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CLASSIFICATION OF SYMMETRIC SPECIAL BISERIAL ALGEBRAS WITH AT MOST
ONE NON-UNISERIAL INDECOMPOSABLE PROJECTIVE

NICOLE SNASHALL AND RACHEL TAILLEFER

ABSTRACT. We consider a natural generalisation of symmetric Nakayama algebras, namely, sym-
metric special biserial algebras with at most one non-uniserial indecomposable projective mod-
ule. We describe the basic algebras explicitly by quiver and relations, then classify them up to
derived equivalence. This includes the algebras of [5], where they study the weakly symmetric
algebras of Euclidean type.

INTRODUCTION

Let K be an algebraically closed field. We consider in this paper a generalisation of symmetric
Nakayama K-algebras. A symmetric Nakayama K-algebra is a symmetric K-algebra A such
that all indecomposable projective modules are uniserial. These algebras are well-known and
have been classified up to Morita equivalence: every symmetric Nakayama algebra is Morita
equivalent to exactly one algebra N, defined by the quiver
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and the ideal of relations L, in KA, generated by all paths of length nm 4 1. Note that in
particular, the basic algebra associated to A is special biserial.

Our aim is to describe the basic indecomposable finite-dimensional K-algebras A which are
symmetric special biserial algebras with at most one non-uniserial indecomposable projective
module. These algebras include the symmetric Nakayama algebras, as well as certain algebras
in [5] that occur in the classification, up to derived equivalence, of all weakly symmetric alge-
bras of Euclidean type. In this paper we also distinguish, up to derived equivalence, the basic
indecomposable finite-dimensional symmetric special biserial algebras which have at most one
non-uniserial indecomposable projective module. It is well-known that all special biserial al-
gebras are tame. Morever, it was proved by Al-Nofayee in [1] (and by Rickard [12] for the
symmetric case) that if A and B are derived equivalent algebras, then A is selfinjective if and
only if B is selfinjective. The algebras given in [5] are Brauer graph algebras, and we recall that
Brauer tree algebras play an important role in the Morita equivalence classification of blocks
of group algebras of finite type (see [2, 4]). We use the theory of generalised Brauer tree alge-
bras as part of the classification of our algebras up to derived equivalence. We refer the reader
also to [13], where Skowroniski discusses the extensive programme to determine the derived
equivalence classes of all tame selfinjective algebras.

We begin this paper with some background and properties about basic symmetric alge-
bras, so that, in Section 2, we can describe by quiver and relations all basic indecomposable
finite-dimensional algebras which are symmetric special biserial algebras with at most one non-
uniserial indecomposable projective module. In order to distinguish our algebras up to derived
equivalence we use several invariants including Hochschild cohomology which we discuss in
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2 SNASHALL AND TAILLEFER

Section 3. The final section contains the full classification of our algebras up to derived equiva-
lence, and in addition to the dimensions of the Hochschild cohomology groups, we use Cartan
invariants (see [6, Proposition 1.5] for a proof of derived invariance) and Kiilshammer invari-
ants (or generalised Reynolds ideals, whose derived invariance was proved in [15]).

We assume throughout that A is a basic indecomposable finite-dimensional algebra over the
algebraically closed field K so that A is isomorphic to KQ/ I for some unique connected quiver
Q and admissible ideal I of KQ. We let rad(A) denote the Jacobson radical of A.

For any two positive integers p and g with p < g, we define the quiver Q,, ,) to be the quiver
formed of two oriented cycles, of lengths p and q respectively, joined at one vertex labelled 1,
as follows:

[ ) ?3 [ ) \ / [ ] ? [ ) \
/"‘4 2 "9 o p Bs @
o\ g
Qpa) 1 I
lsp<gq aV \ﬁq
D‘p—S “pfl L] ® ,Bq—l ,31/773 .
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We denote the trivial path at the vertex i by e;. Paths are written from left to right. We
write o(«) for the trivial path corresponding to the origin of the arrow « and write t(«) for the
trivial path corresponding to the terminus of the arrow a. The vertices of the quiver Q, . are
labelled by 1,...,p +q — 1, in such a way that o(a;) = ifori = 1,...,p, and t(8;) = p+j
forj=1,...,q—1 Thust(a;) = i+1fori=1,...,p—1,t(ay) = 1,0(B1) = 1and o(B;) =
p+j—1lforj=2,...,q.

Set v = mqap---ap and § = B1fs - - By. We define the following two admissible ideals in
KQp):

(a) for a positive integer 7, let I, be the ideal generated by
Xpiy, BqB1, (99)" — (67)",
Q- (Xp((sf)/)ril(socl R ¥ for a112 < i < p - 1/
B - Ba(78) By - - Biforall2<j<q—1;

(b) for a pair of positive integers (s, t), let ], ;) be the ideal generated by
lXp‘Bl, ,Biilxll ,-)/S - (St/
aj-apy g forall2 <i<p—1,
Bi---Bgd 1By Bjforall2 <j<g—1,
where, if p =1thens >2,and,ifg=1thenp=1,s >2and t > 2.

The algebras considered in [5] are special cases of these algebras. Specifically A(p,q) =
KQq/lisothatr =1,and A(n) = KQ(y /]2y s0thatp =1,g=nands =2 =t

1. BACKGROUND

The following result and especially its consequences will be used repeatedly. They are given
in [3], but we include the proofs here for completeness.

Proposition 1.1. Let Q be a quiver and let I be an admissible ideal in KQ such that A = KQ/I is a
symmetric algebra. Let p be a path in Q with p # 0 in A. Then there exists a cycle pp, in Q with pp;
and p1p non-zero in A.

Proof. Since A is a symmetric algebra there exists a symmetric form f : A — K on A whose
kernel contains no non-zero left or right ideals of A. Then pA is not contained in Ker f so there
exists a path p; such that f(pp1) # 0. In particular, pp; 7# 0 and t(p) = o(p1). Moreover, since f

is symmetric, f(p1p) = f(pp1) # 0so p1p # 0. Therefore t(p1) = o(p). Hence pp; and p;p are
cycles in Q which are non-zero in A. O
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Corollary 1.2. Let A = KQ/I be an indecomposable finite-dimensional symmetric special biserial
algebra that is not isomorphic to N = K[X]/(X?). Then:

(1) For any arrow «, there is a unique arrow « such that o'« # 0 and a unique arrow «’ such that
an’ £ 0.

(2) For any vertex v in Q, the number of arrows that start at v is equal to the number of arrows that
end at v, and this number is either 1 or 2.

Proof. The second statement follows easily from the first and the definition of a special biserial
algebra. Here we prove the first statement.

First suppose that « is an arrow which is not a loop. Then « is a non-zero path, so, by
Proposition 1.1, there exists a path p # « such that ap and pa are non-zero cycles. Therefore we
can take &’ to be the last arrow in p and «” the first arrow in p. The uniqueness of these arrows
follows from the definition of a special biserial algebra.

