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We consider diffraction by pixelated lenses when the lens size is significantly smaller than the diffraction
pattern of single pixels. In that case, the diffraction orders show shapes that have not been identified in
earlier studies and that are quite sensitive to the pixel filling ratio as well as to decentering. © 2010
Optical Society of America
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1. Introduction

This work originates in an unexpected observation in
the diffraction pattern of a pixelated lens. Using elec-
tric circuit terminology, a pixelated lens consists in a
boxcar approximation of a continuous lens shape:
first, the continuous phase function is sampled over
a regular grid, and then the sampled phase is as-
signed to the full area of the pixel. In the limit of very
small pixels, the diffraction pattern of the pixelated
lens would be identical to that of the initial continu-
ous lens. However, the grating associated with the
periodic arrangement of the pixels is responsible
for the apparition of diffraction orders.
Using a pixelated lens that had been fabricated by

photolithography, we observed that while in some
cases the diffraction orders observed in the focal
plane were, as we had intuitively expected, fairly
similar to the Fraunhofer diffraction pattern by
the pupil, in some other situations a notable change
occurred and a central minimum appeared in the dif-
fraction pattern, which would be more similar to the
derivative of the initial pupil diffraction pattern that
to that pattern itself. This happened in particular in

the case of major practical interest of a well-centered
pixelated lens.

Earlier publications introduced pixelated lenses as
diffractive elements that can be displayed on a spa-
tial light modulator [1], leading to moderate-resolu-
tion pixelated lenses. The shape and intensity of the
diffraction orders by those components, responsible
for a multiple imaging effect, were already analyzed
in several publications [2–4], and a precise descrip-
tion of the central diffraction order was made [5], re-
vealing a peculiar self-apodization effect. In our case,
the photolithographic equipment used allowed us to
reach a fairly high quality, and the effect observed
turns out to be different.

It is appropriate here to stress that the component
of interest to us, while affected by diffraction indeed,
is a pixelated lens but not a diffractive lens (see
Fig. 1). By “diffractive,” we mean that the design of
the element resorts to phase wrapping, introducing
zones and phase jumps, as is often necessary when
displaying phase functions on a spatial light modu-
lator [Fig. 1(b)]. The phase jumps are typically an
integer number of 2π at some appropriate design
wavelength. The spatial light modulator pixels in ad-
dition define regions of constant phase, so that those
lenses are both diffractive and pixelated [Fig. 1(d)].
In our case, no phase wrapping was needed. While
the lens does consist in a set of closely packed pixels
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[Fig. 1(c)], no diffractive zones exist. Instead, the
height of each pixel is identical to that of the initial
continuous lens at the sampling point in the center of
the pixel. We study only the influence of the spatial
discretization of the phase distribution of the lens
and not the quantization and discontinuities of the
phase value [6,7].
While the analytical approach of [5] is perfectly ap-

plicable to our situation, it turns out that our obser-
vation of a derivation effect in all orders, save for the
central order, of a well-centered pixelated lens is
more appropriately described and physically under-
stood by a different analytical approach. That is the
purpose of the present paper.
We consider applications where the multiple ima-

ging effect is not desirable; then for a given pixel size
andpupil sizewe choosea larger focal length to reduce
this effect. However, some diffraction orders remain
and can introduce perturbations in images formed
by such lenses. It is thususeful to evaluate their shape
and their efficacy. We perform this analysis in two
cases: when the phase function of the lens is centered
on the pupil and when it is decentered with respect to
one of the two main diffraction directions determined
by the symmetries in the pixel arrangement.
The paper is organized as follows: in Section 2, we

present a mathematical approach describing the dif-
fraction of light by a pixelated lens, based on Fourier
optics. In Section 3, we analyze the shape and effi-
ciency of the diffraction orders when the phase distri-
bution of the lens is centered with respect to its pupil
and illustrate the results on an image obtainedwith a
pixelated lens fabricatedbyphotolithography.Finally,
in Section 4we analyze the effect of pupil decentering.

2. Basic Mathematical Formulation

A. Notation

We consider a thin pixelated lens, whose pixel pitch
p, and whose pixels are a × a squares, with obviously

0 ≤ a ≤ p. The repartition of the centers of the pixels
is periodic along the x and y axes, which are the two
main diffraction directions. The pixel profile is de-
noted Π2;að~rÞ ¼ Π2ð~r=aÞ, where Π2 is the 2D rectan-
gular function, and ~r ¼ ðx; yÞ is the position vector.
The transmittance of the pixelated lens is obtained
by sampling the transmittance tcð~rÞ of a thin refrac-
tive lens in the plane z ¼ 0, denoted Σ1:

tcð~rÞ ¼ Pð~rÞ exp
�

−i
π r2

λf

�

ð1Þ

The index c stands for continuous. The parameter f
is the focal length, and λ the design wavelength. In
this paper, we shall consider only monochromatic il-
lumination of wavelength λ. The lenswhose transmit-
tance is tcð~rÞ will be called the equivalent refractive
lens (ERL). P is the pupil function of the lens. In
the case where the pupil is square and centered,
Pð~rÞ ¼ Π2ð~r=NpÞ, where N is the number of pixels
along x or y.

