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ABSTRACT: The North Atlantic spring bloom is one of the largest annual biological events in the
ocean, and is characterized by dominance transitions from siliceous (diatoms) to calcareous (coccol-
ithophores) algal groups. To study the effects of future global change on these phytoplankton and the
biogeochemical cycles they mediate, a shipboard continuous culture experiment (Ecostat) was con-
ducted in June 2005 during this transition period. Four treatments were examined: (1) 12°C and
390 ppm CO2 (ambient control), (2) 12°C and 690 ppm CO2 (high pCO2), (3) 16°C and 390 ppm CO2

(high temperature), and (4) 16°C and 690 ppm CO2 (‘greenhouse’). Nutrient availability in all treat-
ments was designed to reproduce the low silicate conditions typical of this late stage of the bloom.
Both elevated pCO2 and temperature resulted in changes in phytoplankton community structure.
Increased temperature promoted whole community photosynthesis and particulate organic carbon
(POC) production rates per unit chlorophyll a. Despite much higher coccolithophore abundance in
the greenhouse treatment, particulate inorganic carbon production (calcification) was significantly
decreased by the combination of increased pCO2 and temperature. Our experiments suggest that
future trends during the bloom could include greatly reduced export of calcium carbonate relative to
POC, thus providing a potential negative feedback to atmospheric CO2 concentration. Other trends
with potential climate feedback effects include decreased community biogenic silica to POC ratios at
higher temperature. These shipboard experiments suggest the need to examine whether future pCO2

and temperature increases on longer decadal timescales will similarly alter the biological and biogeo-
chemical dynamics of the North Atlantic spring bloom.

KEY WORDS:  Ocean acidification · Global change · Carbon dioxide · Temperature · 
Coccolithophores · Diatoms · Calcification · North Atlantic bloom
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INTRODUCTION

Of the many ongoing global anthropogenic-change
processes, increased atmospheric CO2 and rising tem-
peratures are likely to have some of the most profound
effects on ocean biology and biogeochemistry. Atmos-
pheric CO2 concentration is currently increasing by
about 0.4% yr–1, and has already increased by about
30% over pre-industrial levels. It has been predicted
that atmospheric partial pressure of CO2 (pCO2) will be
>700 ppm by the end of this century (Alley et al. 2007).
This will lead to a projected seawater CO2 concentra-
tion increase of about 30 µmol kg–1 and a correspond-
ing seawater pH decrease to about 7.8, roughly 0.3
units lower than today’s value (Wolf-Gladrow et al.
1999). At the same time, warming associated with the
release of greenhouse gases into the atmosphere has
been predicted to raise sea surface temperature (SST)
by 1 to 4°C over the next 100 yr (Bopp et al. 2001, Alley
et al. 2007).

These global changes will have major effects on the
physiology of marine phytoplankton (Boyd & Doney
2002, Hays et al. 2005). For instance, it has been shown
that CO2 enrichment will significantly influence the
photosynthesis, elemental composition, and calcifica-
tion of marine phytoplankton (Riebesell 2004). Fur-
thermore, these effects are taxon specific, so future
phytoplankton community structure and succession
should also be influenced (Tortell et al. 2002, Hare et
al. 2007). Phytoplankton metabolic activity could be
accelerated by elevated temperature (Eppley 1972);
therefore, rising SST will also have important effects
on marine phytoplankton. Laboratory studies have
predicted that CO2 enrichment, together with rising
temperature, may have interactive influences on some
phytoplankton species (Fu et al. 2007, Hutchins et al.
2007, Feng et al. 2008). However, there is little infor-
mation available on the effects of simultaneously
increased temperature and pCO2 on natural phyto-
plankton communities (Hare et al. 2007).

The intense annual North Atlantic spring bloom is
one of the most dramatic and predictable biological
events in the world’s oceans (Esaias et al. 1986). Typi-
cally, this bloom follows a succession in which initial
dominance by diatoms later gives way to nanoplank-
ton, mainly coccolithophores (Lochte et al. 1993). This
secondary coccolithophore bloom may be induced by
high light conditions (Tyrrell & Taylor 1996), silicate
depletion during the early diatom-dominated bloom
phase (Sieracki et al. 1993), phosphate becoming more
limiting than nitrate (Riegman et al. 1992, Tyrrell &
Taylor 1996), low dissolved CO2, and high carbonate
saturation state (Tyrrell & Merico 2004), or some com-
bination of these factors. How community structure,
phytoplankton succession, and marine biogeochemical

cycles during this annual event will change as a result
of increasing future CO2 concentration and SST is still
unknown. The North Atlantic is thus an ideal regime in
which to examine experimentally how global changes
could drive future shifts in phytoplankton diversity and
in the resulting patterns in carbon and nutrient biogeo-
chemistry.

The goals of the present study were to investigate
the individual and combined effects of increased pCO2

and temperature on algal community structure, phyto-
plankton succession, and elemental cycling in the
North Atlantic spring bloom area. To do this, we con-
ducted a shipboard continuous culture incubation
(‘Ecostat’; Hare et al. 2005, 2007) using a natural North
Atlantic bloom phytoplankton community. Unlike
short-term bottle growout experiments (days), this
shipboard adaptation of methods of laboratory contin-
uous culture systems offers the possibility of effectively
simulating natural environmental changes under con-
trolled experimental conditions using a natural phyto-
plankton community growing at near steady state in
longer incubations (weeks; Hutchins et al. 2003, Hare
et al. 2005, 2007). The results of this large collaborative
experiment are presented in 3 companion papers. This
paper mainly discusses the phytoplankton community
and biogeochemical responses. The companion paper
Rose et al. (2009, this volume) focuses on microzoo-
plankton dynamics, and Lee et al. (2009, this volume)
largely deals with dimethylsulfoniopropionate (DMSP)
production.