Now suppose that « is a loop. Assume for contradiction that x = 0 for every arrow f in Q.
Then « is in the socle of the indecomposable projective module o(a)A. If no other arrow starts
at o(a) then, since A is indecomposable and 4> = 0, we get A = K[X]/(X?), a contradiction.
Therefore there is another arrow p with o(a) = o(p). Choose a path ¢ which is maximal with
the property pc # 0 so that po is in the socle of o(a)A. Since A is a self-injective algebra,
soc(o(a)A) is one-dimensional so that there exists a non-zero ¢ € K such that « = cpo, which is
a contradiction since the ideal I is admissible. Therefore there exists an arrow a’ with a’a # 0.
The proof of the existence of the other arrow «” is similar. O

2. CLASSIFICATION THEOREM

Our main theorem is Theorem 2.2 where we classify, by quiver and relations, all basic in-
decomposable finite-dimensional symmetric special biserial algebras with at most one non-
uniserial indecomposable projective module.

Proposition 2.1. The algebras KQ, /1 and KQ,, o/ ] (s r) are symmetric special biserial algebras
with at most one non-uniserial indecomposable projective module.

Proof. Itis easy to see that these algebras are special biserial and that all but one of each of their
indecomposable projective modules are uniserial. Moreover, the algebras are weakly symmet-
ric, that is, the top and the socle of each indecomposable projective module are isomorphic. It
remains to prove that the algebras are symmetric.

For A = KQ,,5)/Ir, the socle of A has a K-basis consisting of (67)", a; - - - ap(5y) g -
and ;- - Ba(v8) 1By - Bj—1for2 < i < pand 2 < j < g, that is, all the paths obtained
from cyclic permutations of (7J)", where we recall that v = aja2---ap and & = B2 - By
Complete this K-basis of soc(A) with paths in KQ,,, ) to obtain a basis of A, and define f : A —
K on this basis by sending the elements in the socle to 1 and the others to 0. Then it follows from
[10, Proposition 3.1], that Ker f contains no non-zero left or right ideals of A. Moreover, f is
clearly symmetric, since the paths on which it is non-zero are all the cyclic permutations of a
single path. Thus A is a symmetric algebra.

For A = KQ(,4)/ I (s +) the argument is similar, but this time the socle of A is generated by all
the cyclic permutations of the two paths ° and 4" ]

We now have the following result.

Theorem 2.2. Let A be a basic indecomposable finite-dimensional symmetric special biserial algebra
with at most one non-uniserial indecomposable projective module. Then A is isomorphic to a Nakayama
algebra Ny, for some positive integers m and n, or to KQ,, -/ I, for some positive integers p, g and r, or
to KQ(p,q)/ I(s 1) for some positive integers p, q, s and t.

Proof. Set A = KQ/I for some quiver Q and some admissible ideal I. It is already known
that a symmetric (special biserial) algebra with no non-uniserial indecomposable projective
module is isomorphic to a Nakayama algebra N;,. We may therefore assume that all except
one indecomposable projective A-modules are uniserial. Consequently, using Corollary 1.2(2),
we must have one vertex that is the end point of exactly two arrows and the starting point of



4 SNASHALL AND TAILLEFER

exactly two arrows, which we label 1, and the other vertices are the end point of exactly one
arrow and the starting point of exactly one arrow. Therefore the quiver of A must be Q(M) for
some positive integers p, g. Without loss of generality we may assume that p < g.

Now consider the composition a,«1. There are two cases: a,a1 = 0 and apaq # 0.

First assume that aya; = 0. Then it follows from Corollary 1.2(1) that a,81 # 0, Bga1 # 0
and B,;B1 = 0. Now, for each vertex k with k # 1, ¢, A is uniserial and, since A is symmetric,
top (exA) = soc(exA) = Sy, the simple module at k. Therefore, for i # 1, we get a relation
Wi 0p(0y) " idny - - ap = 0 with a; -+ - ap(8y)"day - - - ;1 # 0 for some integer u;, and, for
j # 1, we get a relation B; - -- B,(79)“iyB1---Bj = 0 with Bj---B,(v0)%yB1---Bj—1 # O for
some integer v;. Now consider e; A. Since rad(e;A) = a1 A + B1A and soc(e;A) = Sy, there is
an element in soc(e1 A) of the form (y4)" or (yd)"y for some integer r, and there is an element
of soc(e1 A) of the form (d)° or (67)%d for some integer s. But, soc(e; A) is simple so we must
have a relation of one of the following forms:

(@) (y9)'y = c(é7)® # 0 for some non-zero ¢ € K. Note that since I is admissible we
must have s > 1. But then, if r > s, we would have (y6)"y = v(7)°(6y) ° =
c Ly (96) y(6y)" " = 0, which is a contradiction, and if r < s we would have
(87)5 = 6(y3)s 1" (48) y = c8(8)* 17" (87)° = 0, which is also a contradiction. There-
fore we cannot have this type of relation.

(i) (v6)" = c(d7)%6 for some non-zero ¢ € K. As in the previous case, this relation cannot
occur.

(iii) (y6)"y = ¢(d7)°6 # 0 for some non-zero ¢ € K. Then, if r > s, we have (y6)"y =
Y(67)" = Y(67)%6(16) 15y = c 1y (v6) y(78) "1 =5y = 0, which is a contradiction,
and if s > r we have a similar contradiction. Therefore s = r. Now we also have
wp - - oy (0y)*2 a4 = 0 so, multiplying on the left by a; and on the right by az - - - &,
we get y(5y)">™ = 0sothatuy +1 > r. Butas - - - a,(67) 0ar = ¢ lag - - - ap(76) yag =
0 so up < r which is impossible. Therefore a relation of this form cannot occur either.

(iv) (99)" = c(dy)° for some non-zero ¢ € K, and this is the only possible type of relation.
Here again, if r > s, then (75)" = (67)%(67) 716 = ¢ 1y (v6)"(67) 5716 = 0 which
is a contradiction and if s > r we get a similar contradiction. Therefore r = s so that the
relation is (y6)" = c(d)" for somer > 1 and ¢ € K*.

Given this relation, we are now able to determine the u; and the v;. Since
Wiy (0y) ony -y = c o ~ap(0) oy - - - aj—1 = 0, we must have r > u;. Moreover,

(zy&)ui“"z = D‘i*l(lxi . DCp((S’)’)uiélxl e lxi)“i+l e Dcp(s =0

so that u; +2 > r. Hence u; = r—1 for all i = 2,...,p. Similarly, v = r—1 for all
j = 2,...,9. Moreover, we note that the relations ocp(éfy)’*l&xl ~+-ap = 0 (wheni = p) and
By(v6) " yB1--- By = 0 (when j = g) are superfluous, so are not required to give a minimal
generating set of the ideal I,.

Finally, we show that ¢ must be equal to 1. Since A is symmetric, there exists a symmetric
linear map f : A — K whose kernel does not contain any non-zero left or right ideal. In par-
ticular, the socle of A is not contained in Ker f. But, from the relations obtained above, we see
that the socle is generated as a K-vector space by all the paths obtained by cyclic permutations
of (74)". Since f is symmetric it follows that f((d)") # 0. But we have

f((v0)") = f((67)") = f(c(v6)") = cf((79)")
so thatc = 1.
Hence we have shown that A = KQ(W) /1.