We suppose that the pixelated lens is illuminated
by a plane wave. We compute the amplitude of the
diffracted wave in plane z ¼ f , denoted Σ2, where
we expect to see the focus. The observed diffraction
pattern is a coherent sum of the diffraction patterns
of all pixels. We let ~ρ ¼ ðξ; ηÞ denote the 2D coordi-
nates in planeΣ2. Pixels are indexed by the 2D vector
~j ¼ ðjx; jyÞ, whose coordinates are integers [8]. The co-
ordinates of the center of pixel~j are ðjxp; jypÞ. Figure 2
illustrates the notation.

We consider the sampled transmittance in plane
ð~r; z ¼ 0Þ, starting from samples in the mathematical
sense, i.e. Dirac distributions δ:

tΔð~rÞ ¼ tcð~rÞШp;pð~rÞ; ð2Þ

where Шp;p is a 2D Dirac comb:

∀ðx; yÞ ∈ ℝ2; Шp;pðx; yÞ

¼
X

þ∞

nx¼−∞

δðx − nxpÞ ×
X

þ∞

ny¼−∞

δðy − nypÞ: ð3Þ

Fig. 1. (a) Continuous lens. (b) Diffractive lens. (c) Pixelated lens.
(d) Diffractive pixelated lens.

Fig. 2. Scheme illustrating the notation used in the basic math-
ematical formulation.
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In a pixelated lens, each sample of tc is in fact the
center of a uniform pixel whose transmittance is
equal to the sampled value. If U0 is the amplitude
of the incident plane wave, the complex amplitude
in the plane Σ1 of the pixelated lens is U0 tð~rÞ with

tð~rÞ ¼ tΔð~rÞ �Π2;að~rÞ: ð4Þ

B. Assumptions about Fresnel Numbers

Here we introduce the Fresnel generalized number
[9] (FGN):

FGN ¼ r2
0

λf
;

where r0 is the radius of the smallest circular pupil
that contains the pupil of the pixel. As the pixel pupil
is an a × a square, r0 ¼ a

ffiffiffi

2
p

=2. We assume that the
FGN for one pixel is much smaller than typically 1,
which is a common criterion for the validity of the
Fraunhofer approximation. This hypothesis will be
called ðH1Þ and will be written as follows:

Hypothesis ðH1Þ: FGN ¼ a2

2λf
≪ 1:

In this study, our concern is about pixels whose size
a ≤ p ≤ 100 μm and focal lengths f ≥ 10 cm; then in
visible light ðH1Þ is easily verified, since a2=2λf can-
not exceed 0.1 for λ ¼ 0:5 μm. We will thus assume in
the rest of the paper that we are in the Fraunhofer
diffraction regime for pixel diffraction and that we
can write the Fresnel integral using the Fraunhofer
approximation for the central pixel diffraction at the
distance f :

u~0ð~ρÞ ¼ −i
U0

λf
tcð~0Þ exp

�

2πi
f

λ
þ iπ

‖~ρ‖2

λf

�

~Π2;a

�

~ρ

λf

�

:

ð5Þ

~Π2;a is the Fourier transform of Π2;a:
~Π2;að~ρ=λf Þ ¼

a2sincðaξ=λf Þsincðaη=λf Þ. The diffracted field asso-
ciated with the pixel~j is obtained by translation:

u~jð~ρÞ ¼ −i
U0

λf
tcð~jpÞ exp

�

2πi
f

λ
þ iπ

‖~ρ−~jp‖2

λf

�

× ~Π2;a

�

~ρ −~jp

λf

�

: ð6Þ

We introduce the following auxiliary function:

f~jð~ρÞ≜Pð~jpÞ exp
�

−2iπ
~jp ·~ρ

λf

�

~Π2;a

�

~ρ −~jp

λ f

�

ð7Þ

Then, from Eq. (1),

u~jð~ρÞ ¼ −i
U0

λf
exp

�

2πi

λ

�

f þ ‖~ρ‖2

2f

��

f~jð~ρÞ: ð8Þ

The complex amplitude in the plane Σ2 results
from the interferences between the diffraction
patterns of all pixels and is thus

P

~j∈ðℤ;ℤÞu~jð~ρÞ. Since
the term preceding f~jð~ρÞ in Eq. (8) is not pixel depen-
dant, we focus on

P

~j∈ðℤ;ℤÞf~jð~ρÞ. We have

Sð~ρÞ ¼
X

~j∈ℤ2

f~jð~ρÞ ¼
X

~j∈ℤ2

Pð~jpÞ exp
�

−2πi
~jp ·~ρ

λf

�

× ~Π2;a

�

~ρ −~jp

λf

�

: ð9Þ

We introduce a second assumption:

Hypothesis ðH2Þ:
Ap

λf
≪ 1;

where A ¼ Np is the lens pupil width along the x or y
axis. We assume that the lens pupil is contained in an
A × A square. The ERL point spread function (PSF)
width is then of the order of λf =A. Then ðH2Þ means
physically that the pixel pitch p is much smaller than
the width of the PSF associated with the ERL. We
note that if ðH2Þ is verified, then ðH1Þ is also verified,
since obviously Np2 ≥ a2=2. Moreover ðH2Þ implies,
for any pixel ~j inside the pupil, ‖~j‖p=λf ≤ A=λf ≪
1=p. Π2;a is contained in a p × p square. Its Fourier
transform ~Π2;a is therefore wider than 1=p. In the
case where the pixels are a × a squares with p ¼ a,
1=p is exactly the central lobe half-width of ~Π2;a.

