)!

f !

(f2)!

(Co)

The first isomorphism is defined in [KaS, Equation (2.6.5)]: to construct it, one uses
the fact that, if f0

∗ , (f1)0
∗ and (f2)0

∗ denote the non-derived direct image functors
(between abelian categories of k-sheaves), the natural morphism of functors

f∗ = R(f0
∗ )

∼
=⇒ R

(
(f2)0

∗ ◦ (f1)0
∗
)
⇒ R

(
(f2)0

∗
)
◦R
(
(f1)0

∗
)

= (f2)∗ ◦ (f1)∗

is an isomorphism. The second and third isomorphisms are defined similarly (see
[KaS, Equations (2.6.6) and (2.3.9)]. Finally, the fourth isomorphism is proved in
[KaS, Proposition 3.1.8]. Note that this fourth isomorphism is deduced from the
second one by adjunction, in a sense that will be made precise in Lemma B.2(b)
below.
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Consequently, given a commutative square of variety morphisms

W X

Y Z

f1

f3 f2

f4

we obtain natural isomorphisms (f2)∗ ◦ (f1)∗ ⇐⇒ (f4)∗ ◦ (f3)∗ etc., by composing
the composition isomorphisms (f2)∗ ◦ (f1)∗ ⇐⇒ f∗ and f∗ ⇐⇒ (f4)∗ ◦ (f3)∗ where
f = f2f1 = f4f3. These isomorphisms will be labelled ‘(Co)’ as well.

B.1.2. Base change. Suppose we have a cartesian square of variety morphisms

W X

Y Z

g′

f ′ f

g

Then we obtain base change isomorphisms g∗ ◦ f! ⇐⇒ (f ′)! ◦ (g′)∗ and g! ◦ f∗ ⇐⇒
(f ′)∗ ◦ (g′)! which will be denoted as follows:

(BC)

Db(X) Db(W )

Db(Z) Db(Y )

(g′)∗

f! (f ′)!

g∗

(BC)

Db(X) Db(W )

Db(Z) Db(Y )

(g′)!

f∗ (f ′)∗

g!

The first isomorphism is proved in [KaS, Proposition 2.6.7]. The second isomor-
phism is proved in [KaS, Proposition 3.1.9]; in fact it is deduced from the first one
by adjunction, in a sense that will be made precise in Lemma B.3 below.

B.1.3. Adjunction. For any morphism f : X → Y , the adjunctions f∗ a f∗ and
f! a f ! give rise to (indeed, are equivalent to) adjunction isomorphisms

(Adj)

Db(X) ModD
b(X)op

Db(Y ) ModD
b(Y )op

Y

f∗ −◦f∗,op

Y

(Adj)

Db(X) ModD
b(X)op

Db(Y ) ModD
b(Y )op

Y

f ! −◦(f!)
op

Y

Here Mod is short for Mod(k) where k is the coefficient ring of the derived categories,

and Y : C → ModC
op

denotes the Yoneda embedding [MacL, III.2(7)], defined on
objects by Y(c) = HomC(−, c). The second isomorphism is essentially the definition
of the functor f !: see [KaS, Theorem 3.1.5]. The first isomorphism is proved in
[KaS, Proposition 2.6.4]. It is deduced from the following observation: if we denote
by f0

∗ and f∗0 the non-derived direct and inverse image functors (between abelian
categories of k-sheaves), then for any complex M of sheaves on Y , the natural
morphism of functors

R
(
Hom(f∗0M,−)

) ∼
=⇒ R

(
Hom(M,−) ◦ f0

∗
)
⇒ RHom(M,−) ◦ f∗
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Setting: X
f1 //Y

f2 //Z

(Adj) (Co)

Db(X) ModD
b(X)op

ModD
b(Y )op

Db(Z) ModD
b(Z)op

−◦(f2f1)∗,op

Y

(f2f1)∗

−◦(f1)∗,op

Y

−◦(f2)∗,op

(Adj)

(Adj)

(Co) Db(Y )

(f1)∗

(f2)∗

Y

(a)

(Adj) (Co)

Db(X) ModD
b(X)op

ModD
b(Y )op

Db(Z) ModD
b(Z)op

−◦(f2f1)op
!

Y

(f2f1)!

−◦(f1)op
!

Y

−◦(f2)op
!

(Adj)

(Adj)

(Co) Db(Y )

(f1)!

(f2)!

Y

(b)

Figure B.2. Composition and adjunction

is an isomorphism.

B.1.4. Constant sheaf under inverse image. Let 1 denote the trivial group, regarded
as a one-object category. The datum of the constant sheaf kX on a variety X defines
a functor

kX : 1 → Db(X).

We have a canonical isomorphism kX ∼= a∗Xkpt where aX is the morphism X → pt.
Hence for any morphism f : X → Y we obtain an isomorphism

f∗(kY ) ∼= f∗
(
(aY )∗(kpt)

) (Co)∼= (aX)∗(kpt)
∼= kX .

We can regard this as an isomorphism of functors:

1

Db(Y )

Db(X)

kY

kX

f∗

(CII)

B.2. Composition and adjunction. For Part (a), one can easily check that the
similar statement where derived categories are replaced by abelian categories of
sheaves, and the derived functors by their non-derived variants, holds. Then our
claim follows, by construction of the adjunction f∗ a f∗ (see §B.1.3), using the
following easy properties of derived functors and morphisms between them:

• If F,G,H are three composable functors which admit derived functors (as
well as their compositions), then the diagram of natural morphisms

R(F ◦G ◦H) +3

��

R(F ◦G) ◦RH
��

RF ◦R(G ◦H) +3 RF ◦RG ◦RH

commutes;
• If ϕ : F ⇒ G and ϕ′ : G ⇒ H are morphisms of functors which admit

derived functors, the induced morphisms between derived functors satisfy
R(ϕ′ ◦ ϕ) = R(ϕ′) ◦Rϕ;
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Setting:

W X

Y Z

g′

f ′ f

g
ModD

b(Z)op

(Adj)

(BC)

(Adj)

Db(X) ModD
b(X)op

ModD
b(W )op

ModD
b(Y )opDb(Y )

Db(Z)

−◦f∗,op

Y
−◦gop

!

Y
−◦(g′)op

!

−◦(f ′)∗,op

Y

g!

f∗

(BC)

(Adj)

(Adj)

Db(W )
(g′)!

Y

(f ′)∗

Figure B.3. Base change and adjunction

• If F,G,G′, respectively F, F ′, G, are functors which admit derived functors
and ϕ : G⇒ G′, respectively ϕ : F ⇒ F ′, are morphisms of functors, then
the diagrams of natural morphisms

R(F ◦G) +3

��

R(F ◦G′)
��

RF ◦RG +3 RF ◦RG′

R(F ◦G) +3

��

R(F ′ ◦G)

��
RF ◦RG +3 RF ′ ◦RG

commute.