MATERIALS AND METHODS

Experimental setup and sampling. The shipboard
incubation was conducted between 20 June and
14 July 2005 on the RV ‘Seward Johnson II’ during the
NASB 2005 cruise. The initial phytoplankton commu-
nity was collected at 57.58°N, 15.32°W (temperature:
12.0°C, salinity: 35.3). A shipboard continuous culture
incubation system (‘Ecostat’) was used to carry out
steady-state simulation experiments under defined
projected pCO2 and temperature conditions (Hutchins
et al. 2003, Hare et al. 2005, 2007). Near-surface water
(5 to 10 m) containing the intact North Atlantic bloom
community was collected into a 50 l mixing carboy
using a trace-metal-clean, towed-intake surface water
Teflon diaphragm pumping system (Bruland et al.
2005) and then was cleanly filtered through acid-
washed 200 µm Nitex mesh to eliminate large zoo-
plankton. The whole water was then dispensed into 24
acid-washed clean, 2.7 l, clear polycarbonate bottles
for incubation. Clean 50 l seawater medium reservoirs
were filled with 0.2 µm in-line filtered seawater col-
lected at the same time as the whole phytoplankton
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community, which was later used as medium for dilu-
tion during the continuous culture incubation.

Initial nutrient concentrations in the collected water
were low, at 0.32 µM nitrate, 0.12 µM phosphate, and
0.7 µM silicate. Modest levels of nitrate and phosphate
(final concentrations 5 and 0.31 µM, respectively) were
therefore added to the medium and initial incubation
bottles, yielding final dissolved molar ratios of 0.13 for
Si:N and 0.08 for Si:P. The phytoplankton community
that we sampled was well into the transition phase
from diatoms to coccolithophores, so silicate limitation
in the incubation system accurately reproduced typical
nutrient conditions at this time (Sieracki et al. 1993). At
most stations along our cruise track, near-surface
nitrate concentrations were 2 to 5 µM and phosphate
concentrations were 0.2 to 0.5 µM, but silicate levels
were only 0.2 to 0.7 µM (Leblanc et al. 2009). Thus,
nearly the entire region at the time of our study was
characterized by low dissolved Si:N ratios of 0.1 to 0.2.
Because the station where we collected water for our
experiments was somewhat atypical (N and P depleted
to an unusual extent), our nutrient additions were
intended to simply reproduce the more usual values
we saw during the cruise. Although it should be noted
that adding N and P without Si would tend to select
against diatoms, our intention was not to provide a
level playing field for all algal taxa. Rather, we tried to
simulate accurately the normal biogeochemical and
biological conditions in the late part of the North
Atlantic spring bloom.

Two Ecostat systems were used to examine 4 treat-
ments—(1) ambient: 12°C and 390 ppm CO2; (2) high
CO2: 12°C and 690 ppm CO2, with only pCO2

increased; (3) high temperature: 16°C and 390 ppm
CO2, with only temperature increased; and (4) green-
house: 16°C and 690 ppm CO2, with both temperature
and pCO2 increased simultaneously. To provide for
robust statistical testing of treatment effects, 6 repli-
cate bottles were used for each of the 4 treatments. The
2 incubation temperatures were controlled using a
recirculating thermoregulation system consisting of a
thermostat-controlled heat-exchange cooling system
and in-line electric heaters. One of the Ecostats was
maintained using this system at ambient SST (12°C)
and the other was 4°C above ambient temperature, as
has been predicted for high latitude ocean regimes by
the year 2100 (Sarmiento et al. 1998, 2004). Two pCO2

levels were set by gentle bubbling (3 ml min–1) of
ambient air (~390 ppm CO2) and a HEPA-filtered com-
mercially prepared air/CO2 mixture (690 ppm CO2).
Ambient air was collected using an air pump with a
HEPA-filtered intake near the ship’s bow, to avoid the
ship’s exhaust gases. CO2 equilibration was monitored
throughout the experiment using both pH and dis-
solved inorganic carbon (DIC) measurements. The

light levels of the incubators were adjusted using a
combination of spectrally corrected blue plastic
(Hutchins et al. 1998) and neutral-density shade
screens, to provide an irradiance of 30% of the inci-
dent sea surface level (I0) inside the incubators.

The incubation was conducted in ‘batch’ growth
mode for the first 3 d (T0, T1, and T2) without dilution
of filtered seawater medium. The continuous incuba-
tion started on the fourth day (T3), with a constant dilu-
tion rate of 0.5 d–1, which is within the typical range for
whole phytoplankton community growth rates in this
area (Gaul et al. 1999). The incubation lasted until the
final sampling day on T14. The dilution rate of each
bottle was adjusted individually by a separate peri-
staltic pump, with an inflow line going into the bottle
from the top of the cap. The outflow tubing was con-
nected at the shoulders of the bottles and drained
down through a port in the incubator side along out-
flow lines and finally into the enclosed outflow receiv-
ing bottles, which were kept dark in a closed container.
All parts of the system were built of either Teflon or
polycarbonate and were rigorously acid cleaned prior
to the experiment. The system was equipped with a
compressed air-driven system to gently rotate the
entire Plexiglas rack holding the Ecostat bottles inside
the incubator through a 120° arc on a timed cycle (5 to
15 min) to ensure that the phytoplankton cells
remained suspended in the bottles (Hutchins et al.
2003, Hare et al. 2005, 2007).