One may comment that the FGN for the whole lens
pupil A2=2λf , as opposed to that of a single pixel, is
not smaller than unity. For a lens to show a substan-
tial focusing power, it should on the contrary be lar-
ger than unity. Hypothesis ðH2Þ assumes that the
geometrical average between the pixel FGN and
the lens FGN is significantly smaller than unity.
In other words, whereas ðH1Þ amounts to assuming
the pixel size to be much smaller than its own diffrac-
tion pattern in the focal plane, ðH2Þ relates to the
case where the whole lens size is much smaller than
the pixel diffraction pattern. This assumption will
now be used to derive a physical interpretation of
the diffraction order built up by the interference
between pixel diffraction patterns of Eq. (9).

C. Expanding the Diffraction Pattern of Individual Pixels

For simplicity’s sake, we restrict the following calcu-
lation in this section to one dimension, but it can be
easily extended to two (see Appendix A). The 1D rec-
tangular function of width a is denoted Π1;a, and its
Fourier transform is denoted ~Π1;a:ðH2Þ implies that
the variations of ~Π1;a between ξ=λf and ðξ − jpÞ=λf
are small enough to assume that ~Π1;a½ðξ − jpÞ=λf �
can be approximated by its first-order Taylor expan-
sion around ξ=λf :

~Π1;a

�

ξ − jp

λf

�

≃ ~Π1;a

�

ξ

λf

�

−
jp

λf
Π0

1;a

�

ξ

λf

�

: ð10Þ
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In other words, the diffraction pattern by one pixel
in plane Σ2 can be expanded linearly over a distance
of the order of the pixelated lens pupil. Then, ifШp is
a 1D Dirac comb,

∀x ∈ ℝ; ШpðxÞ ¼
X

þ∞

nx¼−∞

δðx − nxpÞ: ð11Þ

Equation (9) becomes, after straightforward
algebra,

SðξÞ ¼ FT

�

PðxÞШpðxÞ
�

ξ=λf

~Π1;a

�

ξ

λf

�

−
1

λf
FT

�

xPðxÞШpðxÞ
�

ξ=λf

~Π
0
1;a

�

ξ

λf

�

; ð12Þ

where FT stands for Fourier transform. Another way
to write Eq. (12) is

SðξÞ ¼
�

~P �Ш1=p

�

ξ=λf

~Π1;a

�

ξ

λf

�

þ 1

2πiλf

�

~P0 �Ш1=p

�

ξ=λf

~Π
0
1;a

�

ξ

λf

�

: ð13Þ

Equation (13) can also be written as

SðξÞ ¼ SAðξÞ þ SBðξÞ ð14Þ

with

SAðξÞ ¼
X

n∈ℤ

SA;n

�

ξ

λf

�

¼ ~Π1;a

�

ξ

λf

�

X

n∈ℤ

~P

�

ξ

λf
−
n

p

�

;

SBðξÞ ¼
X

n∈ℤ

SB;n

�

ξ

λf

�

¼
~Π
0
1;a

�

ξ
λf

�

2πiλf

X

n∈ℤ

~P0
�

ξ

λf
−
n

p

�

:

SAðξÞ is a sum of the lens pupil diffraction patterns
located at each diffraction order n of the pixel grat-
ing, modulated by the pixel diffraction pattern. SBðξÞ
is a sum of the derivatives of the lens pupil diffrac-
tion patterns located at each diffraction order n of the
pixel grating, modulated by the derivative of the
pixel diffraction pattern in the ξ direction.
We also use the following notation:

SðξÞ ¼
X

n∈ℤ

Snð
ξ

λf
Þ

with ∀n ∈ ℤ; Snð ξλfÞ ¼ SA;nð ξλfÞ þ SB;nð ξλfÞ:
To summarize, in this section, we have written SðξÞ

as a sum of diffraction patterns associated with dif-
fraction orders, after having first expanded ~Π1;a½ðξ −
jpÞ=λf � to first order around ξ=λf and written Eq. (9)
in terms of Fourier transforms; this led us to an ex-
pression including convolution by a Dirac comb. Each
Dirac function of the comb stands for a diffraction
order, whose shape will be analyzed in the following
sections. InSection3westudythecasewhere thepixe-
lated lens is centered in the pupil, and in Section 4 we
study the case where this lens is decentered in
the pupil.