For Figure B.2(b), recall that in [KaS, Proposition 3.1.8], the isomorphism
(f2f1)! ⇐⇒ (f1)! ◦ (f2)! is deduced from the isomorphism (f2f1)! ⇐⇒ (f2)! ◦ (f1)!

by adjunction. In other words, it is defined precisely so as to make this prism com-

mutative. (This makes sense because Y : Db(X)→ ModD
b(X)op

is full and faithful;
see Example A.4.)

B.3. Base change and adjunction. In [KaS, Proposition 3.1.9], the isomorphism
g! ◦ f∗ ⇐⇒ (f ′)∗ ◦ (g′)! is deduced from the isomorphism f∗ ◦ g! ⇐⇒ (g′)! ◦ (f ′)∗

by adjunction. In other words, it is defined precisely so as to make this cube
commutative.

B.4. Cocycle property of composition. For part (a), one easily checks the
similar claim where derived categories are replaced by abelian categories of sheaves,
and derived functors by their non-derived counterparts. Then our claim follows,
using the same properties as in the proof of Lemma B.2(a).

The proofs of (b) and (c) are similar.
Finally, part (d) follows from part (b) by adjunction, using Lemma B.2(b). To

be more precise, what follows from part (b) is the commutativity of the following
tetrahedron:

(B.1) (Co) (Co)

ModD
b(X)op

ModD
b(W )op

ModD
b(Z)op

ModD
b(Y )op

−◦(f2)op
!

(Co)

(Co)

−◦(f1)op
!

−◦(f2f1)op
!

−◦(f3f2)op
!

−◦(f3)op
!

−◦fop
!
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Setting: W
f1 //X

f2 //Y
f3 //Z and f = f3f2f1

(Co) (Co)

Db(X)

Db(W ) Db(Z)

Db(Y )

(f2)∗

(Co)

(Co)

(f1)∗

(f2f1)∗

(f3f2)∗

(f3)∗

f∗

(a)

(Co) (Co)

Db(X)

Db(W ) Db(Z)

Db(Y )

(f2)!

(Co)

(Co)

(f1)!

(f2f1)!

(f3f2)!

(f3)!

f!

(b)

(Co) (Co)

Db(X)

Db(W ) Db(Z)

Db(Y )

(f2)∗

(Co)

(Co)

(f1)∗

(f2f1)∗

(f3f2)∗

(f3)∗

f∗

(c)

(Co) (Co)

Db(X)

Db(W ) Db(Z)

Db(Y )

(f2)!

(Co)

(Co)

(f1)!

(f2f1)!

(f3f2)!

(f3)!

f !

(d)

Figure B.4. Cocycle property of composition

Setting:

X
f1 //Y

f2 //Z

(CII) (CII)

1

Db(X) Db(Z)

Db(Y )

kY

(CII)

(Co)

kX

f∗1

kZ

f∗2

(f2f1)∗

Figure B.5. Constant sheaf and composition

Another description of this tetrahedron is as follows: it is obtained from the (not
yet known to be commutative) tetrahedron in part (d) by gluing on four instances
of Lemma B.2(b), one to each face. Because the Yoneda embedding is faithful, this
implies that Figure B.4(d) commutes (see Example A.7).

B.5. Constant sheaf and composition. Since the isomorphism (CII) was de-
fined using the isomorphism (Co) for (·)∗, this follows easily from Lemma B.4(c).

B.6. Iterated composition. Part (a) follows from the gluing principle, since the
prism can be obtained by gluing together three tetrahedra that are commutative
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Setting:

X X ′

Y ′

Z Z ′

f ′

gX

f

f ′1

gZ

f ′2

Y

f1

f2

gY

(Co) (Co)

Db(X) Db(X ′)

Db(Y ′)

Db(Z) Db(Z ′)

f ′∗

(gX)∗

f∗

(f ′1)∗

(gZ)∗

(f ′2)∗

(Co)

(Co)

(Co) Db(Y )

(f1)∗

(f2)∗

(gY )∗

(a)

(Co) (Co)

Db(X) Db(X ′)

Db(Y ′)

Db(Z) Db(Z ′)

f ′!

(gX)!

f!

(f ′1)!

(gZ)!

(f ′2)!

(Co)

(Co)

(Co) Db(Y )

(f1)!

(f2)!

(gY )!

(b)

(Co) (Co)

Db(X) Db(X ′)

Db(Y ′)

Db(Z) Db(Z ′)

(f ′)∗

(gX)∗

f∗

(f ′1)∗

(gZ)∗

(f ′2)∗

(Co)

(Co)

(Co) Db(Y )

(f1)∗

(f2)∗

(gY )∗

(c)

(Co) (Co)

Db(X) Db(X ′)

Db(Y ′)

Db(Z) Db(Z ′)

(f ′)!

(gX)!

f !

(f ′1)!

(gZ)!

(f ′2)!

(Co)

(Co)

(Co) Db(Y )

(f1)!

(f2)!

(gY )!

(d)

Figure B.6. Iterated composition

by Lemma B.4(a), namely:

(Co) (Co)

Db(X)

Db(Z) Db(Y )

Db(Z′)

(gZf)∗

(Co)

(Co)

f∗

(gZ )∗

(f1)∗

(gZf2)∗

(f2)∗
(Co) (Co)

Db(X)

Db(Y ) Db(Y ′)

Db(Z′)

(gZf)∗

(Co)

(Co)

(f1)∗

(f′2gY )∗

(gY f1)∗

(f′2)∗

(gY )∗
(Co) (Co)

Db(X)

Db(Y ′) Db(X′)

Db(Z′)

(f′gX )∗

(Co)

(Co)

(f′1gX )∗

(f′2)∗

(gX )∗

f′∗

(f′1)∗

The proofs of parts (b)–(d) are similar, using the other parts of Lemma B.4.

B.7. Base change and composition. We begin with part (a). By construction,
the base change isomorphism is deduced from a similar isomorphism between non-
derived functors (which we denote with a sub- or superscript “0”). As for Lemma
B.2(a), one can check that it is enough to prove the corresponding statement for
the non-derived functors. In concrete terms, to prove the latter statement we have
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Setting:

X X ′

Y ′

Z Z ′

f ′

gX

f

f ′1

gZ

f ′2

Y

f1

f2

gY

(BC) (Co)

Db(X) Db(X ′)

Db(Y ′)

Db(Z) Db(Z ′)

(f ′)∗

(gX)!

f∗

(f ′1)∗

(gZ)!

(f ′2)∗

(BC)

(BC)

(Co) Db(Y )

(f1)∗

(f2)∗

(gY )!

(a)

(BC) (Co)

Db(X) Db(X ′)

Db(Y ′)

Db(Z) Db(Z ′)

(f ′)!

(gX)∗

f!

(f ′1)!

(gZ)∗

(f ′2)!

(BC)

(BC)

(Co) Db(Y )

(f1)!

(f2)!

(gY )∗

(b)

(BC) (Co)

Db(X) Db(X ′)

Db(Y ′)

Db(Z) Db(Z ′)

(f ′)!

(gX)∗

f !