Daily sampling directly from the Ecostat bottles was
limited to ~10% of the bottle volume, to avoid signifi-
cant perturbations of the nutrient input/biomass accu-
mulation equilibrium. Due to this sampling volume
limitation, daily samples were only taken for the mea-
surements requiring relatively small volumes. These
included chlorophyll a (chl a) and dissolved nutrients
(nitrate, phosphate, and silicate) daily, except for T7
and T13; algal community structure (flow cytometry
and microscopic cell counts) on T0, T2, T6, T11, and
T14; DIC on T0, T4, T8, T10, and T14; bacteria and
virus counts on T0, T2, T5, T8, T11, and T14; and pCO2

on T0, T7, and T13, for which samples were taken
directly from the bottles with a sampling syringe. Algal
composition by high-performance liquid chromatogra-
phy (HPLC), particulate organic carbon (POC), bio-
genic silica (BSi) and particulate organic nitrogen
(PON) samples were taken on T0 and T14. On the final
day (T14), all the samples were taken directly from the
incubation bottles.

Seawater carbonate system measurements. Samples
for DIC measurements were taken in 20 ml borosilicate
vials (Fisher Scientific) and were fixed with 0.2 ml of a
5% HgCl2 solution. The vials were sealed and stored at
4°C until analysis. DIC was measured in an acid-sparg-
ing instrument (Walz & Friederich 1996). For analyses,
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1.25 ml samples were injected into a sparging column,
where the CO2 resulting from acid conversion of the
DIC pool was quantified using a LiCor infrared ana-
lyzer with high precision flow control; replicate preci-
sion for seawater samples is about ±0.06%. pCO2 was
measured using a membrane inlet mass spectrometer
(MIMS; Hiden Analytical), following the methods
presented in Gueguen & Tortell (2008).

Phytoplankton community and biomass analyses.
Size-fractionated chl a samples were filtered at low
vacuum onto 0.2 and 2 µm polycarbonate filters (Milli-
pore), extracted in 90% acetone at –20°C in the dark
for 18 to 24 h, and measured with a Turner 10-AU
fluorometer (Welschmeyer 1994). Samples (400 to
1000 ml) for taxon-specific pigments were filtered onto
GF/F filters (Whatman) under low vacuum at sea and
were immediately frozen in liquid nitrogen for later
HPLC analysis in the laboratory. Photosynthetic pig-
ments were separated on an automated Hewlett
Packard 1050 HPLC system using a reverse-phase
Waters Symmetry C-8 column and a solvent gradient
containing methanol, aqueous pyridine, acetone, and
acetonitrile (Zapata et al. 2000, DiTullio & Geesey
2002). A diode array detector recorded pigment spectra
every 5 s over the wavelengths 350 to 600 nm and con-
tinuous chromatograms at 410, 440, and 455 nm. A HP
1046A fluorescence detector with excitation of 421 nm
and emission at 666 nm (optimized for chl a) was also
used to identify and quantify chl a and c. The system
was calibrated by repeated injections of pigment stan-
dards isolated from a variety of unialgal cultures main-
tained in the laboratory (DiTullio & Geesey 2002).

Phytoplankton cell abundance was determined on
preserved samples by both microscopy and flow
cytometry. Samples of 50 or 100 ml for laboratory cell
counts using microscopy were preserved by a final
concentration of 1% glutaraldehyde and stored at 4°C
in the dark until analysis. Phytoplankton taxonomy
and cell abundance of larger microphytoplankton spe-
cies were determined microscopically with a 2 mm
Spears-Levy counting chamber. Before microscopic
analysis, the samples were concentrated as described
in Hare et al. (2005, 2007).

Virus and bacterial abundance. Virus and bacterial
abundance were determined by first preserving the
unfiltered water in 2% final glutaraldehyde and then
preparing the slides at sea (Wen et al. 2004). For virus
enumeration, 850 µl of sample collected on 0.02 µm
nominal pore size 25 mm Anodisc filters (Whatman)
was stained with SYBR Green (Noble & Fuhrman
1998). For bacteria enumeration, cells stained with
Acridine Orange were collected on 0.2 µm nominal
pore size 25 mm black polycarbonate filters (Osmon-
ics) (Hobbie et al. 1977). All slides were stored at –20°C
until virus-like particles could be enumerated by epi-

flourescence microscopy (Leica DMRXA with a ‘wide
blue’ filter set [λEx = 450 to 490 nm and λEm = 510 nm]).

Dissolved and particulate matter. Dissolved nutrient
samples were taken by syringe directly from the incu-
bation bottles. Samples were immediately 0.2 µm fil-
tered and stored at –20°C. Samples were analyzed in
the laboratory using a Flo-Solution IV analyzer (O/I
Analytical). Total particulate carbon (TPC) was mea-
sured by filtering 100 to 200 ml samples onto pre-com-
busted (450°C, 2 h) 25 mm diameter Whatman GF/F
glass fiber filters, which were then dried at 55°C. For
POC analysis, the TPC filters were fumed for 3 h to
remove all the inorganic carbon. PON and POC were
then measured by an Elemental 270 Combustion
System (Costech Analytical Technologies).

BSi samples (100 to 200 ml) were filtered onto 0.6 µm,
47 mm polycarbonate filters, dried at 60°C at sea, and
then stored at room temperature until analysis. The
samples were analyzed in the laboratory following the
method of Brzezinski & Nelson (1995). The concentra-
tion of transparent exopolymer particles (TEP) was de-
termined as described in Passow & Alldredge (1995).

