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The matched filter is a widely used detector in hyperspectral detection applications because of its
simplicity and its efficiency in practical situations. We propose to estimate its performance with respect
to the number of spectral bands. These spectral bands are selected thanks to a genetic algorithm in order
to optimize the contrast between the target and the background in the detection plane. Our band selec-
tion method can be used to optimize not only the position but also the linewidth of the spectral bands.
The optimized contrast always increases with the number of selected bands. However, in practical situa-
tions, the target spectral signature has to be estimated from the image. We show that in the presence of
estimation error, the maximum number of bands may not always be the best choice in terms of detection
performance. © 2011 Optical Society of America
OCIS codes: 100.2000, 110.4234.

1. Introduction

Spectral imaging consists in forming several images
of the same scene with different spectral content.
Hyperspectral imagers can combine hundreds of
spectral bands with millions of spectral pixels. They
have the potential to detect small (even subpixel)
spectral targets that differ only very slightly from the
background [1]. However, hyperspectral detection
applications suffer from two major drawbacks. First,
the computation time of detection algorithms is an
important issue, especially when dealing with high
spectral resolution. Second, imperfect information
about the target spectral signature may significantly
alter the detection performance. In this paper, we
provide a band selection method that reduces the

spectral dimension of the acquired hypercube in or-
der to optimize the detection performance. We also
discuss the effect of estimation error in the target
signature on the detection performance. We show
that in the presence of estimation error, the optimal
detection performance may be obtained on a reduced
number of well-chosen spectral bands.

In order to quantify the detection performance,
we have to select a detection algorithm. During the
past two decades, a large number of hyperspectral
detection algorithms have been developed [2–5]. New
sophisticated algorithms are derived every year from
complex models of spectral variability. According
to Manolakis et al. [6], the small performance gains
attained by those algorithms may be irrelevant in
practical applications, whereas the use of simple de-
tectors, such as the matched filter, may provide ac-
ceptable performance in real-world hyperspectral
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imaging problems. In this paper, we have selected
the matched filter to detect targets in real hyperspec-
tral images because of its simplicity and its efficiency
in practical situations. The detection performance
of the matched filter is evaluated in terms of the con-
trast between the target and the background in the
detection plane.

However, even the matched filter can be computa-
tionally intensive, especially when dealing with a
high spectral resolution. To perform a real-time de-
tection, it is then interesting to reduce the spectral
dimension of the image before running the detector.
This method is commonly referred as band selection
[7–9]. Band selection is an optimization problem that
aims at finding the best set of K spectral bands
among M available spectral bands with respect to
a defined criterion. In this paper, we use a genetic
algorithm to optimize the position and the linewidth
of the spectral bands yielding the best detection
performance [10].

Band selection is not only motivated by issues
such as computation time. High dimensional spaces
(high number of bands) are mostly empty, and they
can then be projected to a lower dimensional sub-
space without losing significant information in terms
of discriminability between the target and the back-
ground [11]. In many applications, one has inaccu-
rate information about the spectral signature of the
target. The target signature estimation error then
degrades the detection performance. When detector
parameters have to be estimated from a finite num-
ber of training samples, detection performance can
even decrease as the number of bands increases [12].
This is known in a general context as the Hughes
phenomenon [13]. We show that under simple as-
sumptions about the statistical distribution of the
estimation error, the mean performance loss can be
approximated as a simple decreasing function of the
number of bands. Band selection results on real hy-
perspectral images show that the optimal detection
performance may be obtained on a reduced number
of well-chosen spectral bands.

In Section 2 we review the matched filter and de-
fine our criterion of detection performance. Section 3
describes our band selection method and provides re-
sults based on real hyperspectral images. In Section 4
we discuss the effect of estimation error in the target
signature on the detection performance.