Now assume that aya1 # 0. Then it follows from Corollary 1.2(1) that a1 = 0, Bza1 = O and
BgB1 # 0. The same methods as in the previous case show that we must have a relation of the
form v* = ¢6' for some non-zero ¢ € K and some positive integers s and  (by considering at the
structure of e;A) and relations a; - - - a7 oy - ; forall 2 < i < p and Bj--- B By Bj
for all 2 < j < g (from the structure of the other indecomposable projectives and using the
relation y* = ¢6'). Moreover, since K is algebraically closed, we may replace a1 by ¢’a;, where
¢’ is a t-th root of ¢, and thus we may replace the relation * = c¢é! by 9* = §'. Again we may
find a minimal set of relations, and so conclude that A = KQ, o)/ Js 1) O]
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3. HOCHSCHILD COHOMOLOGY GROUPS

Our aim is now to investigate the derived equivalences among these algebras. It is well-
known that Hochschild cohomology is an invariant under derived equivalence, and this sec-
tion determines some of the Hochschild cohomology groups of the algebras KQ, /I, and
KQ(p,9)/ J(s,1), s0 that a full classification up to derived equivalence can be given in Section 4.

LetT(p,q;r) = KQ(,q)/ I and A(p,q;s,t) = KQ(p,0)/ ] (s)- The special cases of the algebras
I'(p,q;1) and A(1,n;2,2) were considered in [5], where, in their notation, we have A(p,q) =
KQ(p,q)/Il = F(p, 6],1) and A(Tl) = KQ(l,n)/](Z,Z) = A(]., Tl,‘2,2).

We begin by describing HH’(A) and HH'!(A) for the algebras A = A(p,q;s,t) and A =
T'(p,q;7). Recall that HH’(A) = Z(A), the centre of the algebra A.

3.1. HH°(A) and HH'(A) for the algebra A = A(p,q;s,t). We begin with the algebra
Ap,@;5,t) = KQ(po)/J(sy) Where 1 < p < g. Recall that v = ajap -y and 6 = B1B2- -~ By
Lety; = a;---apa;---a; 1 fori =1,...,p,and let 6; = B;---Bygp1---Bj-1forj=1,...,4,s0
that y = y1 and 6 = 4.
Proposition 3.1. Consider the algebra A(p,q;s,t) and let 1 < p < q. Let x = Y/ yiandy =
Z?:l 6. Then
dimHH(A(p,q;s,t)) = p+q+s+t—2

and the set

{1,x,...,xs_1,y,...,yt_1,'yf,5]t-fori =1,...,pand j = 2,...,q}

is a K-basis of HH°(A(p, g;5,1)).

Proof. We note that v, = 0 = B;jy;and dja; = 0 = ;b foralli =1,...,p, j = 1,...,q9
so x,y € Z(A(p,q;s,t)). Moreover A(p,q;s,t) is weakly symmetric so all socle elements are
central, namely, ; and 5; are central fori =1,...,p,j =2,...,q. The result now follows. O

We remark that Proposition 3.1 may be simplified if p = ¢ = 1, as then A(1,1;s, t) is the com-
mutative algebra K|a, 8]/ (af, a® — p') with s > 2, > 2. Thus HHO(A(l,l;s,t)) = A(1,1;s,t)
which has K-basis {1,4,...,4% ,..., '} and dimension s + .

In order to compute the first Hochschild cohomology group, we now fix a minimal set of
generators of the ideal ], ;), and denote this set by g

Proposition 3.2. Consider the algebra A(p,q;s,t) with1 < p < q.
If p = 2 then the following elements form a minimal set of generators for the ideal ] ;:

g = r-¢

g2 = wj oy lag i forall2 <i<p—1
8% = appy

gp+l = ‘Bq"‘l

gf,H - ,B]'"',qustflﬁl"-,B]-forallzgqu_L

If p = 1 then the following elements form a minimal set of generators for the ideal ] :

g = *-7d
g; = ap
82 = ,Bq"‘

8t = BjrBed e Biforall2<j<q—1.

We now compute the first Hochschild cohomology group HH!(A(p, g;s,t)). We use the ex-
plicit description of the start of a minimal projective bimodule resolution (P*, d*) for A(p, q;s, t)
as given in [7]. All tensors are over K so we write ® for ®k. For ease of notation, write
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A for A(p,g;s,t). Let P2 = @, Ao(g?) ® t(g2)A, P = @, arrow Ao(a) ® t(a)A and PO =
@5:? -1 Ae, ® e, A. Then the minimal projective bimodule resolution of A begins

2 1 0
s p2 Ly pt L p0 LA 0

with the following maps. The map d° is the usual multiplication map. The map dl: pl — pOis
given by

d':o(a) @t(a) — o(a) ®a—a®t(a)

where the first term o(a) ® a lies in the summand Ao(a) ® o(a)A and the second term a ® t(a)
lies in the summand At(a) ® t(a)A. Now, each element of g2 is a linear combination of paths
in KQ(M) so, forx € gz, we may write

r
X = chalj...ak]-...asjj
j=1

where ¢; € K and the a;; are arrows in Q,, ;). With this notation for x € g%, themap d?: P? — P!
is given by

r Sj
d22 O(X) & ’t(X) — Z Cj Z aj ... Aag-1j & Afy1j - - asj]-
j=1 k=1

where the term ay; ... a1 ® ag11; . . . a5;; lies in the summand Ao(a;) ® t(ax;) A of pl.

We now apply Homp:(—, —) to this resolution, where A° = A ® A% is the enveloping
algebra of A. Let 9! : Homp¢(P!,A) — Homp:(P?, A) be the map induced by d? and let
0" : Hompe(P%, A) — Hompe (P!, A) be the map induced by d'. Then HH' (A) = Kerd'/ Im d°.

Proposition 3.3. If g > 2 then

‘ s+t if char K | ged(s, t
dlmHHl(A(P,q;s,t)) :{ s+f—1 g;herwise.’ ed(s )

Ifqg =1then p =1and

. 1 ) [ s+t+1 ifcharK | ged(s,t)
dim HH(A(L, 135, 1)) = { s+t otherwise.

Proof. There are three cases to consider.
Casel:p > 2

We start by calculating Im d°. Let ¢ € Hom(P°, A(p,q;s,t)) so that 3°(¢) = @d'. Suppose
that ¢ is given by

@ e1 ®ep = C10€1 +Ciav1+ -+ Cl,s’)’i -+ d1,151 + -+ dlltfléifl
e; @ e; = Cioei +Cinyit+ ey fori=2,...,p
ep—1+i Qep_14i di,Oep—1+i +di16i+-+ di,tfsf fori=2,...,q

where Cijjs di,]' € K.
We have

pd*(o(a1) @ t(a1)) = @le1@a;—a1®e) = @er @er)ay —a@(er @ ey)
= (c10 —c20)a1 + (c1,1 — c21) 141 + -+ (C15-1 — C2,571)')/i71“1'
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In a similar way we get

pd! (o(a2) @ t(a2)) pea@ay —ar ®e3)

= (c20—c30)a2 + (c21 — €31) Y202 + -+ + (Cos-1 — C35-1)75 ‘a2

= (cpo—cr0)ap+ (cp1—cr1)rpitp + -+ (Cps—1—C1s5-1)75 &p

pd'(o(B1) @ t(B1)) = @(e1®@B1—P1@epi1)
= (c10—d20)B1+ (di1 —do1)01B1 + - + (dis—1 — dop—1)8, ' pa

od (0(By) ®By) = @(epig1® By — Py @er)
— (dq,o - Cl,O),Bq + (dq,] — dl,l)(sq,Bq + .+ (dq,tfl _ dl,tfl)(Séil‘Bq.