(f ′1)!

(gZ)∗

(f ′2)!

(BC)

(BC)

(Co) Db(Y )

(f1)!

(f2)!

(gY )∗

(c)

(BC) (Co)

Db(X) Db(X ′)

Db(Y ′)

Db(Z) Db(Z ′)

(f ′)∗

(gX)!

f∗

(f ′1)∗

(gZ)!

(f ′2)∗

(BC)

(BC)

(Co) Db(Y )

(f1)∗

(f2)∗

(gY )!

(d)

Figure B.7. Base change and composition

to prove that the following diagram of isomorphisms of functors commutes:

(B.2)

(f ′)∗0(gZ)0
!
ks +3

KS

��

(f ′1)∗0(f ′2)∗0(gZ)0
!
ks +3 (f ′1)∗0(gY )0

! (f2)∗0KS

��
(gX)0

! f
∗
0
ks +3 (gX)0

! (f1)∗0(f2)∗0

Now recall that the isomorphism (f ′)∗0(gZ)0
! ⇐⇒ (gX)0

! f
∗
0 is obtained by adjunction

from the morphism of functors (gZ)0
! f

0
∗ ⇒ (f ′)0

∗(gX)0
! induced by the composition

isomorphism (gZ)0
∗f

0
∗ ⇐⇒ (f ′)0

∗(gX)0
∗, and similarly for the other base change iso-

morphisms (see [KaS, Proposition 2.5.11]). One can check (using in particular the
non-derived version of Lemma B.2(a)) that the commutativity of diagram (B.2)
follows from the commutativity of the following diagram:

(gZ)0
! f

0
∗
ks +3

��

(gZ)0
! (f2)0

∗(f1)0
∗

+3 (f ′2)0
∗(gY )0

! (f1)0
∗

��
(f ′)0

∗(gX)0
!
ks +3 (f ′2)0

∗(f
′
1)0
∗(gX)0

!

which itself follows easily from the non-derived version of Lemma B.4(a).
The proof of part (b) is similar.
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Setting:

X ′

W X

Z

Z ′Y ′

W ′

hX

g′1

f1

g′

f

hZ

g1

f ′1

hW
Yf ′

g

hY

Db(X ′)

(BC)

(Co)

(BC)

Db(W ) Db(X)

Db(Z)

Db(Z ′)Db(Y ′)

Db(W ′)

(hX)!

(g′1)∗

(f1)!

(g′)∗

f!

(hZ)!

(g1)∗

(f ′1)!

(hW )!

(Co)

(BC)

(BC)

Db(Y )
(f ′)!

g∗

(hY )!

(a)

Db(X ′)

(BC)

(Co)

(BC)

Db(W ) Db(X)

Db(Z)

Db(Z ′)Db(Y ′)

Db(W ′)

(hX)∗

(g′1)!

(f1)∗

(g′)!

f∗

(hZ)∗

(g1)!

(f ′1)∗

(hW )∗

(Co)

(BC)

(BC)

Db(Y )
(f ′)∗

g!

(hY )∗

(b)

Db(X ′)

(BC)

(Co)

(BC)

Db(W ) Db(X)

Db(Z)

Db(Z ′)Db(Y ′)

Db(W ′)

(hX)∗

(g′1)!

(f1)∗

(g′)!

f∗

(hZ)∗

(g1)!

(f ′1)∗

(hW )∗

(Co)

(BC)

(BC)

Db(Y )
(f ′)∗

g!

(hY )∗

(c)

Db(X ′)

(BC)

(Co)

(BC)

Db(W ) Db(X)

Db(Z)

Db(Z ′)Db(Y ′)

Db(W ′)

(hX)!

(g′1)∗

(f1)!

(g′)∗

f !

(hZ)!

(g1)∗

(f ′1)!

(hW )!

(Co)

(BC)

(BC)

Db(Y )
(f ′)!

g∗

(hY )!

(d)

Figure B.8. Base change and iterated composition

The proof of part (c) is similar to that of Lemma B.4(d): the claim follows from
part (b), using Lemma B.3 and Lemma B.2(b). Similarly, part (d) follows from
part (a), using Lemma B.3 and Lemma B.2(a).

B.8. Base change and iterated composition. Part (a) follows from the gluing
principle, since the cube can be obtained by gluing together the following prisms,
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which are commutative by Lemma B.7(b):

Db(X ′)

(BC)

(BC)

(Co)

Db(W ) Db(X)

Db(W ′)

Db(Y ′) Db(Z ′)

(g′1)∗ (hX)!

(f1)!

(g′)∗

(f1hX)!

(g1)∗

(hW )!

(f ′1)!

(Co) (BC)
(hY f

′)!

(BC) (Co)

Db(W ) Db(X)

Db(Z)

Db(Y ′) Db(Z ′)

(hZf)!

(g′)∗

(hY f
′)!

f!

(g1)∗

(hZ)!

(BC)

(BC)

(Co) Db(Y )

(f ′)!

(hY )!

g∗

The proofs of the other parts are similar.

B.9. Equivariant versions of the above isomorphisms. Every isomorphism of
functors described above has an equivariant version, where all varieties are assumed
to have an action of an algebraic group H, every morphism is assumed to be H-
equivariant, each derived category Db(X) is replaced by the equivariant derived
category Db

H(X) of [BL], the constant sheaf kX is replaced by the equivariant

constant sheaf kHX of [BL, §3.4.2], and f∗, f!, f
∗, f ! are defined as in [BL, §3.3].

The equivariant versions of the isomorphisms are constructed from the ordinary
isomorphisms, as explained in [BL, §3.4]. We continue to use the notation ‘(Co)’,
‘(BC)’, and so on for the equivariant versions.

As mentioned before, we will cite any of Lemmas B.2–B.8 when we actually
require the statement for the equivariant versions. To justify this, and for future
reference, we briefly recall how the equivariant categories, functors and isomor-
phisms are defined.

For any H-variety X, an H-resolution P of X means a variety P endowed with
a free H-action and a smooth H-equivariant morphism P → X. By definition, to
specify an object M of Db

H(X) is to specify a compatible collection of objects of the
categories Db(H\P ) for various H-resolutions P of X. More precisely, for each P
in a ‘sufficiently rich’ class of H-resolutions of X we must specify an object M(P )
of Db(H\P ), and for any smooth morphism g : P → Q between such resolutions
we must specify an isomorphism g∗(M(Q)) ∼= M(P ), where g : H\P → H\Q is the
morphism induced by g, such that a natural compatibility condition holds when we
consider the composition of two smooth morphisms. See [BL, §§2.4.4–2.4.5] for the
details.

