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Abstract

An analytical potential energy surface for a rigid Rb2 in the 3Σ+
u state interacting with

one helium atom based on accurateab initio computations is proposed. This 2-dimensional

potential is used, together with the pair approximation approach, to investigateRb2 attached

to small helium clusters HeN with N = 1,2,3,4,5,6,12 and 20 by means of quantum Monte

Carlo studies. The limit of large clusters is approximated by a flat helium surface. The relative

orientation of the dialkali axis and the helium surface is found to be parallel. Dynamical

investigations of the pendular and of the in-plane rotation of the rigid Rb2 molecule on the

surface are presented.

Introduction

By their quantum nature and weak interaction with dopants, superfluid helium nanodroplets are

"ultimate spectrocopic matrices"1 allowing for the powerful HENDI (helium nanodroplet isola-

tion) spectroscopy2,3 of various species. Within the large variety of molecular dopants studied,

alkali dimers have been the subject of many experimental andtheoretical works.4–20 Different ex-

perimental approaches varying from LIF absorption spectra, emission spectra, magnetic-circular-

dichroism and pump-probe are used to study Li2, Na2, K2, Rb2 and Cs2 attached to the surface of

HeN.

One of the particularities of the alkali dimers and clustersattached to the helium droplets is the

enrichment of high-spin species.7 Indeed, alkali-metal atoms in their ground electronic state, when

picked up by a beam of helium nanodroplets, remain on the helium surface as a consequence of the

weaker helium alkali interaction than the helium-helium one. There, they can surf on the surface

and eventually form dimers in helium-controlled cold collisions. Both triplet and singlet electronic

states are accessible. However given the stronger binding in the singlet state, the formation of

alkali dimers in the singlet state provokes significant sizereduction of the clusters by evaporation,

and detachment of the alkali dimer from the droplets. The energy release on the high spin triplet

state formation is smaller and the alkali dimers are more likely to stay attached to a helium cluster.
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In this way, helium cluster isolation spectroscopy becomesa perfectly adapted tool for the study

of high-spin states of alkali molecules.7,21,22

The rubidium dimers in their ground triplet state3Σ+
u attached to HeN have been experimentally

studied by Ernst’s group,8,10,13,19and Stienkemeier’s group.17,22The high-spin selectivity induced

by the ultracold bath of helium atoms indeed facilitates spectroscopic probing of the triplet state.

In the gas phase, rubidium dimers in various singlet states of both gerade and ungerade symme-

try have been the subject of high resolution spectroscopic investigations by the group of Amiot.23–27

With the achievement in 1995 of Bose-Einstein condensation of bosonic alkali atoms,28–30 inter-

est in the triplet state is rising.31–35 Indeed, in this ultra-cold context, alkali dimers are formed

by magnetic Feshbach resonance tuning, or as the product of photoassociation between laser pre-

cooled alkali atoms in atomic magneto-optical traps.36 In typical traps, the alkali atoms are spin

polarized and therefore high-spin alkali dimers (triplet state) are obtained.

On the theoretical side, however, there is still a huge demand of accurate calculations of struc-

tural and dynamic properties. At theab initio level, the interaction potential curves of Rb2 are are

difficult to converge. Yet the precise description of Rb2 potential curves is useful to better under-

stand and predict the dynamics of molecular formation. To our knowledge, the lowest triplet state

of Rb2 was first fully calculated along with many other excited states by Spiegelmannet al.,37 with

the use of relativistic effective core pseudo potentials, including core-valence corrections. Quickly

afterwards, two potential energy curves were obtained for the triplet ground state by Krauss38 and

then by Foucrault.39 Both modified the initial view of the 1989 paper. In 2006, Lozeille et al.,40

proposed a triplet state using the CIPSI package. More recently, a relativistic configuration inter-

action valence bond method was used to obtain the splitting between the 0−u and 1u components of

the ground triplet state of Rb2.41 Finally, a very recent triplet curve for Rb2 has been published a

few months ago by Soldán.42 In this work dedicated to the lowest quartet state of the Rb3 potential,

a very recent effective relativistic small core potential has been used. Besideab initio calculations,

an alternative way to get accute alkali dimer potential curves has been brought by the ultra-cold

community. It relies on fitting a Born-Oppenheimer curve to various spectroscopic, including hy-
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perfine structure, and collisional data. Such scheme has been used last year to optimize the triplet

Rb2 curve.43

In addition to the dimer potential, the question of the accurate description of the interaction

between a rubidium and a helium atom is still open. Diatomic potentials by Pascale44 have been

used for a long time for the study of processes occuring in thermal collisions between ground or

excited alkali atoms and helium atoms. More accurate groundstate curves have been obtained

by Kleinekathöferet al.45 for very weakly bound van der Waals systems, including heavyalkali

atoms. More recent potentials for ground and excited statesfor all alkali-helium interactions, calcu-

lated by a relativistic DFT method and including spin-orbiteffects, have been published by Zbiriet

al.46 But still, and quite generally, the theoretical computationof the correlation energy, so impor-

tant to describe properly medium and long range parts of the ultra-weak alkali-helium interaction,

is out of sight nowadays at least for full-electron calculations for heavy atoms. Pseudopotentials

and polarization potentials, calibrated on atomic properties, have to be employed.