Thus dimIma° = (p — 1)s + (g — 1)t.

Now let ¢ € Kerd! so that $»d*> = 0, and suppose that y € Hom(P!, A(p, g;s,t)) is given by

Pooo(w) ®t(a) = oo+ Ciavin o+ Cis1 g

o(Bj) @ Bj) > dioB+dindiBj+ -+ a8 B

fori=1,...,p, j=1,...,9 and where ¢y, dy; € K.

From Proposition 3.2 with p > 2, and recalling that v = 71 and § = J;, it is easy to see
that pd?(0(g?) @ t(g?)) is immediately zero for k = 2,...,p + ¢ — 1 and so we do not get any
restrictions on the constants in the cases where g7 is a monomial. It remains to consider g7 =
% — &', The condition pd?(o(g?) ® t(g7)) = 0 gives that

(s(c10+c20+ -+ Cp,o) —t(dig+dopo+ -+ dq,o))’YS =0

so that S(C]/o +cot+---+ Cp,O) — t(dl,o +doo+ -+ dq,O) = 0. Hence

' v ps+qt if charK | ged(s, t)
dimKero" = { ps+qt —1 otherwise.

Thus, for p > 2, we have

s+t if charK | ged(s, t)

. 1 . =
dim HH (A(p, 4;s,1)) = { s+t—1 otherwise.

Casell: p=1andg > 2
To calculate Imd°, let ¢ € Hom(P° A(1,g;s,t)) so that °(p) = ¢d'. Suppose that
¢ € Hom(P° A(1,g;s,t)) is given by

@: e1®er = croe Foaat o0’ +digd o +dy6
ei®e; > digej+di16i+ - +d;0!

fori =2,...,q and where C1,js dl,jr dz-,]- € K.
We have

pd (o(0) @ t(a)) = pler@a —a®e;) = pleg @er)a —age; @e) =0
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sincew € Z(A(1,4;s,t)). Now,

pd'(o(B1) @t(B1)) = ¢@le1®p1—P1®e)
= (c1,0 — doo)B1+ (dig —d21)01B1 + -+ - + (d1p—1 — doy—1)8 1 B1

qod1<0(,8q> ® t('Bq)> = qp(eq X ’Bq _ ﬁq ® 31)
= (dq,O - Cl,O)ﬁq + <dq,1 — d1l1)(5qﬁq + . 4+ (dq,t—l o dl,t—l)(s,;_l,gq-

Thus dimImd° = (g — 1)t.
Now let ¢ € Kerd! so that {»d*> = 0, and suppose that y € Hom(P!, A(1,q;s,t)) is given by
P: o(a)@t(a) +— croe1+ciatc-tersa®+610+ -+ 51,t—15§_1
o(Bi) @t(Bi) > dioBi+dindiBi+ - +di_16 1B
fori =1,...,q and where €1,j, C1,j, dz-,]- € K.
From Proposition 3.2, the minimal generating set for J ) is
{s6=a"—0" gl =P, &5 =Pot, g1 =B Bgd' P By 12<j<q -1}
where we recall that § = J;. Starting with g2, the equation pd?(0(g?) ® t(g?)) = 0 gives that
0 = $low) ® Ha)pr +aplo(pr) @ (p1))
= (c10e1+ 1101+ -+ 810, ) B

1t—1 = 0. So we may immediately simplify our expression for ¢ as

Hence C1,0 = 51,1 ==
P oo(w)@t(w) = cpawt -+ e°
o(Bi) @t(Bi) > dioBi+dirbii+ - +dip_16 B
fori =1,...,q. It then follows that l/)dz(o(g}?) ® t(g}z)) is zero for j = 2,...,q and so we do not
get any restrictions on the constants here. Finally,
0 = yd*(o(g5) ® t(g5)) = (sc1,1 — H(dro +do0 + -~ +dgo))a’
so that sci; — t(d1,0 +dao + - - - +dgpo) = 0. Hence

s+ qt if char K | ged(s, t)

. 1_
dimKerd™ = { s+qt—1 otherwise.

Thus, for g > 2, we have

. 1 ) | s+t if char K | ged(s, t)
dim HH (A (L, q;5,)) = { s+t—1 otherwise.
Caselll: p=1=9q

To calculate Imd°, let ¢ € Hom(P°, A(1,1;s,t)) so that 3°(¢) = @d'. We have

pd'(o(n) @t(a)) = pler@a —a®er) = ¢pley @er)a —ap(e; @ep) =0

since A(1,1;s,t) is commutative. Similarly ¢d!(o(8) ® t(8)) = 0. Thus Ima° = (0).
Hence HH'(A(1,1;5,t)) = Kerd'. Let ¢ € Kerd' so that ¢d> = 0, and suppose that ¢ €
Hom(P!, A(1,1;s,t)) is given by

P o) @t(a) — crper +oant e +opa® +diaftc Hdy !
o(B) @ (B) > caper +egra e F o5’ Hdpr Ay
where ¢;j, d;; € K.
From Proposition 3.2, the minimal generating set for J, ) is {gg=a"—Pp, g3 =uaB, g =
Ba}. Starting with g%, the equation pd?(o(g7) ® t(g7)) = 0 gives that

croB+diifP+ -+ diof T copa e’ + - a0 4 (dipg 4 cps1)a’ = 0.
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Hence C10 = dl,l == d1,t72 =00 =0C1 =" " =0Cs-2= 0 and dlltfl + C25-1 = 0. So we
may simplify our expression for ¢ as

pro(a)@t(a) — cppa+ce- ot +dypgpitt
p:o(B)@t(B) — —dya’ T topeat +dpif+ o +doy 1L

We then have that
0 = pd*(0(g5) ®t(g5)) = sc118” — tda1 B = (sc11 — tdo)a’

and hence sc1 1 — tdy; = 0. The final equation d?(o(g3) ® t(g3)) = 0 gives no new information.
Hence ¢ € Kerd! is given by

pro(a)@t(a) = cppa+-co+opea® +dpygpit
P:o(B)@t(B) — —dya’ T topat +dpiBtc- +doy 1 piE

with the additional linear dependency that sc1; — tdy 1 = 0. Therefore

s+t+1 ifcharK | ged(s,t)

: 1 . N 1 _
dimHH"(A(1,1;s,t)) = dimKerd" = { st otherwise.

This completes the proof. O

3.2. HH°(A) and HH!(A) for the algebras A = T(p,q;r). We now turn to the algebras
T(p,q;r) = KQpg)/Ir- Set i = aj---apday---a;y for 1 < i < p (so that 77 = 74) and
0;=PBj - BgvP1---Bj—1for1 < j<q(sothatt =57).