The functors f∗, f!, f
∗, f ! between equivariant derived categories are defined by

means of the corresponding functors for the ordinary derived categories Db(H\P ).
Explicitly, if f : X → Y is an H-equivariant morphism and M ∈ Db

H(X), then

f∗M ∈ Db
H(Y ) is defined by (f∗M)(P ) = (f̃HP )∗

(
M(P ×Y X)

)
, where the fibre

product P ×Y X is defined using f : X → Y , and f̃HP : H\(P ×Y X) → H\P is
the map induced by the projection P ×Y X → P . The definition of f! is the same

but with (f̃HP )! instead of (f̃HP )∗. If N ∈ Db
H(Y ), then f∗N ∈ Db

H(X) is defined

by (f∗N)(P ×Y X) = (f̃HP )∗
(
N(P )

)
. (The class of H-resolutions of X of the form

P ×Y X where P is an H-resolution of Y is ‘sufficiently rich’.) The definition of f !

is the same but with (f̃HP )! instead of (f̃HP )∗.
As an example of an isomorphism of equivariant functors, consider the com-

position isomorphism for (·)∗. Suppose we have H-equivariant morphisms f :
X → Y and g : Y → Z. To define an isomorphism between the two functors
(gf)∗ : Db

H(X) → Db
H(Z) and g∗ ◦ f∗ : Db

H(X) → Db
H(Z), it suffices to define, for
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each object M of Db
H(X) and each H-resolution P of Z, an isomorphism between(

(gf)∗M
)
(P ) and (g∗(f∗M))(P ) that is suitably natural in P . But by definition,

(g∗(f∗M))(P ) = (g̃HP )∗
(
(f∗M)(P ×Z Y )

)
= (g̃HP )∗(f̃

H
P×ZY )∗(M(P ×Z X)),

where we have identified (P ×Z Y ) ×Y X with P ×Z X. Since the composition

g̃HP f̃
H
P×ZY

: H\(P ×Z X)→ H\P is exactly (̃gf)
H

P , the ordinary (Co) isomorphism

(g̃HP )∗ ◦ (f̃HP×ZY
)∗ ⇐⇒ ((̃gf)

H

P )∗ provides the required isomorphism.
To show the equivariant version of Lemma B.4(a), we can restrict attention

to a single object M of Db
H(W ), and evaluate all the resulting objects of Db

H(Z)
at a single H-resolution P of Z. Unravelling the definitions, the commutativity
statement we have to prove becomes a special case of the ordinary Lemma B.4(a).

By similar arguments, every part of Lemmas B.2–B.8 implies the corresponding
equivariant statement.

B.10. Notation for isomorphisms of equivariant functors. As well as the
equivariant versions of (Co), (BC), etc., we need to consider some isomorphisms of
functors specific to the equivariant setting.

B.10.1. Forgetting and integration. Let K be a closed subgroup of H, and X an
H-variety. There is a ‘forgetful’ functor ForHK : Db

H(X)→ Db
K(X), denoted ResK,H

in [BL, §2.6.1], which is defined so that for M an object of Db
H(X) and P a K-

resolution of X, we have (
ForHKM

)
(P ) = M(H ×K P ).

Here and subsequently, we use the obvious identification of H\(H×KP ) with K\P .

When K is the trivial group, ForHK becomes the forgetful functor For : Db
H(X) →

Db(X) under the obvious identification of Db
K(X) with Db(X).

We also have an ‘integration’ functor γHK : Db
K(X)→ Db

H(X) defined as follows:
for M an object of Db

K(X) and P an H-resolution of X, we have(
γHKM

)
(P ) = (qP )!M(P )[2 dim(H/K)],

where qP : K\P → H\P is the quotient morphism and M(P ) is defined by regard-
ing P as a K-resolution of X. It is easy to see that γHK is isomorphic to the functor

denoted Ind ! in [BL, §3.7.1], and therefore it is left adjoint to ForHK . In fact, we
can see this adjunction explicitly: for any H-resolution P of X and objects M of
Db
K(X) and N of Db

H(X), we have natural isomorphisms

HomDb(H\P )

(
(qP )!M(P )[2 dim(H/K)], N(P )

)
∼= HomDb(K\P )

(
M(P ), (qP )!N(P )[−2 dim(H/K)]

)
∼= HomDb(K\P )

(
M(P ), (qP )∗N(P )

)
∼= HomDb(K\P )

(
M(P ), N(H ×K P )

)
where the second isomorphism uses the isomorphism (qP )! ⇐⇒ (qP )∗[2 dim(H/K)]
which holds since qP is smooth, and the third isomorphism uses the isomorphism
(qP )∗N(P ) ∼= N(H ×K P ) which is part of the structure of N as an object of
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Db
H(X). We thus obtain an adjunction isomorphism

(Adj)

Db
H(X) ModD

b
H(X)op

Db
K(X) ModD

b
K(X)op

Y

ForHK −◦(γH
K )op

Y

As stated in [BL, Theorem 3.4.1], there are isomorphisms

(For)

Db
H(X) Db

K(X)

Db
H(Y ) Db

K(Y )

ForHK

f∗ f∗

ForHK

(For)

Db
H(X) Db

K(X)

Db
H(Y ) Db

K(Y )

ForHK

f! f!

ForHK

(For)

Db
H(X) Db

K(X)

Db
H(Y ) Db

K(Y )

ForHK

f∗ f∗

ForHK

(For)

Db
H(X) Db

K(X)

Db
H(Y ) Db

K(Y )

ForHK

f ! f !

ForHK

for any H-morphism f : X → Y . To illustrate, we explain the first of these isomor-
phisms. It suffices to define, for any object M of Db

H(X) and any K-resolution P

of Y , an isomorphism between (ForHKf∗M)(P ) and (f∗For
H
KM)(P ) that is suitably

natural in P . But by definition,

(ForHKf∗M)(P ) = (f̃HH×KP )∗M((H ×K P )×Y X), and

(f∗For
H
KM)(P ) = (f̃KP )∗M(H ×K (P ×Y X)).

Thus, the required isomorphism is supplied by the obvious H-variety isomorphism
H ×K (P ×Y X)

∼→ (H ×K P )×Y X.
As stated in [BL, Proposition 3.7.2], there are isomorphisms

(Int)

Db
H(X) Db

K(X)

Db
H(Y ) Db

K(Y )

γH
K

f∗ f∗

γH
K

(Int)

Db
H(X) Db

K(X)

Db
H(Y ) Db

K(Y )

γH
K

f! f!

γH
K

for any H-morphism f : X → Y . To define the first of these, it suffices to define,
for any object M of Db

K(Y ) and any H-resolution P of Y , an isomorphism between
(γHKf

∗M)(P ×Y X) and (f∗γHKM)(P ×Y X) that is suitably natural in P . But by
definition,

(γHKf
∗M)(P ×Y X) = (qP×YX)!(f̃

K
P )∗M(P )[2 dim(H/K)], and

(f∗γHKM)(P ×Y X) = (f̃HP )∗(qP )!M(P )[2 dim(H/K)].

Thus, the required isomorphism is supplied by the base change isomorphism for the
following cartesian square:

(B.3)

K\(P ×Y X) K\P

H\(P ×Y X) H\P

f̃K
P

qP×Y X qP

f̃H
P
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The other (Int) isomorphism is defined similarly, but using the composition isomor-
phism for (·)! instead of base change.