Photosynthesis–irradiance curves. Photosynthesis–
irradiance response (P-E) curves were obtained by
measuring primary productivity as a function of light
intensity by the 14C uptake method on a radial photo-
synthetron similar to the design described by Babin et
al. (1994). Approximately 750 ml of sample was inocu-
lated with 2 mCi of Na2

14CO3 (Nordion) in a 2 l acid-
cleaned polycarbonate flask. Following gentle homog-
enization, 50 ml aliquots were then automatically
dispensed into 36 acid-cleaned 60 ml polycarbonate
culture flasks. The flasks were then incubated in tripli-
cate on the photosynthetron at 12 different irradiances
at the appropriate temperature (12 or 16°C) for 2 h. The
irradiance source was an Osram metal halide bulb.
Irradiance was measured before and after incubation
using a Biospherical Instruments QSL-100 quantum
meter. Time zero 14C uptake rates were measured and
subtracted from all experimental samples. After homo-
geneously mixing the 2 l flask, triplicate samples
(100 µl) for total 14C activity (TA) were taken and added
to a 7 ml scintillation vial containing 100 µl of a
phenethylamine:MeOH (1:1) solution. Then, 4 ml of
scintillation fluid (Ecolume) was added to the vials
before determining the total radioactivity. After the 2 h
incubation, samples were immediately filtered and
degassed overnight with 10% HCl, and then counted
on a Beckman 6500 LSC corrected for quench using
the external standards ratio. Photosynthetic rates were
calculated from TA, final radioactivity, and total DIC
concentrations. The curves were fitted using the 3-
parameter model of Platt & Gallegos (1980).

POC and PIC production. POC and PIC production
rates were estimated with the micro-diffusion tech-
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nique according to Paasche & Brubak (1994), with
some modifications. Briefly, PIC was separated from
the organic carbon by dissolving the calcite in H3PO4

and trapping the liberated 14CO2 in a filter wetted with
viscous organic base in a closed scintillation vial. The
2 fractions were radio-assayed separately. Samples
(75 ml) were incubated with 10 µCi NaH14CO3 added
for 24 h under the appropriate experimental conditions
for each treatment inside the Ecostat incubators. Incu-
bations were started after the daily sampling at noon
(1300 h). After incubation, the samples were filtered
onto 25 mm diameter Whatman GF/F glass fiber filters.
The filters were placed into 20 ml scintillation vials
with a plastic rim on the inside of the caps, and then
13 mm Gelman AE GF glass fiber filters (Pall Corpora-
tion) were wetted with 200 µl of phenethylamine and
attached on the caps. One milliliter of 50% phosphoric
acid was added to each vial, which was immediately
air-tightened with the cap containing the basic filter.
After incubation overnight on a shaker table, the 2
fractions were radio-assayed separately.

Statistics. Significance tests were conducted with
ANOVA F, as described in Rose et al. (2009). Before
carrying out the tests, outliers were removed using the
Hampel identifier, as modified by Rousseeuw & van
Zomeren (1990). Results for all analyses are presented
as the mean and standard deviation of 6 replicate
samples for each treatment.

RESULTS

The gentle bubbling protocol maintained the sea-
water carbonate buffer system in a relatively stable
condition in the incubation bottles in each treatment
during the course of the experiment. Total DIC was
~2100 and ~2250 µmol kg–1 in the low pCO2 and high
pCO2 treatments, respectively, in the 12°C tempera-
ture treatment bottles. DIC ranged from 2000 (low
pCO2) to 2180 µmol kg–1 (high pCO2) in the 16°C bot-
tles. The original pCO2 of the collected seawater was
395 ± 3 ppm, as measured by MIMS. After the bub-
bling started, pCO2 values measured in the 2 low pCO2

treatments were 390 ± 8 ppm on T7 and T13. In the 2
high pCO2 treatments, however, the levels were 688 ±
2 ppm, somewhat lower than the projected 750 ppm,
likely due to biological CO2 uptake in those treat-
ments.

Phytoplankton biomass estimated as chl a responded
to elevated temperature and pCO2 (Fig. 1A). Total chl a
concentration increased in all treatments and doubled
in the greenhouse treatment over the first 3 d of the
experiment, during the batch incubation mode. As
dilution began after T3, chl a concentrations started to
decline and returned to near-initial levels by T8.

Thereafter, chl a levels were relatively stable until the
final day (T14), with an average concentration close to
the initial value, indicating that the net growth rate
(i.e. including grazing) of the total phytoplankton
community was in balance with the dilution rate. Dur-
ing the final 3 d, chl a biomass was highest in the
greenhouse treatment relative to the other treatments
(p < 0.05; Fig. 1A).

During the incubation period, size-fractionated chl a
concentrations (Fig. 1B,C) and cell densities estimated
by flow cytometry (Rose et al. 2009) suggested that
nano- and microphytoplankton came to comprise the
majority of the whole phytoplankton community bio-
mass in all of the treatments. Size-fractionated chl a
biomass associated with picophytoplankton declined
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during the course of the experiment to <0.2 µg l–1, and
there were no significant differences (p > 0.05) among
treatments (Fig. 1C). The changes in micro- plus nano-
phytoplankton chl a (Fig. 1B) were similar to changes
in total chl a (Fig. 1A). This large-size-fraction chl a
showed an initial increase during batch mode (espe-
cially in the greenhouse treatments), followed by a
decline to near-initial values in all treatments, with the
highest final levels in the greenhouse bottles (p < 0.05).
Detailed descriptions of changes in chl a biomass,
algal community composition measured with flow-
cytometry, and the microzooplankton community are
presented in Rose et al. (2009).