Proposition 3.4. Let p < q be positive integers and consider the algebra T'(p,q;r). Set z = Zle ni+
):7:1 0. Then

p+g+r—1 ifp>1
dimHHY(T(p, ;7)) = g+ r+1 ifp=1andg > 1
r+3 fp=1=4q
and a basis for HH (T (p, ;7)) is given by

(10
{1:v
(Lo <k <r =100y s 6y o} ifp=1=4q

Proof. Itis clear that (76)", 7 and 6] are in the centre of I'(p, g;7) since they are socle elements,

(16)";25,1
)

<k<r—1;17i’;9;for2<i<pand2<j<q} ifp>1
6 ’;zk,l<k<r—l;(M)H&@}forKKq} ifp=1andg>1
<

and it is easy to check that (78) "1 and (6-y)" 14 are in the centre in the appropriate cases.
Conversely, a central element { must be in @53 ! eoI'(p,q;7)e, and therefore is a linear
combination of (76)F for 0 < k < 7, (69)f for 1 < k < r—1, (y6)*y and (57)*s for 0 <
k<r-—1, and 775-‘ and 9]'-‘ for2 <i < p2<j<gand1l <k < r. Writing the equations
a;{ = Cw; and B;0 = (P; gives the result (noting that ¥ = a;---ap(67)* 6y -+~ a;_ and
0F =B+ Bg(10) vB1- - Bj-1). O

We now use the same method as for A(p,g;s,t) to compute HH! (T'(p,q;7)), starting with a
minimal set g of generators of I,.

Proposition 3.5. Consider the algebra T (p,q;r) with1 < p < q.
If p > 2 then the following elements form a minimal set of generators for the ideal I,:

g = ()=o)

¢ = qlaforall2<i<p—1
g = i

g%+1 = PBgp1

= G;ﬁjforall2<j<q—1.
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If p = 1 then the following elements form a minimal set of generators for the ideal I,:

g§ = (gé)r — (67)
g% = &
&2 = PBgb1

8 = OBjforall2<j<q-1

The proof of the next result giving the first Hochschild cohomology group is a similar calcu-
lation to that of Proposition 3.3 and so is left to the reader.

Proposition 3.6. If p > 2 then
dimHH (T(p, q;7)) = r + 1.
Ifp=1and q > 2 then

r+4 ifcharK=2

dim HHY(I'(1,4;7)) = { r+2 ifcharK # 2.

Ifqg =1then p =1and

2r+6 ifcharK =2

. 1 . _
dimHH (I'(1,1;r)) = { 2r+2 ifcharK # 2.

3.3. Higher Hochschild cohomology groups for I'(p, ;7). In order to distinguish the algebras
of the form I'(p,q;r) up to derived equivalence we need the dimensions of the Hochschild
cohomology groups up to HH* (T (p,q;r)). If p = 1, this is just HH(T(1,4;7)) which we
already know, so we shall assume that p > 1 in the remainder of this section. We begin by
giving the start of a projective bimodule resolution of I'(p, g; r) to enable us to find these groups.
For ease of notation, setI' = T'(p, ;7).

The projective bimodules P" in a minimal projective bimodule resolution of I' are known
from [8], specifically that the multiplicity of T'e; ® ¢;I" as a direct summand of P" is equal to the
dimension of Extf(S;, S;), where Sy is the simple module at the vertex k. We thus define pro-
jective I-T-bimodules (equivalently T'*-modules) P°, P!, ..., P?? which will be the projectives in
our minimal projective bimodule resolution for I'.

Definition 3.7. LetI' = I'(p, q;7) with p > 1. We define projective I'-I'-bimodules P°, P!, ..., P?
as follows.
ptq—1
P'= P Te;wel,
i=1

p-1 q—1
P'=PTe; el ©Tep,@el & PTepyj1@ep T ®leprg1 @el ®Tep @epiqT,
i=1 j=2
p—n p—1 q—n
P = @ I'e; @ ejr I’ ® @ Te; ® ei+n+1—pr ©le,®ey 1l @ @ F€p+j—1 & ep+]-+n_1l"
i=2 i=p—n+1 j=2
q—1
S @ Teprj1®epyjingl ®leprg1®@epinl ®leg@eil, forl<n <p,
j=q—n+1
p—n p—1
Pl = PTe; eyl & P Tei@eipn_pl &Tep,@e,l & Tey @ eyl
i=2 i=p—n+1
q—n g—1
® @ Tepyj1®@epijrnl @ @ Tepij1®@epijrn—qal ®leprg—1@eppnal
j=2 j=q—n+2

®ler®@epnl ©Tlepy n®@erl, for2 <n<p
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q-p q
PZp 1 @ Ie; @ e;T' ® @ FEP_H 1® €2ptj— 1T ® @ Fep+] 1® €2ptj—q— 1
i=1 j=2 j=q—p+2
©le; el Dleg ®egpl,
p—1 q—p q
P = PTe;@ei T @@ Teprj1®@erprjal® P Tepsj1 @eaprjgl
i=1 j=2 j=q9—p+1

©® Fep el Teg ®el.

The first maps di . Pt — Pi-1 fori = 1,2,3 of a minimal projective bimodule resolution are
given in [7]. We extend the resolutjon in [7] for our algebra I', in a similar way to [14], to make
the following definition of maps d' : P' — P'~! fori =1,...,2p.

Definition 3.8. Let I' = T'(p,q;r) with p > 1. We define I'-T-bimodule homomorphisms d’ :
Pl — Pl fori=1,... ,2p, as follows.

> g2l p2n=1 5 p2n=2 for1 < n < p,
0 Xeiy > Py 1 —Rej, for2<i<p—n
.ei®ei+nfp'—>

(7 [er @y + (DI Dy © 01 it = @iy

. p—i
_ (_1)77(_1)(;771)(”71) (_1)7”(”71)0‘1- RN ‘Xp—m X SRR “pé(rya)r*l(xl Ce . ‘Xn—p+z'—1
m=1
) n—1
_}_(_1)77(_1)(;771)(”71) (_1)7”(”71)0‘1- e lXp((S’)’)ril(SOC] N ‘Xp—m ® [ R ‘X?’l—p—‘ri—l
m=p—i+2
forp—n+2<i<yp
®cp i1 e =
n—1
ep—n—H ® IXP + <_1)n Z (—1)m(n71)0‘p—n+1 c. lxpfm X Kyl " lxpé(’)/(S)rfl _ lxp—n-i-l c. IXP ® eq
m=1
e Xeyin
n—1
(_1)n—1 e1 @y -y + (_1)11 Z (_1)m(n—1)5(,)/5)r—1“1 o &p—m Q&1 A+ (_1)71“1 X en41
m=1