B.10.2. Transitivity of forgetting and integration. If we have a chain of closed sub-
groups K ⊂ J ⊂ H, we have transitivity isomorphisms

Db
H(X)

Db
J (X)

Db
K(X)

ForHJ

ForHK

ForJK

(Tr)

Db
H(X)

Db
J (X)

Db
K(X)

γH
J

γH
K

γJ
K

(Tr)

The definition of the former uses the obvious identification of H ×J (J ×K P )
with H ×K P , and the definition of the latter uses the composition isomorphism
(qK⊂HP )! ⇐⇒ (qJ⊂HP )! ◦ (qK⊂JP )!, where the superscripts on qP indicate the groups
involved.

B.10.3. Constant sheaf under forgetting and integration. Let K ⊂ H be a closed
subgroup, and X an H-variety. By definition, the equivariant constant sheaf kHX
assigns to every H-resolution P of X the constant sheaf on H\P . Hence we have

a canonical isomorphism kKX ∼= ForHK(kHX).
Assume now that H/K is contractible (for instance, that H is the semidirect

product of K and a normal unipotent subgroup). Then for any H-resolution P of
X the natural morphism

(qP )!kK\P [2 dim(H/K)]
∼→ (qP )!(qP )!kH\P → kH\P

induced by adjunction is an isomorphism. We deduce a canonical isomorphism
γHK (kKX) ∼= kHX . (In fact, γHK is left inverse to ForHK in this situation; see [BL,
Theorem 3.7.3].)

We depict the resulting isomorphisms of functors as follows:

1

Db
K(X)

Db
H(X)

kKX

kHX

ForHK

(CF)

1

Db
K(X)

Db
H(X)

kKX

kHX

γH
K

(CI)

B.11. Forgetting, integration, and adjunction. Unravelling the definitions,
one finds that part (a) is equivalent to the statement that for any objects M of
Db
K(Y ) and N of Db

H(X), and any H-resolution P of Y , the following diagram of
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Setting: X
f //Y and K ⊂ J ⊂ H

ModD
b
H(Y )op

(Adj)

(Int)

(Adj)

Db
H(X) ModD

b
H(X)op

ModD
b
K(X)op

ModD
b
K(Y )opDb

K(Y )

Db
H(Y )

−◦f∗,op

Y

−◦(γH
K )op

Y

−◦(γH
K )op

−◦f∗,op

Y

ForHK

f∗

(For)

(Adj)

(Adj)

Db
K(X)

ForHK
Y

f∗

(a)

ModD
b
H(Y )op

(Adj)

(Int)

(Adj)

Db
H(X) ModD

b
H(X)op

ModD
b
K(X)op

ModD
b
K(Y )opDb

K(Y )

Db
H(Y )

−◦(f!)
op

Y

−◦(γH
K )op

Y

−◦(γH
K )op

−◦(f!)
op

Y

ForHK

f !

(For)

(Adj)

(Adj)

Db
K(X)

ForHK
Y

f !

(b)

(Adj) (Tr)

Db
H(X) ModD

b
H(X)op

ModD
b
J (X)op

Db
K(X) ModD

b
K(X)op

−◦(γH
K )op

Y

ForHK

−◦(γH
J )op

Y

−◦(γJ
K)op

(Adj)

(Adj)

(Tr) Db
J(X)

ForHJ

ForJK

Y

(c)

Figure B.11. Forgetting, integration, and adjunction

natural isomorphisms commutes:

Hom((f̃KP )∗M(P ), (qP×YX)!N(P ×Y X))

Hom((qP×YX)!(f̃
K
P )∗M(P ), N(P ×Y X))

Hom(M(P ), (f̃KP )∗(qP×YX)!N(P ×Y X))

Hom((f̃HP )∗(qP )!M(P ), N(P ×Y X))

Hom(M(P ), (qP )!(f̃HP )∗N(P ×Y X))

Hom((qP )!M(P ), (f̃HP )∗N(P ×Y X))

Here, to save space, we have omitted the subscripts Db(H\P ) etc. indicating which
derived categories we take Hom(·, ·) in. The isomorphisms are all either adjunctions
or base changes for the cartesian square (B.3), so the commutativity of this diagram
follows from Lemma B.3. Similarly, parts (b) and (c) follow from Lemma B.2(b).
In proving part (c), one also needs the fact that, when P is an H-resolution of X,
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Setting: X
f //Y and I ⊂ K ⊂ J ⊂ H

(Tr) (Tr)

Db
K(X)

Db
H(X) Db

I (X)

Db
J(X)

ForKJ

(Tr)

(Tr)

ForHK

ForHJ

ForKI

ForJI

ForHI

(a)

(Tr) (Tr)

Db
K(X)

Db
H(X) Db

I (X)

Db
J(X)

γK
J

(Tr)

(Tr)

γH
K

γH
J

γK
I

γJ
I

γH
I

(b)

(For) (Tr)

Db
H(X) Db

H(Y )

Db
J(Y )

Db
K(X) Db

K(Y )

ForHK

f∗

ForHK

ForHJ

f∗

ForJK

(For)

(For)

(Tr) Db
J(X)

ForHJ

ForJK

f∗

(c)

(For) (Tr)

Db
H(X) Db

H(Y )

Db
J(Y )

Db
K(X) Db

K(Y )

ForHK

f∗

ForHK

ForHJ

f∗

ForJK

(For)

(For)

(Tr) Db
J(X)

ForHJ

ForJK

f∗

(d)

(For) (Tr)

Db
H(X) Db

H(Y )

Db
J(Y )

Db
K(X) Db

K(Y )

ForHK

f!

ForHK

ForHJ

f!

ForJK

(For)

(For)

(Tr) Db
J(X)

ForHJ

ForJK

f!

(e)

(For) (Tr)

Db
H(X) Db

H(Y )

Db
J(Y )

Db
K(X) Db

K(Y )

ForHK

f !

ForHK

ForHJ

f !

ForJK

(For)

(For)

(Tr) Db
J(X)

ForHJ

ForJK

f !

(f)

(Int) (Tr)

Db
H(X) Db

H(Y )

Db
J(Y )

Db
K(X) Db

K(Y )

γH
K

f∗

γH
K

γH
J

f∗

γJ
K

(Int)

(Int)

(Tr) Db
J(X)

γH
J

γJ
K

f∗

(g)

(Int) (Tr)

Db
H(X) Db

H(Y )

Db
J(Y )

Db
K(X) Db

K(Y )

γH
K

f!

γH
K

γH
J

f!

γJ
K

(Int)

(Int)

(Tr) Db
J(X)

γH
J

γJ
K

f!

(h)

Figure B.12. Forgetting, integration, and transitivity

the composition

(qK⊂JP )! ◦ (qJ⊂HP )! ⇐⇒ (qK⊂JP )∗ ◦ (qJ⊂HP )∗[n]
(Co)⇐⇒ (qK⊂HP )∗[n] ⇐⇒ (qK⊂HP )!