3. Shape of Diffraction Orders for a Pixelated Lens

Centered in the Pupil

A. Analysis

Still considering the 1D case, the expression of the
pupil is PðxÞ ¼ Π1;AðxÞ. We note that sincðxÞ ¼
sinðπxÞ=πx. Then

SAðξÞ ¼ a sinc

�

ξ
λf a

�

P

n∈ℤ

A sinc

��

ξ
λf −

n
p

�

A

�

;

SBðξÞ ¼ a2

2πiλf sinc
0
�

ξ
λf a

�

P

n∈ℤ

A2sinc0
��

ξ
λf −

n
p

�

A

�

:

ð15Þ

In Figure 3, we show the shape of the sinc function
and the shape of its derivative.

We notice in Eqs. (15) that the SB to SA weighting
factor ratio is aA=2πλf , which is low according to
ðH2Þ. We will analyze the shape and efficiency of
the diffraction orders, considering two cases: the case
where a ¼ p and the case where a ≠ p.

Fig. 3. (Color online) Shape of the sinc function and shape of the
derivative of the sinc function.
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1. Case a ¼ p

Let us first consider a ¼ p. In this case,

SAðξÞ ¼ p sinc

�

ξ

λf
p

�

X

n∈ℤ

A sinc

��

ξ

λf
−
n

p

�

A

�

;

SBðξÞ ¼
p2

2πiλf
sinc0

�

ξ

λf
p

�

X

n∈ℤ

A2sinc0
��

ξ

λf
−
n

p

�

A

�

:

For n ≠ 0, and if ξ=λf is close to n=p, sincðpξ=λf Þ≃ 0.

So

S0ðξÞ ¼ SA;0ðξÞ þ SB;0ðξÞ≃ SA;0ðξÞ ¼ pA sincðpξ=λf ÞsincðAξ=λf Þ
∀n ≠ 0; SnðξÞ≃ SB;nðξÞ ¼ ðp2sinc0ðpξ=λf Þ=2πiλf ÞA2sinc0½ðξ=λf − n=pÞA�: ð16Þ

As A ≫ p, the modulating factors sincðpξ=λf Þ and
sinc0ðpξ=λf Þ have slow variations in comparison
with sincðAξ=λf Þ and sinc0ðAξ=λf Þ. This means that
the diffraction pattern associated with the central
order n ¼ 0 is a sinc function of width λf =A and
that the diffraction patterns associated with other or-
ders have the shape of the derivative of a sinc
function.

2. Case a ≠ p

Let us now consider that a ≠ p, which means in fact
a < p. For every n, and if ξ=λf is close to n=p,
sincaξ=λf ≠ 0. Moreover, as ðH2Þ implies aA=2πλf
≪ 1, then S≃ SA, and the diffraction orders are sinc
functions:

∀n ∈ ℤ; SnðξÞ≃ SA;nðξÞ

¼ a sinc

�

ξ

λf
a

�

A sinc

��

ξ

λf
−
n

p

�

A

�

: ð17Þ

The efficiency of each diffraction order normalized
to the central order is approximately sincðna=pÞ,
whereas in the case a ¼ p it is jApsinc0ðnÞ=2πλf j ¼
Ap=2nπλf for the order n, n ≠ 0. This means that if
a ≠ p, the nonzero orders are more significant in re-
lation to the zero order than if a ¼ p.

B. Examples

We want to illustrate that the expressions describing
the shapes and efficiencies of the diffraction orders
determined via our approximations are valid. There-
fore, we simulate the diffraction patterns of some
pixelated lenses by direct calculation via Fresnel
approximation:

uðξ; f Þ ¼ −i
U0

λf
exp

�

2πi
f

λ

�
Z

ℝ

tðxÞexp
�

þiπ
ðx− ξÞ2

λf

�

dx;

ð18Þ

where tðxÞ ¼ tΔðxÞ �Π1;aðxÞ is the transmittance of
the lens and uðξ; f Þ is the repartition of the complex
amplitude in the plane Σ2.

Then we compare the results obtained with the
analytical expressions describing the shape of the
diffraction orders determined in Subsection 3.A.
We show intensity patterns, which means that we
consider the square modulus of the complex am-
plitude.

We will consider a pixelated lens whose character-
istics are A ¼ 4mm, p ¼ 10 μm, λ ¼ 500nm, f ¼ 1m.
ðH2Þ is clearly verified ðAp=λf ¼ 0:08Þ. The

diffraction order n is located around ξ ¼ nλf =p ¼ n×
5 × 10−2 m.

In the case where a ¼ p, we represent in Table 1
the normalized intensity of the diffraction pattern
in the focal plane around the orders 0, 1, and 2.
Except for order 0, we give three values. The central
value is the normalized intensity at the center of
order n. The other two are the local maxima around
that center.

The efficiency of orders 1 and 2 are very low in com-
parison with the efficiency of order 0, as already sta-
ted for the case where a ¼ p. We represent in Fig. 4(a)
the shape of the central order, calculated by direct
calculation via Eq. (18). When we compare this curve
to that obtained via Eq. (16), we see that these curves
are almost perfectly superimposed at the scale
shown. We note the maximal error

Δ ¼ maxξ∈D jf ðξÞ − gðξÞj; ð19Þ

where f (g) is the function obtained by direct calcula-
tion ( via the approximationsmade in Subsection 3.A)
and D is the definition domain of f and g. In this case
Δ ¼ 2:75 × 10−4, which reveals that S0ðξÞ≃ SA;0ðξÞ is
a good approximation for describing the shape of the
central order.