2. Matched Filter

A. Derivation of the Matched Filter by Optimization of the

Neyman–Pearson Criterion

The matched filter is a widely used detector in
hyperspectral detection applications because of its
simplicity and its efficiency in practical situations.
This detector can be proven to be optimal in the
Neyman–Pearson sense under certain statistical as-
sumptions about the target and nontarget classes
(γ1 and γ0, respectively). Given an observed spectrum
x ¼ ðx1;…; xKÞ

T , where K is the number of bands, we

want to assign it to one of the two classes γ0 and γ1.
We consider the detection problem specified by the
following hypotheses:

x ∼

�

N ðm0;ΓÞ under γ0 ðtarget absentÞ
N ðm1;ΓÞ under γ1 ðtarget presentÞ

; ð1Þ

where the target and background (nontarget) classes
follow multivariate normal distribution with differ-
ent mean vectorsm1 andm0 and identical covariance
matrix Γ. The computation of the likelihood ratio
leads to the detector

y ¼ Dmf ðxÞ ¼ ðm1 �m0Þ
T
Γ
�1ðx�m0Þ; ð2Þ

where the superscript T refers to the transpose op-
eration. This detector, which is called the matched
filter, is optimal in the Neyman–Pearson sense, i.e.,
it maximizes the probability of detection for a given
probability of false alarm [14]. Under the statistical
assumptions of Eq. (1), the output of the matched
filter is normally distributed because it is a linear
combination of normal random variables. One can
show that

y ¼ Dmf ðxÞ ∼

�

N ð0;Δ2Þ under γ0
N ðΔ2;Δ2Þ under γ1

; ð3Þ

where Δ2 ¼ ðm1 −m0Þ
T
Γ
−1ðm1 −m0Þ is the square

Mahalanobis distance between the target and the
background class γ0. For a given output Dmf ðxÞ of
the matched filter, the decision is made by comparing
y to a certain threshold η. The spectrum x will be as-
signed to the target class γ1 if Dmf ðxÞ > η. The prob-
ability of false alarm PFA and the probability of
detection PD can then be obtained by the relations

(

PFA ¼
R

þ∞

η pðyjγ0Þdy;
PD ¼

R

þ∞

η pðyjγ1Þdy;
ð4Þ

where y ¼ Dmf ðxÞ and pðyjγiÞ is the probability
density function of y under γi. The trade-off between
the probability of detection and the probability of
false alarm is fixed by the threshold η. As the con-
ditional probability densities pðyjγ0Þ and pðyjγ1Þ
depends only on the parameter Δ2 [Eq. (3)], the de-
tection performance is entirely determined by the
square Mahalanobis distance Δ2 between the target
and the background class.

B. Derivation of the Matched Filter by Contrast

Optimization

In practical situations, the normal assumptions
[Eq. (1)] about the statistical distributions of the
target and background classes may not be verified.
When the distributions of the target and the back-
ground classes deviate from the model of Eq. (1),
the optimum detector in the Neyman–Pearson sense
is not linear. However, we can show that the matched
filter remains the optimum linear detector according
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to a criterion of contrast between the target and the
background.

We do not assume here the normality of the target
and background statistical distributions. We only as-
sume that themean of the target, as well as themean
of the background and its covariance matrix, are de-
fined as follows:

8

<

:

m1 ¼ Efxjγ1g;
m0 ¼ Efxjγ0g;
Γ ¼ Efðx −m0Þðx −m0Þ

T jγ0g:
ð5Þ

We consider linear detectors of the form

yw ¼ DwðxÞ ¼ wTðx −m0Þ; ð6Þ

where w is a K dimension vector. As the spectrum x

is not normally distributed, the output yw of the de-
tector is not normally distributed. However, we can
easily obtain the following statistics:

8

>

>

>

<

>

>

>

:

Efywjγ1g ¼ wTðm1 −m0Þ;
Efywjγ0g ¼ 0;
varfywjγ0g ¼ EfwTðx −m0Þðx −m0Þ

Twjγ0g;
¼ wTΓw:

ð7Þ

We want to find the vector w that maximizes the con-
trast Cw of yw between the target and the background
defined as the squared distance between the mean of
the target and the mean of the background in units of
background variance:

Cw ¼
½Efywjγ1g − Efywjγ0g�2

varfywjγ0g
¼

½wTðm1 −m0Þ�
2

wT
Γw

: ð8Þ

As the contrast Cw does only depend on the direction
of w, the optimization problem can be written

wmf ¼ arg max
w

wTΔm subject towT
Γw ¼ 1: ð9Þ

This optimization problem can be solved using a
Lagrangian formulation [15]. One obtains that wmf ¼
Γ
−1ðm1 −m0Þ is a solution of the optimization pro-

blem. The detector becomes

y ¼ Dwmf
ðxÞ ¼ ðm1 −m0Þ

TΓ−1ðx −m0Þ: ð10Þ

The matched filter is thus the optimal linear detector
with respect to the contrast criterion C. The contrast
C of the output of the matched filter is equal to the
squared Mahalanobis distance between the target
and the background:

C ¼ Cwmf

¼
½ðm1 −m0Þ

T
Γ
−1ðm1 −m0Þ�

2

ðm1 −m0Þ
T
Γ
−1
ΓΓ

−1ðm1 �m0Þ

¼ ðm1 �m0Þ
T
Γ
�1ðm1 �m0Þ ¼ Δ2: ð11Þ

Without the assumptions of Eq. (1), the criterion of
contrast C (or equivalently the squared Mahalanobis
distance Δ2) is not sufficient to characterize entirely
the detection performance. However, it can be viewed
as a simple measure of the detection performance
that takes into account the first-order statistics of
the target class and the second-order statistics of the
background class.

C. Example of Target Detection Using the Matched Filter

We acquired multispectral images of a scene using a
snapshot spectral imager. Each multispectral image
consists of 20 bands in the VIS-NIR domain. Figure 1
shows a red-green-blue (RGB) representation of the
considered multispectral image. We drew a dashed
3 × 12 pixel rectangle at the spatial location of the
target, as shown in Fig. 2. This rectangle defines
the region of interest ROI1 of the target. Concerning
the background, we define its region of interest ROI0
as the whole image (including the target). We define
the mean spectral signatures m0 and m1 of the back-
ground and the target respectively, and the covar-
iance matrix Γ of the background as

8

<

:

m1 ¼ hxi1;
m0 ¼ hxi0;
Γ ¼ hðx −m0Þðx −m0Þ

Ti0;
ð12Þ

Fig. 1. (Color online) RGB representation of the multispectral
image of the observed scene.

Fig. 2. (Color online) Definition of the region of interest of the
target.
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where h·ij represents the mean on the region of
interest ROIj. Figure 3 represents the detection
plane obtained when applying the matched filter y ¼
Dmf ðxÞ ¼ ðm1 −m0Þ

T
Γ
−1ðx −m0Þ on the multispectral

image. The target appears with a contrast C ¼
ðhyi1 − hyi0Þ

2=VarðyÞ0 ¼ 33:35.

3. Band Selection

A. Description of the Band Selection Method

The matched filter involves the computation of the
operation y ¼ wT

mf ðx −m0Þ for each spectrum of inter-
est x, which requires K multiplications and 2ðK − 1Þ
additions, where K is the number of spectral bands.
Hyperspectral images typically consist of hundreds
of bands. This can be an issue for processing images
when dealing with real-time applications. One can
then be interested in applying the matched filter on
a small set of well-chosen bands. Those bands have to
be chosen with respect to some criterion. This criter-
ion is defined relatively to the application. Criteria
have been developed for data representation [7], clas-
sification [9,16,17], or target detection applications
[8,15,18]. We propose to select the bands to maximize
the contrast C between the target and the back-
ground on the output of the matched filter.

We represent the process of filtering a spectrum by
a set of K spectral filters by the operation x0 ¼ RTx

[8], where x is the initial spectrum (M element vec-
tor), x0 is the final spectrum (K element vector), and
R ¼ ðr1…rKÞ is the M × K filtering matrix as shown
in Fig. 4. Its ith column ri is an M element vector
representing the spectral profile of the ith filter of
the set. One can then use the K-band spectral image
to detect a spectral target with the matched filter.
We have m0

1
¼ RTm1, m0

0
¼ RTm0, and Γ0 ¼ RTΓR.