(where n = 2 dim(H/K)) coincides with (qK⊂JP )! ◦ (qJ⊂HP )! (Co)⇐⇒ (qK⊂HP )!.
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Setting: X
f1 //Y

f2 //Z and K ⊂ H

(For) (Co)

Db
H(X) Db

K(X)

Db
K(Y )

Db
H(Z) Db

K(Z)

(f2f1)∗

ForHK

(f2f1)∗

(f1)∗

ForHK

(f2)∗

(For)

(For)

(Co) Db
H(Y )

(f1)∗

(f2)∗

ForHK

(a)

(For) (Co)

Db
H(X) Db

K(X)

Db
K(Y )

Db
H(Z) Db

K(Z)

(f2f1)∗

ForHK

(f2f1)∗

(f1)∗

ForHK

(f2)∗

(For)

(For)

(Co) Db
H(Y )

(f1)∗

(f2)∗
ForHK

(b)

(For) (Co)

Db
H(X) Db

K(X)

Db
K(Y )

Db
H(Z) Db

K(Z)

(f2f1)!

ForHK

(f2f1)!

(f1)!

ForHK

(f2)!

(For)

(For)

(Co) Db
H(Y )

(f1)!

(f2)!

ForHK

(c)

(For) (Co)

Db
H(X) Db

K(X)

Db
K(Y )

Db
H(Z) Db

K(Z)

(f2f1)!

ForHK

(f2f1)!

(f1)!

ForHK

(f2)!

(For)

(For)

(Co) Db
H(Y )

(f1)!

(f2)!

ForHK

(d)

(Int) (Co)

Db
H(X) Db

K(X)

Db
K(Y )

Db
H(Z) Db

K(Z)

(f2f1)∗

γH
K

(f2f1)∗

(f1)∗

γH
K

(f2)∗

(Int)

(Int)

(Co) Db
H(Y )

(f1)∗

(f2)∗
γH
K

(e)

(Int) (Co)

Db
H(X) Db

K(X)

Db
K(Y )

Db
H(Z) Db

K(Z)

(f2f1)!

γH
K

(f2f1)!

(f1)!

γH
K

(f2)!

(Int)

(Int)

(Co) Db
H(Y )

(f1)!

(f2)!

γH
K

(f)

Figure B.13. Forgetting, integration, and composition

B.12. Forgetting, integration, and transitivity. Parts (a), (c), (d), (e), (f) fol-
low easily from the definitions. Since we know from Lemma B.11(c) that the tran-
sitivity isomorphism for γ can be obtained from that for For by adjunction, part (b)
follows from part (a) by the same argument we used to deduce Lemma B.4(d) from
Lemma B.4(b). Similarly, part (g) follows from part (c) and part (h) follows from
part (f).

B.13. Forgetting, integration, and composition. Parts (a) – (d) follow easily
from the definitions. Since we know from Lemma B.11(a) that the (·)∗ version of
isomorphism (Int) can be obtained from the (·)∗ version of isomorphism (For) by
adjunction, part (e) follows from part (a) and Lemma B.2(a). Similarly, in view of
Lemma B.11(b), part (f) follows from part (d) and Lemma B.2(b).

B.14. Forgetting, integration, and base change. Part (a) is easy. In view of
Lemmas B.11(a) and B.11(b), part (b) follows from part (a) using Lemma B.3.
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Setting:

W X

Y Z

g′

f ′ f

g

Db
K(Z)

(For)

(BC)

(For)

Db
H(X) Db

K(X)

Db
K(W )

Db
K(Y )Db

H(Y )

Db
H(Z)

f∗

ForHK

g!

ForHK

(g′)!

(f ′)∗

ForHK

g!

f∗

(BC)

(For)

(For)

Db
H(W )

(g′)!

ForHK

(f ′)∗

(a)

Db
K(Z)

(Int)

(BC)

(Int)

Db
H(X) Db

K(X)

Db
K(W )

Db
K(Y )Db

H(Y )

Db
H(Z)

f!

γH
K

g∗

γH
K

(g′)∗

(f ′)!

γH
K

g∗

f!

(BC)

(Int)

(Int)

Db
H(W )

(g′)∗

γH
K

(f ′)!

(b)

Figure B.14. Forgetting, integration, and base change

Setting: K ⊂ J ⊂ H and (for (b)) J/K, H/J contractible

(CF) (CF)

1

Db
H(X) Db

K(X)

Db
J(X)

kJX

(CF)

(Tr)

kHX

ForHJ

kKX

ForJK

ForHK

(a)

(CI) (CI)

1

Db
H(X) Db

K(X)

Db
J(X)

kJX

(CI)

(Tr)

kHX

γH
J

kKX

γJ
K

γH
K

(b)

Figure B.15. Constant sheaf and transitivity

B.15. Constant sheaf and transitivity. Part (a) is easy. By definition, part (b)
is equivalent to the commutativity of a diagram of isomorphisms in Db(H\P ) for
a given H-resolution P of X. This follows from Lemma B.2(b).

B.16. Constant sheaf under inverse image, forgetting, and integration.
Part (a) is easy. Unravelling the definitions, part (b) is equivalent to the commuta-
tivity of a diagram of isomorphisms in Db(H\(P ×Y X)) for a given H-resolution
P of Y . This follows from Lemma B.3.

B.17. Induction equivalence. Let K ⊂ H be a closed subgroup, and X a K-

variety. Form the induced H-variety X̃ = H ×K X, and let i : X → X̃ be the
inclusion. The category of K-resolutions of X and smooth K-morphisms over X

is equivalent to the category of H-resolutions of X̃ and smooth H-morphisms over

X̃ via the functor P 7→ H ×K P , whose inverse is Q 7→ Q×X̃ X. This equivalence

induces an equivalence of categories IndHK : Db
K(X)

∼→ Db
H(X̃). Namely, if M is an
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Setting: X
f //Y , K ⊂ H, and (for (b)) H/K contractible

Db
K(Y )

(CF)

(CII)

1

Db
H(Y )

Db
K(X)

kKY

ForHK

f∗

kHY

kKX

(Fo
r)

(CF)

(CII)

Db
H(X)

f∗

ForHK

kHX

(a)

Db
K(Y )

(CI)

(CII)

1

Db
H(Y )

Db
K(X)

kKY

γH
K

f∗

kHY

kKX

(Int
)

(CI)

(CII)

Db
H(X)

f∗

γH
K

kHX

(b)

Figure B.16. Constant sheaf under inverse image, forgetting, and integration

object of Db
K(X) and P is a K-resolution of X, we set

(IndHKM)(H ×K P ) = M(P ),

where as usual we identify H\(H ×K P ) with K\P . This is the inverse of the

equivalence Db
H(X̃)

∼→ Db
K(X) denoted ν∗ in [BL, §2.6.3], which is isomorphic to

i∗ ◦ ForHK in our notation.