Nowwe study the case where a ¼ p ¼ 200 μm; then
ðH2Þ is not verified ðAp=λf ¼ 1:6Þ. Indeed, in Fig. 4(b)
one can see that the curve obtained by direct calcula-
tion is different from the one obtained via the approx-
imations made in Subsection 3.A, and in this case
Δ ¼ 1:60 × 10−1. As was already investigated in some
detail in [5], we observe the apodization of the non-
central lobes of the PSF pattern of the ERL, which is
here a simple sinc function.

Let us now consider order 1. Curves normalized to
the local maximum are shown in Fig. 5(a), in the case
where a ¼ p ¼ 10 μm. We compare the curve obtain-
ed by direct calculation via the Fresnel approxima-
tion to the one obtained via Eq. (16). Here again
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the curves associated with f and g match quasi per-
fectly, as Δ ¼ 4:13 × 10−3.
Finally, we consider the case where a ¼

p ¼ 200 μm.We represent the shape of the first order,
located around ξ ¼ 2:5 × 10−3 m in Fig. 5(b). We verify
that the curves associated with f and g do not match
in this case, where ðH2Þ is not clearly verified:
Δ ¼ 3:18 × 10−1. Nevertheless, our approximation
still provides a fair first grasp at the phenomenon.
Let us now consider the case where a ≠ p. Choosing

again p ¼ 10 μm, we observe in Fig. 6 the diffraction
pattern associated with order 1 obtained with a ¼
p=2 ¼ 5 μm. The curves associated with f and g are
obtained, respectively, via Eqs. (17) and (18) match:
Δ ¼ 3:50 × 10−4.
In this section, where the pixelated lens is centered

on the pupil, we verified through different numeri-
cal examples that the approximations made in
Subsection 3.A are reasonable when ðH2Þ is verified,

as the error functionΔ is smaller than 1% in all cases
studied.

C. Experimental Results

The experiment described here is intended to illus-
tratetheresultsobtained inSubsection3.A.A2Dpixe-
lated lens was fabricated with the characteristics
f ¼ 1m and a ¼ p ¼ 20 μm, and the side length of
the square pupil of this lens is A ¼ 2mm. We illumi-
nated this lens with an expanded He–Ne laser:
λ≃ 633nm. ðH2Þ isverifiedas ðAp=λf ≃ 0:06Þ.Figure7
shows the diffraction pattern, observed with a linear
camera,with the central order considerably saturated
inspiteof the fact that thecentralpartof the figurehas
been dimmed, and the first orders in the x and y direc-
tions. The size of Figure 7 is 70mm × 70mm. As the
dynamic range of the camera used for the photograph
was not large enough to clearly show the shape of the
zero and nonzero orders simultaneously, we took
pictures of the diffraction orders separately, with

Fig. 4. (Color online) Central order of a centered pixelated lens:
(a) a ¼ p ¼ 10 μm, (b) a ¼ p ¼ 200 μm.

Fig. 5. (Color online) First order of a centered pixelated lens:
(a) a ¼ p ¼ 10 μm, (b) a ¼ p ¼ 200 μm.

Table 1. Normalized Intensity of Orders 0, 1, and 2

Quantity

Order

0 1 2

ξ ðmmÞ 0 49.92 50 50.08 99.92 100 100.08
Normalized intensity 1 3:06 × 10−4 2:85 × 10−7 3:02 × 10−4 7:62 × 10−5 1:78 × 10−8 7:57 × 10−5
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different exposure times. Then, Figure 8 shows more
precisely the shape of the central order. One easily
identifies the product of two sinc functions. Figure 9
isamagnifiedversionof thezoneinsidetheuppersolid
square in Fig. 7, i.e., order~j ¼ ð0; 1Þ. The size of Fig. 8
and 9 is 10mm × 10mm. We also show in Fig. 10 the
vertical cross section of the diffraction order shown
in Fig. 9, and we compare it with the square modulus
of thederivativeofasinc functionwiththeappropriate
parameters. The similitude between measure and
approximation confirms the results obtained in
Subsection 3.A.

4. Decentered Pixelated Lens

A. Analysis

We propose to study the effect of decentering the lens
pupil along the x direction inside the pupil plane,
which is equivalent to translating the phase function
of the lens in relation to a fixed pupil. X is the trans-
lation of the center of the lens along x.

Equation (1) in one dimension then becomes
tcðxÞ ¼ Π1;AðxÞ expð−iπðx − XÞ2=λf Þ, which leads us
to consider a different expression for S:

SAðξÞ ¼ a sinc

�

a ξ
λf

�

P

n∈ℤ

A sinc

��

ξ
λf −

X
λf −

n
p

�

A

�

;

SBðξÞ ¼ a2

2π iλf
sinc0

�

ξ
λf
a

�

P

n∈ℤ

A2sinc0
��

ξ
λf
− X

λf
− n

p

�

A

�

:

ð20Þ

We show how to get this result in Appendix B. The
diffraction pattern associated with the order n is
located around ξ ¼ nλf =pþ X .