Microscopy cell counts of microphytoplankton on the
final day (T14) further demonstrated different effects of
increased temperature and pCO2 on different phyto-
plankton groups (Fig. 2). The 3 main phytoplankton
groups observed during the incubation were diatoms,
coccolithophores, and chrysophytes. On the initial

day (T0), haptophytes (mainly coccolithophores) were
dominant in the phytoplankton community based on
the phytoplankton pigment analyses (53% of the total
algal chl a; Lee et al. 2009). In the microphytoplankton
group, total diatom abundance on the final sampling
day (T14) increased dramatically in the high pCO2

treatment relative to that in the 3 other treatments (>3-
fold; Fig. 2A). All 4 treatments were dominated by the
same 2 pennate diatom species on the final sampling
day, Pseudo-nitzschia sp. and Cylindrotheca sp.
(Fig. 3). The ratios of Pseudo-nitzschia sp. to Cylin-
drotheca sp. cell abundance were 0.37 ± 0.28 (ambient),
1.22 ± 0.95 (high pCO2), 0.30 ± 0.21 (high temperature),
and 8.94 ± 2.47 (greenhouse) (Fig. 3). These values sug-
gest that the relative abundance of the slightly larger
Pseudo-nitzschia sp. was much higher at higher pCO2.
Thus, the larger species was more dominant after CO2

enrichment, especially when combined with increased
temperature in the greenhouse treatment.

On the final day, coccolithophore abundance in the
greenhouse treatment was significantly higher than
that in the 3 other treatments and 5-fold higher than
that in the ambient treatment (p < 0.05, ANOVA;
Fig. 2B), which was also supported by the flow-
cytometry results (identified based on side scatter, for-
ward scatter, and chlorophyll fluorescence; data not
shown). The cell abundance of chrysophytes was very
low on T0 and increased in all 4 of the treatments dur-
ing the time course of the incubation. Chrysophyte cell
density on the final day was significantly higher (p <
0.05) at elevated temperature and lower (p < 0.05,
ANOVA) at elevated pCO2 in each temperature treat-
ment (Fig. 2C). This effect of pCO2 was not observed
for diatoms or coccolithophores (Fig. 2A,B).

On the final day, averaged 19-hexanoyloxyfucoxan-
thin (19-hex) concentration (indicative of haptophytes,
in this case coccolithophores) was highest in the green-
house treatment (Fig. 4; Lee et al. 2009). The final day
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19-hex concentration was about 3-fold higher in the
greenhouse than in the ambient treatment. However,
due to both sampling and experimental variability, this
increase was not statistically significant. The results
from bacterial and viral counts suggested low abun-
dances of bacteria and viruses during the course of the
experiment, with no apparent treatment-related trends
(data not shown).

Photosynthetic carbon fixation also responded to the
experimental treatments (Fig. 5). P-E curves on the last
day of the incubation demonstrated that maximum
chl a-normalized photosynthetic rates (P B

max) increased
significantly from an average value of 8.2 to 12.8 g C
(g chl a)–1 h–1 in the 2 higher temperature treatments
compared to the other 2 ambient temperature treat-
ments (Fig. 5). Increased pCO2 alone decreased P B

max

slightly only at ambient temperature. The initial slope
of the P-E curves (α, with values of 0.057, 0.049, 0.077,
and 0.103 g C h–1(g chl a)–1(µE m–2 s–1)–1 for ambient,
high pCO2, high temperature, and greenhouse treat-
ments, respectively) was also increased significantly in
the high temperature and greenhouse treatments (p <
0.05) with respect to ambient conditions.

Dissolved nutrients in the incubation bottles reached
stable levels without strong treatment-related trends
(data not shown). By the middle of the experiment,
nitrate had stabilized at 2 to 3 µM, phosphate at 0.1 to
0.2 µM, and silicate at 0.2 to 0.5 µM in all treatments;
these steady-state concentrations are quite similar to
those we measured in the water column at numerous
stations during the cruise (Leblanc et al. 2009). As
intended in the experimental design, silicate was
depleted the most, although none of the nutrients were
ever fully depleted in any treatment.

The BSi:POC molar ratio on the final day in all 4
treatments decreased compared to the T0 value. On
the final day, the ratio was significantly lower (p < 0.05)

in the high temperature and greenhouse treatments
than it was in the 2 lower temperature treatments
(Fig. 6). The molar ratio dropped by 30% (from ~0.006
to 0.004) after the temperature was increased by 4°C.
However, within the same temperature conditions,
there was no significant difference (p > 0.05) between
either the ambient and high pCO2 treatments or the
high temperature and greenhouse treatments (Fig. 6).
A similar trend was observed with BSi:PON molar
ratios, and POC, PON, and BSi concentrations in all
treatments were relatively stable for the second half of
the experiment (data not shown).

On the final day, chl a-normalized production rates
of POC and PIC varied as a function of temperature
and pCO2 (Fig. 7), and both were increased com-
pared to T0. The POC production rate was signifi-
cantly higher in the 2 high temperature treatments —
high temperature and greenhouse — (p < 0.05;
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Fig. 7A). The highest value of POC production was
observed in the greenhouse treatment. However,
despite the cell abundance of coccolithophores being
highest in the greenhouse treatment (Fig. 2A), the
PIC production rate was greatly reduced in these
samples (Fig. 7B; p < 0.05). Increased pCO2 alone
(the high pCO2 treatment) did not influence PIC pro-
ductivity compared with the ambient treatment. Due
to the decreased PIC productivity and increased POC
productivity in the greenhouse treatment, the ratio of
PIC:POC productivity on the final sampling day was
lowest in the greenhouse treatment (Fig. 7C; p <
0.05). There was no significant difference between
the other treatments (Fig. 7C; p > 0.05). For C:N:P
ratios, TEP concentrations, and TEP:POC ratios, there
were no significant differences among the 4 treat-
ments (data not shown).