®Cptj-1 & €ptjtn—1 — —€ptj-1 & ,B]‘+n71 + ﬁ] & Cptj+n—1 for 2 < ] < q—n

®epij-1QCpyjtn—gq-1—
(—1)* [ep+j_1 D07y g+ (1) TV By @ By Bujog1 — 0] @ Cpijin—g

‘1*]
— (=1)"(~1 o © Baem @ Bt Bg(70) T yBre - Buogoj
) n—1
(1) (=D YT (1) By (6) B ﬁqm®:3n—m+1"‘:3nq+f1]
m=q—j+2

forq—mn+2<j<g
.€p+q_n®e] —

n—1
R [eP+qn ® Bg+ (=1)" Zl<_1)m(n71)r5q—n+1 o Bgom @ Bu—my1 - 'ﬁq('y‘s)ril'y —Bg-nt1 By @en
e ® €p+n v
(=1)"

e1® ,Bl )r_l’Yﬁl T ,Bq—m ® ﬁnfm+l e '.Bn + (‘U”ﬁl ® €ptn

HMI
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> d* ;P2 — P~ 1 for1 < n < p,

®¢; X ety

7 p—i—n

—k k k—1
Z 771 ® 171+n + Z Z Miti - Qi @ Qjtypnt1 - ApOXT * +* Ripp— 177{+n
k=0 m=0

"k r—k—1
+ Z Mik:-- D‘pé“l Tl @ W1t K Mitn

q—n
k k—1

" Z MidioapPr B @ Biyni1 Pak1 Rign 17,
!

for2<i<p—n
® e ®@eiini1_ptr 6 Dipy_p— (—1)"; @ e pp1_pforp+1-—n<i<p
ec ey

r—1 —n
Z [Z <5<’Y‘5)k“1 SRR PR SRR I “p((S’Y)r*k*l + (—1)n(75)k061 SR PR SRR I lxp((s’Y)r*k*l(S)
i=0

q—n
+ 3 (107 B By @ Branea - By(v0) T+ (1) (07)*Br -+ By @ By - -/3,1(75)”17)]
=0
® )t i1®Cptjrn—ygt> Cptj—1 & ,Bj+n—q - (_1)71,3]' @ eptjtn—q forg+1—-n<j<q
q—j=n
9 k—1

r r—1
k ky k
® €ptj-1 ® Eptjyn—1 kZ: 0; @ 9;+n kZ; Z 9]' Bj- Bitm @ Bjtmint1--Pg¥P1- - Bitn- jn
=0 =0

j—2
+ Z 6}(:3]' o '.Bq'Y.Bl te ,Bm ® ,Bm+n+1 ce ,Bj+n 19]:_:: 1
m=0

p*?’l

k k—1
n IEOGjﬁj...ﬁqal...“i®ai+n+l...ap’31...ﬁj+n 19;+n
i=

for2<j<qg—n

> d2p—1 . PZp—l — P2p—2

¢ Qe —
<_1)l |:ei ® 77{ _|_ <_1)(P*i)(P*1)ai . D(p ® 01— 17:/ ® e;
. p—i
_ (_1)17(_1)(;771)(1771) - )(XZ .. ‘Xp—m X ‘prm+l e lXp(S(’)’(S)rillX] R A
m=1
) p—1
+(_1)P(_1)(P—Z)(P—1) Z <_1)m(p—1)ai e zxp(&y)"léal Y T P S
m=p—i+2

for2<i<p
ec ey

p—

1)” Z ’)"S) &y QU1 Kp T+ (—1)Py®e

®epii1®eptj1> —€pyji1® ,Bp+]'_1 + ,B]' @ ezptj—1 for2<j<q—p
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®ptj—1® Cptjg-17

(= [ eprj 1 @0, o+ (D) TV B @By By g1 — 0 @eapg

‘ q—j
— (=1)P(=1) DD Y ()R B @ Byt B (V) B Bp—gj
m=1
)(p—1 = 1)
+(=1)P(=1)la=Dr—1) (1) [3 - By v(89) 1By B @ Bpomt1 Bp—grj1
m=q—j+2
forg—p+2<j<q
®cy X e —
p-1 . 1
— leg @B+ (=17 L (=)™ By i1 Byom @ Bpmrr - B(16) My = Bypir - By e
m=1

(=1)F

p—1
er®@PBr By (1) Y (=)™ I (48) T yBr - Bam @ Bpomr1 - By + (—1)PB1 @ ep
m=1

> g% : p? — p?r—1
O€i®€l‘+1>—>€l‘®lxi—<—1)plxi®€i+1 fori1<i<p—-1
e Re —

Z [ DPS(10)* @ (89) 1+ (p8) @ (0y) F 1o
k=0

q—
- Z < 1 B @ Bipprr - Bg(v8) T+ ()P (00 B B ® By pra - “ﬁq(’ﬂS)V—k_l’Y)]
° €p+j—1 Q eptjtp—q Fr Cptj-1 @ ,Bj+P—q — (—1)pﬁ]‘ @ ep+titp—q for g+1-p<j<g
® ey j-1®eptj-1

r r—1
Y 0F @0+ )
k=0 k=0

q—j=p

k k—1
D OB Biew @ Byt ByYBr - Biip16f
m=0

j—2
L OBy BrBu B Busper o Brapa6 T — OB By © P By ]
m=

for2<j<qg—p.

It remains to show that the projective bimodules and homomorphisms that we have defined
do indeed give the start of a minimal projective bimodule resolution of I'.

Theorem 3.9. With the above notation,
dl

PO r 0

is the beginning of a minimal projective resolution of I as a I'-I'-bimodule (when p > 1).

2p—1
. p2r 4 pop-1 47 . pl

Proof. It may be verified directly from the definitions that d*> = 0 and thus we have a complex.
The strategy for proving exactness is identical to that of [14, Theorem 1.6] (and see [7, Propo-
sition 2.8]), whereby we apply (I'/ rad(I') ® —) to the complex and show that the resulting
sequence is a minimal projective resolution of I'/ rad(T') as a right I-module. Minimality is
then immediate since we know that the projectives are those of a minimal projective resolution
of I" as a I'-I"-bimodule from [8]. O

We are now in a position to give the dimensions of the Hochschild cohomology groups up to
HH?~%(T'). We only give those in even degree since we shall not need the others. The details
of the proof are left to the reader.
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Theorem 3.10. For2 < n < p < q we have

r if n is odd and char K 1 2r
dim HH22(T) — r+1 ifnisoddand charK | 2r
) if n is even and char K # 2

r+1 ifniseven and charK = 2,
and for 2 < p < q we have

r—1 if pisoddand charK 1 2r

dim HH () — r if pis odd, char K # 2 and char K | 2r
r+1 if piseven and char K # 2
r+2 ifcharK = 2.

4. DERIVED EQUIVALENCE CLASSES

It was shown in [5] that two algebras of the form A(p,q) = T'(p,q;1) or A(n) = A(1,n;2,2)
are derived equivalent if and only if they are isomorphic. The main result in this section is to
extend this to all algebras of the form I'(p, g;7) and A(p, g;s,t), and hence to all basic indecom-
posable finite-dimensional K-algebras A which are symmetric special biserial algebras with at
most one non-uniserial indecomposable projective module.

We start with some properties of these algebras, all of which are invariants under derived
equivalence.

Proposition 4.1. Suppose 1 < p < q. The algebras T(p,q;r) and A(p,q;s,t) have the following
properties.