We will consider two cases that depend on the
value of X.

1. Lens Decentering an Integer Multiple of the

Diffracted Order Spacing

If ∃nX ; − X=λf ¼ nX=p, i.e., if the lens decentering in
the pupil is an integer multiple of the diffracted order

Fig. 6. (Color online) First order of a centered pixelated lens:
a ¼ p=2 ¼ 5 μm.

Fig. 7. (Color online) Observation of the repartition of light in the
focal plane of a pixelated lens. Dashed frame, the central order;
solid frame, order (0,1).

Fig. 8. Observation of the shape of the central order.

Fig. 9. Observation of the shape of order (0,1).
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spacing in the plane Σ2, we apply the same develop-
ment as in Section 3. One may note that this situa-
tion is in fact trivial, because, as can be shown easily,
sampling the continuous equivalent refractive lens of
Eq. (1) at sampling points jxp after shifting it by
λf nx=p changes only a constant in the sampled trans-
mittance tΔ. Nevertheless, we assume here that the
order centered at ξ ¼ 0 is n ¼ nX and not n ¼ 0.
Then when a ¼ p,

SnX
ðξÞ≃ SA;nX

ðξÞ ¼ pA sincðpξ=λf ÞsincðAξ=λf Þ;
∀n ≠ nX ; SnðξÞ≃ SB;nðξÞ ¼ ðp2sinc0ðpξ=λf Þ=2πiλf ÞA2sinc0½ðξ=λf − X=λf − n=pÞA�; ð21Þ

and when a ≠ p,

∀n ∈ ℤ; SnðξÞ≃ SA;nðξÞ

¼ a sinc

�

ξ

λf
a

�

A sinc

��

ξ

λf
−
X

λf
−
n

p

�

A

�

: ð22Þ

2. Lens Decentering Not an Integer Multiple of the

Diffracted Order Spacing

Let us now consider the case in which the lens decen-
tering in the pupil is not an integer multiple of the
diffracted order spacing 1=p in the focal plane. For
every n, and if ξ is close to nλf =pþ X, sinc
aξ=λf ≠ 0. Moreover, as ðH2Þ implies aA=2πλf ≪ 1,
then S≃ SA:

∀n ∈ ℤ; SnðξÞ≃ SA;nðξÞ

¼ a sinc

�

ξ

λf
a

�

A sinc

��

ξ

λf
−
X

λf
−
n

p

�

A

�

: ð23Þ

Defining the floor and ceil functions as follows,

∀x ∈ ℝ; floorðxÞ ¼ maxfn ∈ ℤ;n ≤ xg;
∀x ∈ ℝ; ceilðxÞ ¼ minfn ∈ ℤ;n ≥ xg;

it is seen from Eq. (23) that ceilð2p=aÞ diffraction pat-
terns associated with diffraction orders are located
within the main lobe of sincðξa=λf Þ. We can approx-
imate that these central orders have large efficien-
cies in comparison with other orders. However, one
can once more note that these other orders are not
weighted by aA=2πλf, which means that the noncen-
tral orders are more significant in relation to the cen-
tral order(s) than if a ¼ p and the lens phase function
were centered on an integer multiple of the diffracted
order spacing in the focal plane Σ2. Every order is
here a sinc function. When a ¼ p, two diffraction
orders are significant: the orders floorð−pX=λf Þ
and ceilð−pX=λf Þ.
B. Examples

As in Subsection 3.B, we want to illustrate the valid-
ity of the expressions describing the shapes and effi-
ciencies of the diffraction orders determined via our
approximations in Subsection 4.A. Therefore, we co-
mpare the results obtained via Eq. (18) with the
analytical expressions describing the shape of the
diffraction orders determined in Subsection 4.A. In

this section, the pupil is fixed and the lens is decen-
tered. We keep the same lens characteristics: A ¼
4mm, p ¼ 10 μm, λ ¼ 500nm, f ¼ 1m; so ðH2Þ is
clearly verified.

In Table 2, we simulate the case where a ¼ p and
X ¼ λf =ð3pÞ. Here the lens decentering X is not an
integer multiple of the diffracted order spacing
λf =p in the focal plane. According to Subsection 4.A,
there are ceilð2p=aÞ ¼ 2 main orders in the focal
plane: floorð−pX=λf Þ ¼ −1 and ceilð−pX=λf Þ ¼ 0. In-
deed, we can observe these two orders in Table 2
around ξ ¼ X ¼ λf =3p ¼ 16:7mm (order 0) and
ξ ¼ X ¼ λf =3p − λf =p ¼ −33:3mm (order −1). One
can also notice that order 1 is more significant in
Table 2 than in Table 1, which is, as we have seen

Fig. 10. (Color online) Vertical cross section of the image in Fig. 9.
The pixel pitch distance is 45 μm.