DISCUSSION

The North Atlantic spring bloom phytoplankton
community responded significantly to the experimen-
tal treatments in this shipboard continuous incubation
experiment. Treatment-specific community shifts were
induced by both increased temperature and pCO2 con-
ditions, with the highest diatom abundance in the high
CO2 treatment, the highest coccolithophore abun-
dance in the greenhouse treatment, and the highest
chrysophyte abundance at high temperature. Both
photosynthetic parameters and POC productivity nor-
malized to chl a were greatly promoted by elevated
temperature. In contrast, net calcification (PIC produc-
tion) decreased significantly in the greenhouse treat-
ment. Consequently, the potential marine rain ratio (as
estimated by the ratio of PIC:POC production) was sig-
nificantly lower when temperature and pCO2 were
elevated simultaneously, suggesting the possibility of a
reduced export ratio of calcium carbonate relative to
organic carbon in the future marine environment.

These CO2 and temperature effects during our
experiment were superimposed on a phytoplankton
community that was first structured by nutrient avail-
ability in all treatments. We intentionally set up our
experiment to be Si-limited, thus closely reproducing
the biogeochemical conditions that prevailed through-
out the region during our cruise (Leblanc et al. 2009).
This experimental design undoubtedly favored coccol-
ithophores over diatoms, especially since half-satura-
tion constants for diatom growth on silicate can be rel-
atively high (Martin-Jezequel et al. 2000). Because the
concentrations and ratios of nutrients supplied to all 4
treatments were identical though, differential nutrient
supply cannot be the reason for the observed CO2/tem-
perature treatment effects. These nutrient concentra-
tions and ratios were typical of those we observed
throughout the area at the time of our study (Leblanc et
al. 2009); thus, nutrient influences on community struc-
ture in our experiments should have been similar to
those operating on the in situ community of the late
North Atlantic bloom.

During the last few days of this incubation experi-
ment, parameters such as chl a biomass, POC, and BSi
were nearly constant in most treatments, indicating
that community net growth was roughly balanced by
the losses through the outflow. Although these bulk
parameters reached something approximating steady
state, community composition may or may not have
reached a real equilibrium during the course of our
2 wk experiment, as this can often take longer to stabi-
lize than bulk chl a (Tilman 1977). Nevertheless, the
major advantage of the Ecostat system over traditional
‘growout’ experiments is that the steady low-level sup-
ply of nutrients allows much longer time periods for the
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community to acclimate to the experimental conditions
(Hare et al. 2005, 2007). This shipboard ‘greenhouse
ocean’ simulation was still necessarily a relatively
short-term study compared to expected decadal-scale
changes in global pCO2 and temperature. Therefore,
this experiment cannot replicate any possible long-
term adaptation and evolution of marine phytoplank-
ton groups (Hutchins et al. 2003, Hare et al. 2007). As
in all bottle incubations, grazing by large zooplankton
and particle sinking were excluded, which are also
important environmental factors. Changes in these
top-down control and export loss factors will likely also
play salient roles in structuring future phytoplankton
communities.

Despite these qualifications, this type of shipboard
incubation experiment is uniquely suited to provide us
with a detailed perspective on how the current domi-
nant phytoplankton groups in the North Atlantic
spring bloom may respond to bottom-up control by
projected future pCO2 and temperature changes.
Although too short to incorporate long-term biological
adaptation processes, these experiments nevertheless
offer valuable insights into which groups within the
current phytoplankton community are already poised
to benefit (or suffer) under expected future ocean con-
ditions. In this way, manipulative experiments offer an
additional tool to complement, enhance, and extend
the knowledge of ocean global change effects that is
obtained from laboratory studies, time series stations,
long-term observations, and quantitative modeling
efforts (Hare et al. 2007).

Our experimental results indicated that a 4°C tem-
perature elevation induced higher chl a-normalized
carbon fixation rates by the North Atlantic phytoplank-
ton community. POC production normalized to chl a on
the final sampling day was 2-fold higher at the higher
temperature than in the lower temperature treatments.
Maximum photosynthetic rates normalized to chl a and
the slope of the light-limited portion of the P-E curve
also displayed similar trends. At the same time, the
final chl a biomass was highest in the greenhouse
treatment. The dark reactions of photosynthesis are
enzymatically mediated and are thus known to be
especially sensitive to temperature (Geider & Osborne
1992).

Previous studies have shown similar results, in that
modestly increased temperature greatly promoted
phytoplankton photosynthetic parameters in labora-
tory cultures of marine cyanobacteria (Hutchins et al.
2007, Fu et al. 2007) and the coccolithophorid Emilia-
nia huxleyi (Feng et al. 2008). Growth rates of phyto-
plankton in general have long been known to scale
closely with temperature (Eppley 1972, Banse 1991).
Recent shipboard continuous incubation experiments
similar to ours that used Bering Sea natural phyto-

plankton communities also found that chl a-normal-
ized maximum carbon fixation rates could potentially
double with expected surface ocean warming trends
over the next 100 yr (Hare et al. 2007). This suggests
possible accelerated carbon sequestration by marine
phytoplankton from the atmospheric CO2 reservoir.
Such trends could offer a potential negative feedback
on atmospheric CO2 and greenhouse warming, al-
though this also depends on the ability of the commu-
nity to export this additional fixed carbon. This also
assumes that photosynthesis is not limited by other fac-
tors such as nutrients or light, which may also change
along with temperature if surface ocean stratification
intensifies in the future. In contrast to higher tempera-
ture, increased pCO2 alone had relatively little effect
on community carbon fixation in our study, which is
similar to the results from previous experimental stud-
ies in the tropical North Pacific (Tortell et al. 2002) and
the Bering Sea (Hare et al. 2007).