The contrast C ¼ CðRÞ between the target and the
background in the detection plane obtained by the
matched filter then becomes

CðRÞ ¼ ðm1 −m0Þ
TRðRT

ΓRÞ−1RTðm1 −m0Þ: ð13Þ

We restrain the band selection to a setR of p spectral
filters. We denote as RK , the set of filtering matrices
composed of K filters of R. The band selection pro-
blem then consists in selecting the best filtering
matrix Rmax among the set RK with respect to the
contrast criterion CðRÞ:

Rmax ¼ arg max
R∈RK

CðRÞ: ð14Þ

The optimization process can be proved to be a NP-
hard problem. It means that one has to test each
element of the set RK to find the optimal solution.
If we restrict the problem to a set of 100 spectral fil-
ters (p ¼ 100), the rigorous optimization of the best
10 filters (K ¼ 10) requires more than 1013 calcula-
tions of the criterion CðRÞ. We then have to find a
mean for estimating an approximate optimum with-
in a restricted time. There are at least two ways of
approaching this problem. The first way consists
in approximating the resolution of the exact prob-
lem by heuristic methods as sequential selection
algorithms. The second way consists in finding an ap-
proximate problem for which we can obtain an exact
solution. This can be done by convex optimization
techniques [15].

Sequential forward selection (SFS) and sequential
backward selection (SBS) are simple methods able to
find suboptimal solutions in a reasonable time [19].
Further refinements, such as sequential forward
floating selection, sequential backward floating se-
lection, and steepest ascent [20], have been proposed
to overcome the limitations of SFS and SBS. Meta-
heuristics, such as branch and bound algorithms,
tabu search [21] or genetic algorithms [22], have
been used for feature selection in pattern recogni-
tion literature. Kudo made a comparative study of
most of the previous algorithms for large-scale fea-
ture selection [23]. We propose to solve our problem
heuristically by means of a genetic algorithm [24].
Genetic algorithms are based on the analogy with

Fig. 3. (Color online) Detection plane obtained with the matched
filter. The contrast C between the target and the background is
33.35.

Fig. 4. (Color online) Filtering process.
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evolutionary theory, which claims that the popula-
tion of a species tends to keep the genes that are the
most adapted with respect to its environment. In our
problem, the species is composed of filtering matrices
R that need to maximize their associated contrast
CðRÞ. Our algorithm aims to evolve a population of
individuals from generation to generation in a ran-
dom process in which the best individuals are
favored to give birth to the next generation. The prin-
ciple of our genetic algorithm is depicted in Fig. 5.
The algorithm is composed of four basics steps:

1. Initialization: an initial population ofN indivi-
duals is randomly chosen among the set Sn of all
possible individuals (filtering matrices). Each indivi-
dual is represented by a chromosome c (bit sequence)
that codes a given filtering matrix R ¼ f ðcÞ. Figure 6
provides the scheme R ¼ f ðcÞ used to code two types
of filters (single-band and bandpass filters).

2. Evaluation: each individual is evaluated by its
corresponding contrast CðRÞ ¼ Cðf ðcÞÞ. Only the best
N individuals are kept; the remaining individuals
are thrown away.

3. Selection: N couples of individuals are
randomly selected such that each individual’s prob-
ability of selection increases with its corresponding
contrast.

4. Reproduction: each selected couple gives birth
to a novel individual. The reproduction process is il-
lustrated in Fig. 7. In the first step, called recombi-
nation, we first select the bits shared by both parents
and then draw randomly the remaining bits among
the bits shared by only one parent. The second step is
amutation process, which consists in randomly chan-
ging a small number of bits (the total number of ones
remains constant) to prevent the algorithm from con-
verging to a local optimum. The N new individuals
are then added to the population. The algorithm
then goes to step 2 unless the maximum number of
generations imax is reached. In the latter case, the
best individual of the population defines our band
selection result.

B. Examples of Band Selection with Real Hyperspectral

Imagery

We apply our band selection method to a 256-
band hyperspectral image acquired using a Specim
ImSpector QE V10E hyperspectral imager. On this
image, we define two regions of interest, ROI0 and
ROI1, corresponding, respectively, to the background
and the target of interest. The contrast C between
the target and the background calculated on the 256-
band hyperspectral image is 150.41. We apply our
algorithm with two different types of filters: single-
band filters and bandpass filters (Fig. 6). Figure 8
represents the four best single bands selected by the
algorithm. Figure 9 represents the four best band-
pass filters selected by the algorithm.

Figure 10 represents the optimized contrast versus
the number of selected bands for the two different
types of filters. The optimized contrast is higher in
the case of bandpass filters because the algorithm
was able to optimize not only the position of the fil-
ters but also their linewidth.