Table 2. Normalized Intensity of Orders −1, 0 and 1 in the Focal

Plane of a Decentered Pixelated Lens
a

Quantity

Order

−1 0 1

ξ ðmmÞ −33:33 16.67 66.67
Normalized intensity 0.251 1 6:22 × 10−2

a
a ¼ p; X ¼ λf =3p.
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in Subsection 4.A, a consequence of the fact that this
order is not weighted by aA=2πλf as in the case of the
Table 1.
Now we zoom in around the order −1 in Fig. 11. We

compare the curves obtained via Eqs. (18) and (23).
Here Δ ¼ 3:34 × 10−3; then SA;−1 is a good approxi-
mation of the shape of the order −1.
Now we study the case where a ¼ p=2 and

X ¼ 2λf =5p, represented in Fig. 12. We superim-
posed the curve associated with sincðaξ=λf Þ to verify
that ceilð2p=aÞ ¼ 4 orders are located within the
main lobe of sincðaξ=λf Þ as expected. One can notice
that in certain configurations, some orders located in
the secondary lobes of sincðaξ=λf Þ can be brighter
than some orders located in the main lobe.

Let us sum up the results obtained in this section.
When the center of the phase function is shifted with
respect to optical axis along the x axis, the brightest
orders in the focal plane are located on both sides of
the orthogonal projection of the lens center on ξ-axis.
The number of significant orders depends on the ra-
tio a=p. The shapes of all orders are generally similar
to the PSF pattern of the equivalent refractive cen-
tered lens, except in the degenerate case where a ¼ p
and the lens decentering is an integer multiple of the
diffracted order spacing. Indeed, that case reduces to
that of a centered lens.

5. Conclusion

We have analyzed the shape and efficiency of the dif-
fraction orders observed in the focal plane of a pixe-
lated lens when the pixel size is much smaller than
the PSF of the ERL.

When the pixelated lens is centered, and when the
pixel width a is equal to the pixel pitch p, we have
shown that the central order whose shape is well
known to be identical to that of the ERL is much
brighter than the other orders and that the shapes
of the other orders are approximately the derivative
of this PSF.When the pixel width is sufficiently smal-
ler than the pixel pitch, the shapes of all diffraction
orders are similar to the PSF pattern of the ERL.

We have also shown that decentering the phase
function of the lens along the x or y axis, with respect
to the pupil, has a significant influence on the shape
and efficiency of the diffraction orders.

We especially focused on pixelated lenses with
square pixels and a square pupil, but our approach
can be applied to different pupil and pixel shapes.
Moreover, our study was about decentering the lens
along the x or y axis and is trivially generalized to an
arbitrary 2D decentering.

Appendix A

Starting again from Eq. (9),

S ¼
X

~j∈ðℤ;ℤÞ
f~jð~ρÞ ¼

X

~j∈ðℤ;ℤÞ
Pð~jpÞ exp

�

−2iπ
~jp ·~ρ

λf

�

× ~Π2;a

�

~ρ −~jp

λf

�

; ðA1Þ

ðH2Þ implies, for any pixel j inside the pupil,
‖~j p=λf‖ ≤ 1=p.

Then

~Πa

�

~ρ −~jp

λf

�

≃ ~Πa

�

ξ

λf
;
η

λf

�

−
jxp

λf

∂ ~Π2;a

∂ξ

�

ξ

λf
;
η

λf

�

−
jyp

λf

∂ ~Π2;a

∂η

�

ξ

λf
;
η

λf

�

: ðA2Þ

Equation (A1) then becomes

Fig. 11. (Color online) Order −1 in the focal plane of a decentered
pixelated lens: a ¼ p, X ¼ λf =ð3pÞ.

Fig. 12. (Color online) Normalized intensity in the focal plane of a
decentered pixelated lens: a ¼ p=2, X ¼ 2λf =5p. (a) Curve asso-
ciated with direct calculation; (b) curve associated with
sincðaξ=λf Þ.
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SðξÞ¼FT
h

Pðx;yÞШp;pðx;yÞ
i

ðξ=λf ;η=λf Þ
~Π2;a

�

ξ

λf
;
η

λf

�

−
1

λf
FT

h

xPðx;yÞШp;pðx;yÞ
i

ðξ=λf ;η=λf Þ

∂ ~Π2;a

∂ξ

�

ξ

λf
;
η

λf

�

−
1

λf
FT

h

yPðx;yÞШp;pðx;yÞ
i

ðξ=λf ;η=λf Þ

∂ ~Π2;a

∂η

�

ξ

λf
;
η

λf

�

:

ðA3Þ

FT is here the 2D Fourier transform.
Let us denote ~P0

ξ ¼ ∂~P=∂ξ, ~P0
η ¼ ∂~P=∂η, ~Π

0
2;a; ξ ¼

∂ ~Π2;a=∂ξ, and
~Π
0
2;a; η ¼ ∂ ~Π2;a=∂η:

SðξÞ ¼
�

~P �Шð1=p;1=pÞ
�

~ρ=λf

~Π2;a

�

~ρ

λf

�

þ 1

2πiλf

�

~P0
ξ �Шð1=p;1=pÞ

�

~ρ=λf

~Π
0
2;a;ξ

�

~ρ

λf

�

þ 1

2πiλf

�

~P0
η �Шð1=p;1=pÞ

�

~ρ=λf

~Π
0
2;a;η

�

~ρ

λf

�

: ðA4Þ

This can also be written as

SðξÞ ¼ SAðξÞ þ SB;ξðξÞ þ SB;ηðξÞ

¼ ~Π2;a

�

~ρ

λf

�

X

~n∈ðℤ;ℤÞ

~P

�

~ρ

λf
−
~n

p

�

þ
~Π
0
2;a;ξ

�

~ρ
λf

�

2πiλf

X

~n∈ðℤ;ℤÞ

~P0
ξ

�

~ρ

λf
−
~n

p

�

þ
~Π
0
2;a;η

�

~ρ
λf

�

2πiλf

X

~n∈ðℤ;ℤÞ

~P0
η

�

~ρ

λf
−
~n

p

�

: ðA5Þ

The 2D vectors ~n ¼ ðnξ;nηÞ, whose coordinates are
integers, represent the diffraction orders.
SA is a replication of the lens pupil diffraction pat-

tern in each diffraction order n of the pixel grating,
modulated by the pixel diffraction pattern.
SB;ξ (SB;η) is a replication of the derivative of the

lens pupil diffraction pattern along ξ (η) in each dif-
fraction order ~n of the pixel grating, modulated by
the pixel diffraction pattern derivative in the ξ direc-
tion (η direction).
SA, SB;ξ, and SB;η can be analyzed the same way as

SA and SB in Sections 3 and 4.

Appendix B

We consider Eq. (1) in one dimension, when the pupil
is translated along x, and X is the coordinate of the
new pupil center:

tcðxÞ ¼ PðxÞ expð−iπðx − XÞ2=λf Þ: ðB1Þ

Then we use the Fraunhofer approximation for the
central pixel diffraction at distance f ,

u0ðξÞ ¼ −i
U0

λf
tcð0Þ exp

�

2πi
f

λ
þ iπ

ξ2

λf

�

~Π1;a

�

ξ

λf

�

;

ðB2Þ

and for the diffraction by the pixel jx at distance f , we
get, replacing x with jxp in Eq. (B1),

ujx
ðξÞ ¼ −i

U0

λf
tcðjxpÞ ~Π1;a

�

ξ − jxp

λf

�

× exp

�

2πi
f

λ
þ iπ

ðξ − jxpÞ2
λf

�

: ðB3Þ

If we designate

f jxðξÞ≜PðjxpÞ exp
�

−2iπ
jxpξ

λf

�

~Π1;a

�

ξ − jxp

λf

�

× exp

�

2iπXjxp

λf

�

; ðB4Þ

then

ujx
ðξÞ ¼ −i

U0

λf
exp

�

2πi

λ

�

f þ ξ2

2f

��

exp

�

−i
πX2

λf

�

f jxðξÞ:

ðB5Þ

As the term −ðiU0=λf Þ exp½ð2πi=λÞðf þ ρ2=2f Þ� exp
ð−iπX2=λf Þf jxðξÞ is not pixel dependant, we focus
on

P

~j∈ℤ
f~jð~ρÞ:

SðξÞ ¼
X

jx∈ℤ

f jxðξÞ ¼
X

jx∈ℤ

PðjxpÞ exp
�

−2πi
ξjxp

λf

�

× ~Π1;a

�

ξ − jxp

λf

�

exp

�

2πi
Xjxp

λf

�

: ðB6Þ

Then to a first-order approximation

SðξÞ ¼ FT

�

PðxÞШpðxÞ
�

ðξ−XÞ=λf
~Π1;a

�

ξ

λf

�

−
1

λf
FT

�

xPðxÞШpðxÞ
�

ðξ−XÞ=λf
~Π
0
1;a

�

ξ

λf

�

: ðB7Þ

We notice that this expression would be obtained,
in the centered case, with tcðxÞ ¼ PðxÞ expð−iπx2=λf Þ
expð2iπxX=λf Þ. The term expð2iπxX=λf Þ represents a
phase tilting, so we understand that within the con-
text of our approximations, decentering this lens is
equivalent to placing a thin prism before or after it.

Another way to write Eq. (B7) is

SðξÞ ¼
�

~P �Ш1=p

�

ðξ−XÞ=λf
~Π1;a

�

ξ

λf

�

þ 1

2πiλf

�

~P0 �Ш1=p

�

ðξ−XÞ=λf
~Π
0
1;a

�

ξ

λf

�

: ðB8Þ
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This can also be written as

SðξÞ ¼ SAðξÞ þ SBðξÞ

¼ ~Π1;a

�

ξ

λf

�

X

n∈ℤ

~P

�

ξ

λf
−
X

λf
−
n

p

�

þ
~Π
0
1;a

�

ξ=λf
�

2πiλf

X

n∈ℤ

~P0
�

ξ

λf
−
X

λf
−
n

p

�

: ðB9Þ

Then, if PðxÞ ¼ Π1;AðxÞ, one obtains Eqs. (20).
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