These increased carbon fixation rates were also
accompanied by large phytoplankton community
structure changes. By far the most striking shift was a
greatly increased abundance of coccolithophores in
the combined high temperature and pCO2 environ-
ment (greenhouse treatment). The current seawater
CO2 concentration is below the saturation level for
photosynthesis by marine coccolithophores (Riebesell
et al. 2000, Rost et al. 2003). Our results reflected
trends that were similar to those seen in these afore-
mentioned studies, indicating that coccolithophores
will benefit from rising atmospheric pCO2.

The trend towards coccolithophorid dominance was
dramatically enhanced when temperature and pCO2

were increased simultaneously in the greenhouse
treatment. The coupled influence of increased temper-
ature and pCO2 on coccolithophorid growth and phys-
iology was also found in laboratory culture experi-
ments with Emiliania huxleyi, in which photosynthetic
carbon fixation was greatly promoted when both tem-
perature and pCO2 were increased together (Feng et
al. 2008). However, the physiological mechanisms
driving these results are still unknown.

In contrast, some previous work has suggested that
the photosynthetic carbon fixation rate of marine
diatoms is close to saturation at the present day CO2

level (Burkhardt et al. 1999, 2001, Rost et al. 2003).
However, overall diatom abundance also increased
after CO2 enrichment in our experiments, especially in
the high pCO2 treatment at ambient temperature.
Despite this trend with increased CO2 alone, large
dominance shifts within the diatom community did
not occur in this treatment, but in the greenhouse
treatment instead, where the combination of higher
temperature and pCO2 together strongly favored
the genus Pseudo-nitzschia over Cylindrotheca. CO2-
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mediated shifts from smaller pennate to larger centric
diatoms have been documented in manipulative
experiments in the Ross Sea, Antarctica, where they
have been suggested to potentially affect carbon
export (Tortell et al. 2008, Feng et al. unpubl. data).
The species composition shifts between the 2 pennates
in our greenhouse treatment could be less likely to
lead to significant carbon export differences since
Pseudo-nitzschia sp. is only slightly larger than Cylin-
drotheca sp., although sediment trap studies indicate
that Pseudo-nitzschia sp. in particular can sometimes
be efficiently exported (Dortch et al. 1997). These dom-
inance shifts could also be ecologically significant,
since some Pseudo-nitzschia species produce the toxin
domoic acid and form harmful blooms.

Our results also suggested that under our experimen-
tal conditions chrysophytes have a lower CO2 require-
ment compared to coccolithophores and diatoms, since
they showed increased abundance at lower pCO2. In
addition to possible direct effects of pCO2 and tempera-
ture, the phytoplankton community structure changes
we observed in this experiment are also undoubtedly a
function of competition among the different groups
under the 4 different experimental regimes.

This change in algal community structure was also
associated with the large shifts in microzooplankton
species composition and abundance over the course of
the experiment, as well as significant differences in
grazing pressure by microzooplankton. As described
in a companion paper (Rose et al. 2009), large oligotri-
chous ciliates dominated mainly at high temperature,
and small ciliates, at low temperature. In general,
throughout most of the experiment, there was an
active grazer community capable of consuming much
of the daily primary production in all 4 treatments.
However, towards the end of the experiment, differ-
ences in top-down control by the microzooplankton
community may have acted as a positive feedback for
the growth of potentially unpalatable coccolithophore
species in the greenhouse treatment. Overall, the
changes in microzooplankton community structure
were likely induced by the changes in phytoplankton
community structure rather than by direct effects of
CO2 or temperature on microzooplankton physiology
(Rose et al. 2009). Such shifts in multiple trophic levels
and their mutual interactions could thus be a feature of
future changes in the North Atlantic spring bloom
assemblage. It seems clear that warming and rising
CO2 may affect both ‘bottom-up’ and ‘top-down’ con-
trol mechanisms on the phytoplankton community, and
that the net outcome of our manipulative experiments
reflects a combination of these 2 inter-related factors
(see Rose et al. 2009).

A previous semi-continuous incubation in the tropi-
cal Pacific found that a diatom-dominated community

developed after CO2 enrichment to 750 ppm (Tortell et
al. 2002), but their study did not explore potential tem-
perature interactions. Hare et al. (2007) reported that
originally dominant large diatoms were replaced by
smaller nanophytoplankton species after pCO2 and
temperature were both elevated in Bering Sea experi-
ments. Our results also suggest that nanophytoplank-
ton (coccolithophores) may further increase in abun-
dance relative to other phytoplankton groups in the
later stages of the future North Atlantic spring bloom if
CO2 concentration and SST continue to increase. Coc-
colithophores were already the most abundant group
in the study area during our cruise, but there were still
substantial numbers of diatoms and other algal taxa
present too (Leblanc et al. 2009), as has commonly
been observed in almost all previous investigations of
the bloom (Barlow et al. 1993). Our experiments sug-
gest that changing environmental conditions could
result in coccolithophores becoming even more domi-
nant over these other groups in the future than is the
case today. This suggestion, arising from our short-
term study, will need to be tested by other methods
over the coming decades, as the algal community
adapts to the same types of changes over longer time
scales.