(1) The number of simples of {F p,gr)isp+q—1,
(p,g;s,t)isp+q—1.
1,1,...,1,4 ; P /
S r o ifr(p4q—2)iseven
T(p,q;r) are pHi— ‘ |
(2) The Cartan invariants of 1,1,...,1,2,2r ifr(p+q—2)isodd,

p+q-3
A(p,qg;s,t)are 1,1,...,1,s+t+ (p+qg—2)st
(p,q;s,t) : (p+q-2)
p+q—

(3) The Cartan determinant of L(p.qir) is 47'
A(p,q;s,t)iss+t+ (p+q—2)st.

Proof. (1) This is immediate from the number of vertices of the quiver Q,
(2) Let Z,, be the m x m identity matrix, let 7, be the n x n matrix with all entries equal
to 1, and set u = p + g — 2. We start with the algebra I'(p, g;7). The Cartan matrix of
I(p,g;r)isthe (p+q—1) x (p+ g — 1) matrix

4r 2r ... 2r
2r

Cr =

Iu +rJ, u
2r
The Smith normal form for Cr is
([ z. o L
if ru is even
0 4r
[ Z,.1 0 0

0 2 0 if ru is odd,
0 0 2r
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1,1,...,1,4r if ru is even
N——

p+q-2
1,1,...,1,2,2r ifruisodd.
—_———

p+q-3

and thus the Cartan invariants of I'(p, g; 1) are

Now consider the algebra A(p, g;s,t). The Cartan matrix of A(p,g;s,t) is the (p +
g—1) x (p+4g— 1) matrix

[ s+t ¢ t s S
t
D Ty +tTp 0
Cpr = t
S
S

The Smith normal form for C, is

I, 0
0 s+t+4ust |’

so the Cartan invariants of A(p,q;s,t) are1,1,...,1,s +t+ (p +g — 2)st.
v (P, q;s,t) (P+q-2)

ptq-2
(3) This is immediate from (2). ([l

We now consider isomorphism classes of algebras of the same form. It is clear that
AN(q,q;s,t) = A(q,q;t,5), and the next result shows that, with this one exception, two alge-
bras both of the form I'(p, g;7) or of the form A(p, g;s, t) are pairwise non-isomorphic.

Theorem 4.2. (1) The algebras of the form T(p,q;r) (with 1 < p < q) are pairwise non-
isomorphic.
(2) The algebras of the form A(p,q;s,t) (with 1 < p < gq) are pairwise non-isomorphic with the
exception that A(q,q;s,t) = A(q,q; t,5).

Proof. (1) First, suppose that the algebras I'(p, q;7) and I'(p’, 4’; ') are isomorphic with 1 <
p <gq,1<p <q'. Since both algebras are basic, the quivers are uniquely determined
and hence Q, .y = Q(y,)- Thus p = p’ and g = g'. From the Cartan determinant in
Proposition 4.1(3), we have that r = .

(2) Suppose that A(p,g;s,t) = A(p',q";s',t') with1l < p < gq,1 < p' < 4. Since both
algebras are basic, we again have that p = p’ and g = ¢’. Then, using the zero-th
Hochschild cohomology group from Proposition 3.1, we have s + t = s’ + /. Equality
of the Cartan invariants from Proposition 4.1(2) gives that st = s't'. Hence s',t' are
the two roots of the equation x?> — (s + t)x + st = 0. Thus we have either s = s’ and
t = t' (which gives us the algebra A(p,g;s,s)), ors = t' and t = s'. In the latter case
we have the algebras A(p, g;s,t) and A(p,g;t,s), and it remains to show p = g when
s # t. The K-dimension of A(p,q;s,t) is tp? + sq* + p + q — 2 and that of A(p,q;t,s)
is sp?> + tg*> + p + g — 2. Thus tp* + sq* = sp* + tq* so that (t —s)(p +q)(p —q) = 0.
Since p+g > 0 and s # t we have p = g, which is precisely the case A(g,q;s,t) =
A(q,q:t,s). O

Our final theorem classifies up to derived equivalence, all basic indecomposable finite-
dimensional K-algebras A which are symmetric special biserial algebras with at most one non-
uniserial indecomposable projective module.

Theorem 4.3. (1) An algebra of the form A(p,q;s,t) (with 1 < p < q) is derived equivalent to
exactly one algebra in the following list:
@ A(L,p+qg—1s,t)with2 <s<t,
(b) Nf/;rq*l with p 4+ g > 2 and min(s, ) = 1, max(s,t) = M.
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(2

3)

Proof.
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An algebra of the form T (p, q; ) (with 1 < p < q) is derived equivalent to an algebra of the form
A(p,q;s,t) if and only if they are isomorphic. This is only the case for T(1,1;1) = A(1,1;2,2)
and char K # 2.
The algebras T(p, g;r) and T(p', q';7") (with1 < p < gand 1 < p’ < q') are derived equivalent
if and only if (p,q,7) = (p', 4", 7).

(1) The algebra A(p,q;s,t) is the generalised Brauer tree algebra associated to the
Brauer tree in Figure 1:

\ P*/ 2 %
p . .

: 1 1
N b N X

o | d
3 P2 pHo-2
2 p+q—1 p+q—1

Figure 1 Figure 2
in which the vertices 2 and b have multiplicities respectively s and t (we refer to [4,
Section 4.18] or [11] for the definition of a Brauer tree algebra and a generalised Brauer
tree algebra).

It was proved in [11, Theorem 9.7] that generalised Brauer tree algebras up to derived
equivalence depend only on the number of edges in the graph and the set of multiplic-
ities. Therefore A(p, g;s,t) is derived equivalent to the generalised Brauer tree algebra
associated to the Brauer tree in Figure 2, in which the vertices ¢ and d have multiplicities
respectively m = min(s, t) and M = max(s,t) and {a,b} = {c,d} . This algebra is equal
to

o cither KA, , 1/Ly = Nb 7 Vif m = 1, that s, if (s,£) = (M, 1) or (s,£) = (1, M),
with M > 1,
e or A(l,p+q—1,m M)if m > 1, thatis,ifs > 2and t > 2.
Moreover, none of these algebras are derived equivalent, again by [11, Theorem 9.7].
First, we show that the algebras I'(1,1;1) and A(1,1;2,2) are isomorphic when char K #
2. Since K is algebraically closed, let € be a square root of —1 in K. Then the map

¢:T(1,1;,1) — A(1,1;2,2) given by { 2:3‘61—2‘[2

is an isomorphism of algebras.

Suppose that there is a derived equivalence between the algebras I'(p,q;r) and
A(p',q’;s,t). Then the algebras have the same number of simple modules so, from
Proposition 4.1, we have p + q = p’ 4+ ¢q'. From (1), the algebra A(p’,q’;s,t) is derived
equivalent to exactly one algebra in the list above. Moreover, s +t = m + M where
m = min(s,t) and M = max(s, t).

Case I: m = min(s, f) = 1.

Let I = T(p,q;r) and A = A(p',q;s,t). From Propositions 3.1 and 3.3,
dimHH(A) = p+4g+ M — 1 and dimHH'(A) = M. We first assume that p = 1,
so that ¢ > 1. From Proposition 3.4, dim HH(T') = g +r + 1 so that M = r + 1. How-
ever, Proposition 3.6 gives

dim HH!(T') = {r +4 %f charK = 2
r+2 ifcharK # 2
which is a contradiction. So I'(1, g; r) is not derived equivalent to A(p’,¢’;s,t).
On the other hand, if p > 1 then dimHH*(T) = p+ g+ — 1 so that M = r. But
dim HHY(T') = r + 1 so that M = r + 1, a contradiction. Again I'(p, g;7) is not derived
equivalent to A(p’,q';s, t).