Fig. 6. (Color online) Chromosome and its corresponding filtering
matrixR in the case of (a) ideal single-band filters and (b) bandpass
filters.

Fig. 5. Evolutionary cycle. Fig. 7. (Color online) Reproduction process.

4280 APPLIED OPTICS / Vol. 50, No. 22 / 1 August 2011



C. Performance of the Genetic Algorithm Compared with

Two Other Algorithms

We compare our genetic algorithm with two other
simple algorithms: a Monte Carlo algorithm and a
SFS algorithm. The comparison is done in the case
of single-band filters. The Monte Carlo algorithm se-
lects randomly P sets of K bands and computes the
P contrasts corresponding to each of the P sets. The
set of bands that gives the maximum contrast is cho-
sen as the solution of the optimization problem. As
P tends to infinity, the Monte Carlo algorithm will
converge to the optimal combination of K bands. Un-
fortunately, the convergence appears to be very slow.
Our genetic algorithm can be seen as a Monte Carlo
algorithm in which the memory of previous draws is
used to orient the future draws. As a result, the ge-
netic algorithm converges much faster to the optimal
solution, as shown in Fig. 11.

The SFS algorithm is a simple and fast optimiza-
tion technique. It starts from an empty set and itera-
tively adds to the set the best band among those that
have not yet been chosen. Figure 12 compares the

performance of our genetic algorithm with the SFS
algorithm. Between 4 and 10 selected bands, our al-
gorithm outperforms the SFS algorithm. This illus-
trates the fact that the SFS algorithm may provide
a suboptimal solution.

Table 1 displays the CPU times in seconds spent in
running various band selection algorithms; all com-
putation was done using IDL on a Windows platform
with an Intel Core 2 Duo CPU running at 2:20GHz
and RAM of 3GB. The running times were computed
for a selection of 10 single-band filters. The running
time of the genetic algorithm is approximately pro-
portional to the product imax ×Nelements, where imax
is the number of generations and Nelements is the
number of elements per generation. One can then
tune those parameters to make a trade-off between
running time and optimization performance. For

Fig. 8. (Color online) Profiles of the four best single-band filters.
Each peak is a symbolic representation of the instrumental func-
tion of the Specim ImSpector QE V10E hyperspectral imager.

Fig. 10. (Color online) Contrast between the target and the back-
ground in the detection plane versus the number of selected bands.
The black dotted curve corresponds to the optimized contrast ob-
tained with single-band filters; the red solid curve corresponds to
the optimized contrast obtained with bandpass filters.

Fig. 11. (Color online) Maximum contrast obtained versus the
number P of calculations of the contrast for two different algo-
rithms: genetic algorithm (red solid curve) and Monte Carlo algo-
rithm (black dotted curve). The optimization is done for K ¼ 10

bands.Fig. 9. (Color online) Profiles of the four best bandpass filters.
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similar running times, the SFS algorithm and the ge-
netic algorithm seem to be on par. On the one hand,
the genetic algorithm has the advantage of being
tunable and adaptable to various kinds of filters.
On the other hand, the SFS algorithm provides de-
terministic solutions and also intrinsically provides
a ranking of each selected band.

D. Robustness of Band Selection Against Different

Background Environments

The band selection results presented above have
been obtained for one target against a specific back-
ground (image #1: birch foliage). It is of interest to
discuss the robustness of band selection for the same
target against different background environments.
We acquired two other hyperspectral images of two
different scenes containing the same target on differ-
ent background environments (image #2: cedar foli-
age and image #3: grass). We can then discuss the
robustness of the band selection against these differ-
ent backgrounds. Let us consider those three images
(i ¼ 1; 2; 3). For each i ∈ f1; 2; 3g, we can compute the
statistics mi;1, mi;0, and Γi. Let us define the normal-
ized contrast �CiðRÞ as

�CiðRÞ ¼
ðmi;1 −mi;0Þ

TRðRT
ΓiRÞ

−1RTðmi;1 −mi;0Þ

ðmi;1 −mi;0Þ
T
Γ
−1

i ðmi;1 −mi;0Þ
:

ð15Þ

For each i ∈ f1; 2; 3g, we can then find the best filter-
ing matrix Ri

max with respect to the contrast �Ci ¼
�CiðRÞ:

Ri
max ¼ arg max

R∈RK

�CiðRÞ: ð16Þ

We can also define the global normalized contrast
�CglobðRÞ as

�CglobðRÞ ¼
1

3

X

3

i¼1

�CiðRÞ: ð17Þ

The optimization of �CglobðRÞ leads to the filtering
matrix R

glob
max :

R
glob
max ¼ arg max

R∈RK

�CglobðRÞ: ð18Þ

Figure 13 represents the optimization of the global
normalized contrast �CglobðR

glob
maxÞ and the mean of

the three independently optimized normalized con-
trast h�CiðR

i
maxÞii∈f1;2;3g versus the number of selected

bandpass filters. The detection performance ob-
tained when the band selection is optimized for a
trade-off between the three backgrounds is obviously
inferior to the performance obtained when the band
selection can be tuned to each background. How-
ever, the loss in performance can be considered as
acceptable.

4. Contrast of the Matched Filter in the Presence of

Target Signature Estimation Error

In Section 2 we used the information we had about
the spatial location of the target to detect it on the
image. Strictly speaking, we enhanced the contrast
of the target, but we did not detect it, as we already

Fig. 12. (Color online) Contrast versus the number of selected
single bands for two optimization algorithms: SFS algorithm
(black dotted curve) and genetic algorithm (red solid curve). The
genetic algorithm runs 100 generations of 100 elements (P ¼
10;000 calculations of the contrast).

Fig. 13. (Color online) Optimization of the global normalized
contrast �CglobðR

glob
maxÞ (black dotted curve) and mean of the three

optimized normalized contrast h�CiðR
i
maxÞii∈f1;2;3g (red solid curve)

versus the number of selected bands.

Table 1. CPU Running Time of the Band Selection Algorithms for a

Selection of 10 Single Bands
a

Algorithm imax Nelements CPU Time (s) Contrast C

SFS — — 6.06 77.48
Genetic 10 10 0.31 55.65
Genetic 20 20 1.26 69.56
Genetic 50 50 8.00 80.86
Genetic 100 100 32.21 87.56

aThe genetic algorithm was tested for different values of two
parameters: imax, the number of generations, and Nelements, the
number of elements per generation. For the genetic algorithm,
CPU times and contrasts have been averaged on 10 runs of the
algorithm.
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knew its location. In real-world applications, the
target spectral signature has to be estimated. This
estimation can be performed through reflectance re-
trieval techniques [25] or from the information about
previously detected targets. One then has an estima-
tion m̂1 of the target mean spectrum m1. We can
define a detector using the matched filter in which
the spectral mean of the target is replaced by its
estimation:

y0 ¼ Damf ðxÞ ¼ ðm̂1 −m0Þ
T
Γ
−1ðx −m0Þ: ð19Þ

This detector is called the adaptive matched filter
(AMF) [4]; it is of interest to compute its correspond-
ing contrast C0. We define the whitened variables
μ̂ ¼ Γ

−1=2ðm̂1 −m0Þ and μ ¼ Γ
−1=2ðm1 −m0Þ. Then, we

can show that

8

<

:

Efy0jγ1g ¼ μ̂
T
μ;

Efy0jγ0g ¼ 0;
varfy0jγ0g ¼ μ̂

T
μ̂:

ð20Þ

We then have

C0 ¼
ðμ̂TμÞ2

μ̂
T
μ̂

; ð21Þ

¼ μ
T
μ

ðμ̂TμÞ2

ðμ̂T μ̂ÞðμTμÞ
; ð22Þ

¼ C
ðμ̂TμÞ2

ðμ̂T μ̂ÞðμTμÞ
; ð23Þ

where C ¼ ðm1 −m0Þ
T
Γ
−1ðm1 −m0Þ ¼ μ

T
μ is the con-

trast obtained in the absence of estimation error.
Using the Cauchy–Schartz inequality, we observe
that C0

≤ C. The contrast loss C0=C is equal to the
squared cosine of the angle between μ̂ and μ.