Nutrient and carbon biogeochemistry was influ-
enced by elevated temperature and pCO2 as well.
Concomitant with decreased diatom abundance, the
community BSi:POC ratio was significantly decreased
by increased temperature. The bulk of total BSi export
by the annual bloom probably occurs during the earlier
diatom-dominated phase, but, during the late phase in
the region we sampled, integrated BSi concentrations
were still about 50% of PIC concentrations, so substan-
tial silica export was likely still underway (Leblanc et
al. 2009). Our results suggest lower biogenic silica to
particulate carbon export ratios during this part of the
bloom in the warmer marine environment of the
future.

Although coccolithophore abundance was by far the
highest in the greenhouse treatment, the PIC produc-
tion rate was nevertheless significantly reduced when
pCO2 and temperature were elevated simultaneously.
If our experimental results are indicative of longer
term trends, they suggest that coccolithophores could
be become even more dominant in the late stages of
the future North Atlantic spring bloom, while paradox-
ically calcification could decrease dramatically at the
same time.

Riebesell et al. (2000) and Zondervan et al. (2001,
2002) found that CO2 enrichment alone reduced the
calcification of coccolithophores in laboratory incuba-
tions. Furthermore, an obvious malformation of cocco-
liths was observed at pCO2 of 750 to 880 ppm in 
2 coccolithophore species, Emiliania huxleyi and
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Gephyrocapsa oceanica (Riebesell et al. 2000). In con-
trast, we found no effect of elevated pCO2 alone on cal-
cification of the North Atlantic natural coccolithophore
community. Only when pCO2 was increased in concert
with temperature was a significant reduction in the
PIC:POC ratio observed. In keeping with this interac-
tive effect of pCO2 with other variables, a laboratory
semi-continuous experiment using E. huxleyi also
found significantly decreased cellular PIC content
when pCO2 was elevated to 750 ppm, but only when
irradiance was saturating at the same time (Feng et al.
2008). Despite this striking illustration of the impor-
tance of other interacting variables, in general, our
results are consistent with most literature predicting
decreases in calcification in a high CO2 ocean (Riebe-
sell et al. 2000, Feely et al. 2004, Orr et al. 2005). Our
results, however, contrast strongly with a recent study
that suggested increases in calcification in coccol-
ithophore cultures at high pCO2 (Iglesias-Rodriguez et
al. 2008).

It has been hypothesized that bicarbonate (HCO3
–) is

the main or only carbon source for calcification, in con-
trast to the photosynthetic process, in which CO2 is the
main carbon source (Paasche 1964, Sikes et al. 1980,
Rost & Riebesell 2004). The different responses of cal-
cification and photosynthesis to changes in the marine
carbonate system have been recognized as the main
causes of decreased PIC/POC (the rain ratio) with
increased atmospheric CO2 (Paasche 1964, Riebesell et
al. 2000, Berry et al. 2002). Our on-deck incubation
was conducted under conditions of complete or near
light saturation, as determined by the light saturation
value (Ek) from our P/E experiments. Nevertheless,
decreased calcification was only observed in the
greenhouse treatment when both pCO2 and tempera-
ture were elevated simultaneously.

In addition to decreased calcification, we also
observed large decreases in diatom abundance and
the BSi:POC ratio under greenhouse conditions. If
these experimental trends are predictive of future
responses of the in situ community, they suggest signif-
icant future reductions in biomineral phases in general
during the later part of the bloom. Since organic car-
bon export is thought to be heavily dependent on ‘bal-
lasting’ by denser calcite and/or silica (Armstrong et al.
2001, Ziveri et al. 2007), such reductions in algal bio-
mineralization could tend to reduce carbon export by
the biological pump during the late North Atlantic
spring bloom.

We also recorded the highest DMSPp concentrations
in the greenhouse treatment, accompanying the high-
est coccolithophore abundance (Lee et al. 2009). Many
laboratory and field studies have found that marine
haptophytes (including coccolithophores) and dinofla-
gellates generally have a higher cellular DMSP con-

tent than do other groups (Keller et al. 1989, Malin &
Steinke 2004). Since DMSP is the major precursor of
dimethyl sulfide (DMS), coccolithophore (especially
Emiliania huxleyi) blooms are well known as high
DMS production areas, sometimes with a large contri-
bution from nanoflagellates or dinoflagellates (Steinke
et al. 2002, Archer et al. 2003). Increases in DMS pro-
duction under greenhouse conditions such as those we
observed have the potential to increase cloud albedo,
and thus be a negative feedback on global warming
(Charlson et al. 1987). These results are consistent with
the notion that this feedback may accelerate in the
future, due to enhanced biomass-specific DMSP pro-
duction resulting from changes in the North Atlantic
spring bloom phytoplankton community in response to
increased pCO2 and temperature. A complete discus-
sion of the implications of these changes in the DMSP
cycle for climate feedback mechanisms is presented in
Lee et al. (2009).

These experimental results provide new evidence
indicating that further atmospheric CO2 enrichment
coupling with sea surface warming may have additive
effects on the phytoplankton community of the North
Atlantic spring bloom. We can speculate that under
future global change scenarios, marine coccolitho-
phores will be favored more during the late stages of
the North Atlantic bloom than will other groups such
as diatoms. Biogeochemical consequences may in-
clude an increased organic carbon fixation rate, signif-
icantly weakened calcification and silicification, and
increased DMS production. These hypotheses derived
from our short-term experiments will, of course, re-
quire further testing using independent methods such
as long-term observations and time series. Our experi-
mental simulations of year 2100 pCO2 and temperature
demonstrate that both factors exert a proximate control
on present day plankton assemblages, and therefore
suggest the possibility that future global changes could
greatly influence algal productivity, community struc-
ture, and carbon, nutrient, and sulfur biogeochemistry
in the North Atlantic spring bloom.
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