Consider the composition γHK ◦ i! : Db
K(X) → Db

H(X̃). If M is an object of
Db
K(X) and P is a K-resolution of X, we have

(γHK i!M)(H ×K P ) = (qH×KP )!(̃i
K
H×KP )!M(P )[2 dim(H/K)],

where we have identified (H ×K P )×X̃ X with P . Since qH×KP ĩ
K
H×KP is identified

with the identity map from K\P to itself, the composition isomorphism for (·)! gives

us an isomorphism γHK ◦ i! ⇐⇒ IndHK [2 dim(H/K)]. We depict this isomorphism as
follows:

(IE)

Db
H(X̃) Db

H(X̃)

Db
K(X) Db

K(X)

IndHK [2 dim(H/K)] γH
K i!

From now on we omit the ◦ from the name of γHK ◦ i! since we regard it as a basic
functor in its own right. Within this appendix, we consider both versions of the
induction equivalence, IndHK and γHK i!, using the former to help study the latter. In
the main body of the paper, only γHK i! appears.

B.18. Notation for isomorphisms involving induction equivalence. Con-
tinue with the setting of §B.17.

B.18.1. Transitivity of induction equivalence. Suppose that K ⊂ J ⊂ H, and let

i1 : X → J ×K X and i2 : J ×K X → X̃ be the inclusions. As usual, we identify
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H ×J (J ×K X) with H ×K X = X̃. We have an obvious transitivity isomorphism
for the Ind version of induction equivalence:

Db
H(X̃) Db

J (J×KX)

Db
K(X)

IndHJ

IndHK
IndJK

(ITr)

We can define an analogous transitivity isomorphism γHJ (i2)! ◦ γJK(i1)! ⇐⇒ γHK i!
using isomorphisms we have already defined:

Db
H(X̃) Db

J (J×KX)

Db
K(X)

γH
J (i2)!

γH
K i!

γJ
K(i1)!

(ITr)
:=

(Tr)

(Co)

(Int)

Db
H (X̃) Db

J (X̃) Db
J (J ×K X)

Db
K(X̃) Db

K(J ×K X)

Db
K(X)

γHJ (i2)!

(i2)!

γJK γJK

(i1)!

γHK

i!

B.18.2. Integration and induction equivalence. Suppose that I is a closed subgroup

of H such that H = IK. We can identify I ×I∩K X with X̃. From the definitions,
we have an obvious isomorphism:

(IEI)

Db
H(X̃) Db

K(X)

Db
I (X̃) Db

I∩K(X)

IndHK

γH
I γK

I∩K

IndII∩K

We define an analogous isomorphism for the other version of induction equiva-
lence:

(IEI)

Db
H(X̃) Db

K(X)

Db
I (X̃) Db

I∩K(X)

γH
K i!

γH
I γK

I∩K

γI
I∩Ki!

:=
(Tr)

(Tr)

(Int)

Db
H(X̃) Db

K(X̃) Db
K(X)

Db
I (X̃) Db

I∩K(X̃) Db
I∩K(X)

γH
K

γH
I∩K

i!

γH
I γK

I∩K γK
I∩K

γI
I∩K

i!

B.18.3. Inverse image and induction equivalence. Let f : X → Y be a morphism

of K-varieties, g : X̃ → Ỹ the induced morphism of H-varieties, and j : Y → Ỹ the
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inclusion. Then we have a cartesian square

X Y

X̃ Ỹ

f

i j

g

From the definitions, we have an obvious isomorphism

(IBC)

Db
H(X̃) Db

K(X)

Db
H(Ỹ ) Db

K(Y )

IndHK

g∗ f∗

IndHK

We define an analogous isomorphism for the other version of induction equiva-
lence:

(IBC)

Db
H(X̃) Db

K(X)

Db
H(Ỹ ) Db

K(Y )

γH
K i!

g∗ f∗

γH
K j!

:= (Int) (BC)

Db
H(X̃) Db

K(X̃) Db
K(X)

Db
H(Ỹ ) Db

K(Ỹ ) Db
K(Y )

γH
K i!

g∗ g∗ f∗

γH
K

j!

B.18.4. Constant sheaf under induction equivalence. It is clear from definitions
that we have a canonical isomorphism IndHK(kKX) ∼= kH

X̃
. Using the isomorphism

γHK i! ⇐⇒ IndHK [2 dim(H/K)] we deduce a canonical isomorphism γHK i!(k
K
X) ∼=

kH
X̃

[2 dim(H/K)]. We depict the resulting isomorphisms of functors as follows:

1

Db
K(X)

Db
H(X̃)

kKX

kH
X̃

IndHK

(CIE)

1

Db
K(X)

Db
H(X̃)

kKX

kH
X̃

[2 dim(H/K)]

γH
K i!

(CIE)

B.19. Compatibilities of transitivity of induction equivalence. To prove
part (a), fix a K-resolution P of X and consider the following commutative diagram:

K\P �
� (ĩ1)K

J×KP //� u

ĩK
H×KP ''

K\J ×K P� _

(ĩ2)K
H×KP

��

qK⊂J

J×KP // // J\J ×K P� _

(ĩ2)J
H×KP

��
K\H ×K P

qK⊂J

H×KP // //

qK⊂H

H×KP (( ((

J\H ×K P

qJ⊂H

H×KP����
H\H ×K P
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Setting: K ⊂ J ⊂ H, n = 2 dim(J/K), m = 2 dim(H/K),

X
i1 //J ×K X

i2 //H ×K X = X̃ , i = i2i1

(IE) (ITr)

Db
H(X̃) Db

H(X̃)

Db
J(J ×K X)

Db
K(X) Db

K(X)

IndHK [m]

γH
K i!

IndHJ [m−n]

IndJK [n]

(IE)

(IE)

(ITr)Db
J(J ×K X)

γH
J (i2)!

γJ
K(i1)!

(a)

(CIE) (CIE)

1

Db
H(X̃) Db

J(J ×K X)

Db
K(X)

kKX

(CIE)

(ITr)

kH
X̃

IndHK

kJ
J×KX

IndJK

IndHJ

(b)

(CIE) (CIE)

1

Db
H(X̃) Db

J(J ×K X)

Db
K(X)

kKX

(CIE)

(ITr)

kH
X̃

[m]

γH
K i!

kJ
J×KX

[n]

γJ
K(i1)!

γH
J (i2)!

(c)

Figure B.19. Compatibilities of transitivity of induction equivalence

Denote by τJK : K\P ∼−→ J\J ×K P , τHJ : J\J ×K P
∼−→ H\H ×K P and τHK =

τHJ τ
J
K the natural isomorphisms. The statement we must prove is equivalent to the

commutativity of the diagram obtained by gluing the following two prisms, where
all faces are labelled by (·)! composition isomorphisms:

Db(K\J ×K P ) Db(J\J ×K P )

Db(J\J ×K P )

Db(K\H ×K P ) Db(J\H ×K P )

((ĩ2)J
H×KP

)!

(qK⊂J

J×KP
)!

((ĩ2)K
H×KP

)!

(qK⊂J

H×KP
)!