Case ILI: m = min(s, ) > 1.
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We use Propositions 3.1, 3.3, 3.4 and 3.6 without further comment. We begin with
the case p = 1. If ¢ = 1 then dimHH’(A) = s+t and dimHH"(T) = r + 3.
From Proposition 4.1(3), the Cartan determinant of I" is 4r and of A is s +t. Hence
r+3 =s+t=4rsothatr = 1and s = 2 = t. If char K # 2 then we have an iso-
morphism I'(1,1;1) = A(1,1;2,2) from above. If charK = 2, then dimHHl(A) =5
and dim HH!(T') = 8, which is a contradiction and I'(1,1;1) is not derived equivalent
to A(1,1;2,2). In the case where g > 1 (keeping p = 1), a similar consideration of the
zero-th and first Hochschild cohomology groups and the Cartan determinant shows
that I'(1, q;r) is not derived equivalent to A(p’,¢’;s, t).

Now suppose that p > 1. We have dimHH(A) = p+g+s+t—2 and
dimHH(T) = p+g+r—1sothatr = s+t—1. SodimHH (T) = r+1 = s+,
and we must have charK = /¢|gcd(s,t). From Proposition 4.1(3), the Cartan deter-
minant of I' is 4r and the Cartan determinant of A is s+t + (p + q — 2)st so that
3(s+t) = (p+4g—2)st —4. Thus /|4 so that / = 2, and s,t are both even. Thus
we are in the situation where I'(p, g; 7) is derived equivalent to A(p’,q’;s,t), charK = 2,
both s,t are even, r = s+t —1,and p+q = p’ +¢'. We shall use Kiilshammer in-
variants and the same arguments as in [10, Subsection 4.5.2] for this case. Recall from
Proposition 2.1 and its proof that the algebras A(p’,q’;s,t) and I'(p, g;r) are symmetric;
moreover, once we have fixed a K-basis of paths for the socle of a symmetric algebra
A and completed it to a K-basis B4 of paths for A, the linear map f : A — K that
is defined on B4 by sending socle elements to 1 and the rest to 0 defines a symmetric
non-degenerate associative bilinear form on A. Orthogonals will be taken with respect
to this bilinear form. Let x(A) be the commutator subspace of A and, for any non-
negative integer n, define T,,(A) = {x € A;x* € x(A)}. It was proved in [15] that the
generalised Reynolds ideals (or Kiilshammer invariants) T,,(A)* are derived invariant.
Note that soc(A) C T,(A)* € Z(A) for every n. It is well-known that the centre Z(A)
is a derived invariant. Given a vector space V, let By denote a basis of V.

e We start with the algebra I' = T'(p,g;7). A basis Br of paths of T' is given
by the union over all i,j with 1 < i,j < p+4g—1 of all paths from ¢; to ¢;
of length at most (p + q)r except (6)". Recall from Proposition 2.1 the basis
Booery = {(70)71m],2<i < ;0,2 <j<q} C Brofsoc(T') and from Proposition

3.4 the basis By ) = {1; (v0);251 <k <r— 1;171-’;9]7 for2<i<pand2 << q}
of Z(T) wherez = Y/ n; + Z?:l 6;. Then dim«(I') = r ((p+4g)*—1) —land a
basis of «(T') is given by

Byry = {r(6m)58(8)5(v8) ! — () i =i L1 i <t — 0L 2 < < g

for0<k<r—1}U{b € Br;o(b) #t(b)}.

Now, as in [10, Subsection 4.5.2], work in I'/x(T) to find a basis Br,r) = Byr) U
{(v0)%; = <k <r} of Ty(T) (recall that r is odd), then work in Z(T')/ soc(T) to
find a basis By, 1) = Bsoe(r) U {55 <k<r—1} for Ty(I)* so that I :=
Z(T)/Ty(T)* has basis By = {1,251 <k < 51} . We now consider the Jacobson
radical v of the algebra I/, which is spanned by {zk ;1 <k < %} , and its square
t2,, which is spanned by {z";2 < k < %} so that dimg v /t%, = 1.

e We now turn to the algebra A = A(p’,¢q’;s,t). Since they are derived equivalent,
we may assume that A = A(1,n;m, M) withn = p + g — 1 (to simplify notation).
Note that m and M are even. Set & = 1. We follow the same method as for I, using
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Propositions 2.1 and 3.1.

Ba = U {all paths from ¢; to e; of length at most nM that do not contain oc}
1<i j<p+q—1

U{zxk,lgkgm—l}

q
BZ(A) = {1;(xk,1 <k< m;yg,l <Il<L<t— 1;(5]M,2 <j < q} where y = 25]-
j=1

By = {6~ 82 <j <q1<E<MPU{b € Baso(b) # t(b)}

M
BT](A) = BK(A) U {“k, = <k<md, 5

5 <€<M;zxm/2+5M/2}

BTl(A)L = BSOC(A)U {(xk,ﬁ <k< m—l;yé,% </l < M—1;(xm/2+yM/2}.

2
So the Jacobson radical tyn of A’ = Z(A)/Ti(A)* has basis
{}fck,l <k < %;yf,l </l < %} and t3, has basis {uck,2 <k < %;y5,2 </l < %} SO
that

2if M > 4
1if M = 2 (and therefore m = 2).

Since we assumed that A and I are derived equivalent, the algebras A and I are iso-
morphic and hence we have dimg v/ %, = dimg tar/ ti,, which implies that m = 2 =
M, thatis, s = 2 = t. Thereforer = s+t —1 = 3. We now use the Cartan determi-
nants: 0 = detCr —detCpy =4r — (s+t+ (p+qg—2)st) = 12— (4+ (p+q—2)4) =
4(4—(p+gq)) sothat p+g = 4. Since 1 < p < g, we must have p = 2 = g. There-
foreI' = I'(2,2;3) and A is derived equivalent to A(2,2;2,2). However, it was shown
in [9, Section 3] that I'(2,2;3) = D(3A4)3 and A(2,2;2,2) = D(3A)§'2 are not derived
equivalent. Therefore A and I are not derived equivalent.

(3) If the algebras I'(p,q;r) and T'(p/, q';7") (with p < g and p’ < ¢') are derived equivalent,
then from the Cartan determinant and number of simples (Proposition 4.1) we know
thatr =+ and p + g = p’ + ¢'. Assume for contradiction that (p,q) # (p/,q'). We may
suppose that p < p'. It follows that p < g (for otherwise p = g and hence ¢’ = (p' +
q7)—pv =(p+q) —p =2p—p <2p —p' =p/, acontradiction). Using Theorem 3.10
and Proposition 3.4, we then have

HHP=2 (T (p, ;7)) # HH? 2 (T(p', q';7"))
which contradicts the fact that the algebras are derived equivalent. Thus (p,q) =
(p"q"). .
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