Let us first consider the worst case of target
signature estimation where we randomly select a
background pixel that defines the estimated target
signature m̂1. In this case, the estimated target sig-
nature m̂1 is a random vector that has the same sta-
tistical distribution as the background. The whitened
variable μ̂ is thus a random vector with zero mean
and identity covariance matrix. Let ðuiÞi∈½1;K� with
u1 ¼ μ=∥μ∥ be an orthonormal basis of RK. The
decomposition of μ in this basis can be written μ ¼
P

K
i¼1

μiui ¼ μ1u1. Similarly, μ̂ ¼
P

K
i¼1

μ̂iui. We then
have

μ̂
T
μ ¼ μ̂1μ1; ð24Þ

μ̂
T
μ̂ ¼

X

K

i¼1

μ̂2i : ð25Þ

Using Eq. (23), we obtain

C0 ¼ C
μ̂2
1

P

K
i¼1

μ̂2i
: ð26Þ

Because the components μ̂j of μ̂ are independent and
identically distributed random variables, we have

E

(

μ̂2
1

P

K
i¼1

μ̂2i

)

¼
1

K

X

K

j¼1

E

(

μ̂2j
P

K
i¼1

μ̂2i

)

¼
1

K
E

(

X

K

j¼1

μ̂2j
P

K
i¼1

μ̂2i

)

¼
1

K
: ð27Þ

One can then obtain the expectation of the contrast
C0:

EfC0g ¼
C

K
: ð28Þ

When one has no information about the spectral sig-
nature of the target, the expectation of the contrast
C0 is equal to the maximum contrast C divided by the
number of bands K.

A. Simple Model for Estimation Error

Let us now consider unbiased estimations m̂1 of the
mean of the target. For instance, we can consider
that m̂1 ¼ m1 þΩ

1=2
ϵ, where Ω is a symmetric posi-

tive semidefinite matrix and ϵ is a random vector
with zero mean and identity covariance matrix. The
estimation error m̂1 −m1 is then a random vector
with zero mean (unbiased estimator) and Ω covar-
iance matrix. We can note that μ̂ ¼ Γ

−1=2ðm̂1 −m0Þ ¼
μþ Γ

−1=2
Ω

1=2
ϵ.

In the simple case where the covariance matrix of
the estimation error is proportional to the covariance
matrix of the background (Ω ¼ α2Γ), the whitened
vector μ̂ simplifies to μ̂ ¼ μþ αϵ and it becomes pos-
sible to obtain a simple approximation for the
expectation EfC0g of the contrast C0.

This situation occurs, for example, when the target
spectral signature m1 is estimated from N indepen-
dent samples ðxiÞi∈½1;N� of the target class:

m̂1 ¼
1

N

X

N

i¼1

xi: ð29Þ

The estimation error m̂1 −m1 is a random variable.
We have under the normal assumptions of Eq. (1):

Efm̂1 −m1g ¼ 0; ð30Þ

Covfm̂1 −m1g ¼
1

N
Γ: ð31Þ

In this case, the covariance matrix of the estimation
error is proportional to the covariance matrix of the
background (α2 ¼ 1=N).
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Let ðuiÞi∈½1;K � with u1 ¼ μ=∥μ∥ be an orthonormal
basis of RK. The decomposition of μ in this basis can
be written μ ¼

P

K
i¼1

μiui ¼ μ1u1. Similarly, ϵ ¼
P

K
i¼1

ϵiui. We then have

μ̂
T
μ ¼ ððμ1 þ αϵ1Þu1 þ

X

K

i¼2

αϵiuiÞ
Tμ1u1

¼ μ2
1
þ αϵ1μ1; ð32Þ

μ̂
T
μ̂ ¼ ∥ðμ1 þ αϵ1Þu1 þ

X

K

i¼2

αϵiui∥
2

¼ ðμ1 þ αϵ1Þ
2 þ

X

K

i¼2

α2ϵ2i : ð33Þ

We finally obtain the contrast C0:

C0 ¼ μ2i
ðμ1 þ αϵ1Þ

2

ðμ1 þ αϵ1Þ
2 þ

P

K
i¼2

α2ϵ2i

¼ C ×
ðμ1=αþ ϵ1Þ

2

ðμ1=αþ ϵ1Þ
2 þ

P

K
i¼2

ϵ2i

¼ C ×
χ2
1;C=α2

χ2
1;C=α2

þ χ2K−1

; ð34Þ

where χ2
1;C=α2

is a random variable that follows a non-

central χ2 distribution with 1 degree of freedom and
noncentrality parameter C=α2 and χ2K−1

is a random
variable that follows a central χ2 distribution with
K − 1 degrees of freedom. The random variable C0=C
has a noncentral beta distribution with shape pa-
rameter a ¼ 1