((ĩ2)K
H×KP

)!

Db(K\P )

((ĩ1)K
J×KP

)!

(̃iK
H×KP

)!

(τJ
K)!

Db(K\H ×K P ) Db(J\H ×K P )

Db(J\J ×K P )

Db(H\H ×K P ) Db(H\H ×K P )

(qJ⊂H

H×KP
)!

(qK⊂J

H×KP
)!

(qK⊂H

H×KP
)!

((ĩ2)K
H×KP

)!

(τH
J )!

Db(K\P )

(̃iK
H×KP

)!

(τH
K )!

(τJ
K)!

Hence the result follows from Lemma B.6(b).
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Setting: H = IK, H/I contractible, n = 2 dim(H/K),

X
i //H ×K X = X̃

Db
K(X)

(IE)

(IEI)

=

Db
H(X̃) Db

H(X̃)

Db
I (X̃)

Db
I∩K(X)Db

I∩K(X)

Db
K(X)

IndHK [n]

γK
I∩K

γH
I

IndII∩K [n]

γK
I∩K

γH
K i!

(IEI)

=

(IE)

Db
I (X̃)

γH
I

γI
I∩Ki!

(a)

Db
I∩K(X)

(CIE)

(CI)

1

Db
I (X̃)

Db
K(X)

kI∩KX

IndII∩K

γK
I∩K

kI
X̃

kKX

(IE
I)

(CIE)

(CI)

Db
H(X̃)

γH
I

IndHK

kH
X̃

(b)

Db
I∩K(X)

(CIE)

(CI)

1

Db
I (X̃)

Db
K(X)

kI∩KX

γI
I∩Ki!

γK
I∩K

kI
X̃

[n]

kKX

(IE
I)

(CIE)

(CI)

Db
H(X̃)

γH
I

γH
K i!

kH
X̃

[n]

(c)

Figure B.20. Compatibilities of integration and induction equivalence

Part (b) is easy. By definition, the tetrahedron in part (c) is obtained by glu-
ing the prism in part (a) to the tetrahedron in part (b) (with appropriate shifts
included).

B.20. Compatibilities of integration and induction equivalence. Part (a)
can be proved in the same way as Lemma B.19(a). Part (b) is easy. By definition,
the pyramid in part (c) is obtained by gluing the cube in part (a) to the pyramid
in part (b) (with appropriate shifts included).

B.21. Compatibilities of inverse image and induction equivalence. The
proof of part (a) is similar to that of Lemma B.19(a), but using Lemma B.7(b)
rather than Lemma B.6(b). Part (b) is easy. By definition, the pyramid in part (c) is
obtained by gluing the cube in part (a) to the pyramid in part (b) (with appropriate
shifts included).

B.22. Equivariance under a finite group action. Let f : X → Y be a mor-
phism of H-varieties, and assume that we have an action of a finite group A on
X which commutes with the H-action, and such that f is A-equivariant for the
trivial A-action on Y . Then we obtain a canonical action of A on the object f!kHX
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Setting: K ⊂ H, X̃ = H ×K X,

X Y

X̃ Ỹ

f

i j

g

, n = 2 dim(H/K)

Db
K(X)

(IE)

(IBC)

=

Db
H(X̃) Db

H(X̃)

Db
H(Ỹ )

Db
K(Y )Db

K(Y )

Db
K(X)

IndHK [n]

f∗

g∗

IndII∩K [n]

f∗

γH
K i!

(IBC)

=

(IE)

Db
H(Ỹ )

g∗

γI
I∩Ki!

(a)

Db
K(Y )

(CIE)

(CII)

1

Db
H(Ỹ )

Db
K(X)

kKY

IndHK

f∗

kH
Ỹ

kKX

(IB
C)

(CIE)

(CII)

Db
H(X̃)

g∗

IndHK

kH
X̃

(b)

Db
K(Y )

(CIE)

(CII)

1

Db
H(Ỹ )

Db
K(X)

kKY

γH
K j!

f∗

kH
Ỹ

[n]

kKX

(IB
C)

(CIE)

(CII)

Db
H(X̃)

g∗

γH
K i!

kH
X̃

[n]

(c)

Figure B.21. Compatibilities of inverse image and induction equivalence

of Db
H(Y ), in which the action of a ∈ A is given by the following composition:

f!kHX
(CII)∼= f!a

∗kHX
(BC)∼= f!kHX .

Here we use a to denote the action of a on X, and the base change is for the
cartesian square

X X

Y Y

a

f f

id

(Note that the fact that this construction defines an action of A follows from Lem-
mas B.5 and B.7(a).)

Now, consider a closed subgroup K ⊂ H, a K-variety X, and an H-variety Y .

As usual, let X̃ = H ×K X and let i : X → X̃ be the inclusion. Assume that we
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have a commutative diagram

X X̃

Y

i

f
g

such that g is H-equivariant. Then f is automatically K-equivariant. Assume
furthermore that a finite group A acts on X compatibly with K and that f is
A-equivariant for the trivial A-action on Y . Then we have a natural A-action on

X̃, and g is A-equivariant. In particular, we obtain A-actions on the objects f!kKX
in Db

K(Y ) and g!kHX̃ in Db
H(Y ). Recall that we have constructed an isomorphism

γHK i!k
K
X

(CIE)∼= kH
X̃

[2 dim(H/K)] in §B.18.4. Applying the functor g!, this induces an
isomorphism

(B.4) g!kHX̃ [2 dim(H/K)]
(CIE)∼= g!γ

H
K i!k

K
X

(Int)∼= γHKg!i!kKX
(Co)∼= γHKf!kKX .

Lemma B.22. Isomorphism (B.4) is A-equivariant.

Proof. Let n = 2 dim(H/K). The compatibility of (B.4) with the action of a ∈ A
is equivalent to the commutativity of the diagram obtained by gluing the pyramid

Db
K(X)

(CIE)

(CII)

1

Db
H(X̃)

Db
K(X)

kKX

γH
K i!

a∗

kH
X̃

[n]

kKX

(IB
C)

(CIE)

(CII)

Db
H(X̃)

a∗

γH
K i!

kH
X̃

[n]

which is commutative by Lemma B.21(c) to the two cubes

Db
K(Y )

(Co)

(BC)

(BC)

Db
K(X̃) Db

K(Y )

Db
K(Y )

Db
K(Y )Db

K(X)

Db
K(X)

id!

f!

id∗

g!

id∗

id!

f!

a∗

i!

(BC)

(BC)

(Co)

Db
K(X̃)

a∗

g!

i!

Db
K(Y )

(Int)

(Int)

(BC)

Db
H(X̃) Db

H(Y )

Db
H(Y )

Db
K(Y )Db

K(X̃)

Db
K(X̃)

γH
K

g!

id∗

g!

id∗

γH
K

g!

a∗

γH
K

(Int)

(BC)

(Int)

Db
H(X̃)

a∗

g!

γH
K

which are commutative by Lemmas B.8(a) and B.14(b), respectively. �
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