2
, b ¼ K−1

2
, and noncentrality parameter

λ ¼ C=α2 [26]. There is no simple formula for the
mean of the noncentral beta function. However, we
can approach the expectation of C0 by

EfC0g≃ C ×
Efðμ1=αþ ϵ1Þ

2g

Efðμ1=αþ ϵ1Þ
2 þ

P

K
i¼2

ϵ2i g

≃ C ×
C=α2 þ 1

C=α2 þ K
: ð35Þ

This formula gives a synthetic expression of the con-
trast loss as a function of α2, which represents the
variance of the target estimation error relatively to
the background variance and K , the number of spec-
tral bands. Figure 14 represents the mean contrast
loss EfC0g=C versus the number of spectral bands
K for different values of the parameter C=α2. The
mean contrast loss was computed using two ways:
the solid lines represent the mean contrast loss esti-
mated from 1000 random draws of ϵ; the dotted lines
represent the mean contrast loss estimated from the
approximation of Eq. (35). We observe that the ap-
proximation is accurate, especially when C=α2 ≫ 1,

which is true for most detection applications. One
can note that when K ≃ C=α2 þ 2, the expected con-
trast EfC0g is about half of the maximum contrast C.

The approximation of Eq. (35) can then be used to
evaluate the effect of estimation error on the perfor-
mance of the matched filter. Figure 15 represents the
expected contrast EfC0g versus the number of spec-
tral bands K for different values of the parameter α2.
The black curve (no error) represents the optimized
contrast C versus the number of bands K when there
is no error in the estimation of the target (m̂1 ¼ m1).
The contrast CðKÞ is optimized for the hyperspectral
image of Section 3 using a genetic algorithm (single-
band filters). We then use CðKÞ to estimate the
expectation of contrast for different values of α2

using the approximation of Eq. (35). Figure 15 shows
that in the presence of estimation error, it may not be
optimal to use the full spectral resolution as the

Fig. 14. (Color online) Mean contrast loss EfC0g=C versus the
number of bands K for different values of the parameter C=α2.
Solid curves, contrast loss estimation from 1000 random draws.
Dotted curves, ðC=α2 þ 1Þ=ðC=α2 þKÞ.

Fig. 15. (Color online) Expected contrast versus number of bands
for different values of α2 [Eq. (35)].
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maximum expected contrast is reached for a reduced
number of selected spectral bands.

5. Conclusion

We addressed the issue of selecting the spectral
bands that optimize the detection performance of
the matched filter. The spectral bands have been cho-
sen to maximize a contrast criterion, which is equal
to the Mahalanobis distance between the target and
the background. Under the assumption that the tar-
get and the background follow multivariate normal
distributions with different means and identical co-
variance matrices, this approach leads to an optimal
detector in the Neyman–Pearson sense. When this
assumption is not verified, the obtained detector is
not optimal in the Neyman–Pearson sense, but it re-
mains the linear detector that optimizes the contrast
between the target and the background in the detec-
tion plane.

We developed a band selection method that allows
selecting not only the position of the spectral bands
but also their linewidth. The optimization of the cut-
off wavelengths of the bandpass filters greatly im-
proves the contrast in the detection plane. It can
be very useful for the design of multispectral imagers
adapted to detection applications. We proposed to se-
lect the bands using a genetic algorithm. We showed
that our genetic algorithm provides a good frame-
work to optimize various kinds of filters. We showed
results of band selection from a real hyperspectral
image in the case of single-band and bandpass filters.
The performance of our method was compared with
success with other band selection algorithms.

Finally, we discussed the effect of estimation
error in the target signature on the performance of
the matched filter. We showed that under certain
assumptions about the estimation error, the con-
trast loss can be approximated by a very simple for-
mula. This formula is a useful tool to estimate the
number of bands that is needed for a given detection
application.

The authors thank Rodolphe Marion of the Com-
missariat à l’Énergie Atomique for the acquisition
of hyperspectral images. The work of J. Minet is sup-
ported by the Direction Générale de l’Armement.
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