In the present paper, we report diffusion and path integral quantum Monte Carlo studies of the

rubidium dimer in its ground triplet state in a helium environment. To this end, we first describe

the ab initio calculations and detail the analytical fitting of the potential energy surface between

a rigid Rb2 dimer and a helium atom. After a short paragraph on the theoretical approaches, we

present results obtained for small clusters with up to 20 helium atoms, followed by the case of a

rubidium dimer attached to a helium film taken as the limit of the surface of larger droplets. We

present in particular the study of the influence of the heliumatoms on the rotational motion of the

Rb2 dimer.

Rb2-He interaction potential

ab initio calculations

The interaction between a rigid Rb2 and a He atom is computed using high levelab initio calcula-

tions. The first triplet state 13A′ of the Rb2He system is obtained using the restricted Hartree-Fock
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calculation followed by a single-reference restricted open-shell coupled cluster method with sin-

gle, double and noniterative triple excitations [RCCSD(T)]. The counter-poise correction of Boys

and Bernardi47 is applied to the interaction energies between He and Rb2 in order to compensate

for the basis set superposition errors. The Rb2 equilibrium distance of 6.118 Å is used. All theab

initio calculations are performed using the MOLPRO 2006.1 package.48 Following the quality test

studies performed on Rb2 by Pavel Soldán,42 9 valence electrons (4s24p65s1) and the relativistic

core potential ECP28MDF49 to describe the inner electrons are used for the descriptionof the two

rubidium atoms. The basis set referred to asB in Ref. 42, which compares better with experi-

ments for the diatomic contants of Rb2, is employed for the 9 valence electrons. It is composed

of 123 primitive Gaussian functions (13s,10p,5d,3f,1g) per Rb atom augmented by a set of diffuse

functions (1s,1p,1d,1f,1g). The uncontracted d-aug-cc-pV5Z basis set limited tospdf, thus with 78

primitive fuctions, is used for the description of the helium atom.

As detailed in Ref. 42, using the above basis sets, the Rb2 triplet state minimum is obtained at

6.118 Å with a well depth ofDe= 240.9 cm−1 which are in good agreement with the experimental

ones,re= 6.069Å andDe= 241.45 cm−1.50 The HeRb diatomic potential presents an equilibrium

distance of 7.42 Å and a well depth of 0.934 cm−1. The more stable configuration of the triatomic

Rb2-He system occurs for a T-shape geometry with a Rb2 distance equal to 6.118 Å and with the

He atom distant of 6.30 Å from the Rb2 center of mass. The energy of this geometry is 2.60 cm−1

below that of the separated Rb2 and He moities.

Analytical potential energy surface

The Rb2He system is described using the Jacobi coordinatesR,γ, whereR is the distance between

the He atom and the center of mass of Rb2 and γ the angle betweenR and the Rb2 molecular

axis. In our notation,γ = 0 corresponds to the linear geometry, whileγ = π/2 to the T-shape

configuration. The global fit of the potential energy interaction for Rb2He is based on the RKHS

interpolation method.51 It relies on 108ab initio points sampling a regular two-dimensional grid.

The grid contains the four angles valuesγ = 0;π/4;3/8π andπ/2 for 27 R distances sampling

5



more densely the region of the potential well.

The two-dimensional potential function is given by

VRb2He(R,γ) =
NR

∑
i=1

Nγ

∑
j=1

αi j q
nx,m
1 (xi ,x)q

ny
2 (y j ,y), (1)

whereqn,m
1 andqn

2 are respectively distance-like and angle-like reproducing kernels as detailed in

Ref.51. In the above equation, the reduced coordinates

x = R2 (2a)

y = sin(γ), (2b)

such thatx∈ [0,∞] andy∈ [0,1], have been used. The three parametersnx, ny andm are all taken

equal to 2 to insure a smooth interpolation and the correct asymptotic behaviour.

The resulting two dimensional RKHS potential is shown in Figure 1. As it can be seen, the
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Figure 1: Equipotential contour lines of the potential energy of Rb2He. The equipotential contours
are in steps of 0.5 cm−1. Red and blue contours correspond to negative and positive energies,
respectively, and the green coutour (dashed) is the zero energy contour.

minimum of the potential corresponds to a T-shape geometry.It appears at a distance He-Rb2

6



of 6.30 Å and has a depth of 2.59 cm−1, which is in good agreement with theab initio result

mentioned above. The potential is attractive all around theRb2 diatomic molecule as emphasised

by the red contour lines in Figure 1. However in the linear geometry, the system is bound by only

−0.88 cm−1 at most. In order to assess the overall quality of the analytical potential, additional

104 ab initio energies randomly scattered in the spherical shellR∈ [5,25] Å and for which the

potential is below 200 cm−1, 10 cm−1, and 0.1 cm−1 have been determined. The corresponding

RMS errors of 0.49 cm−1, 0.17 cm−1, and 0.10 cm−1 underline the validity of the proposed global

surface.

Monte Carlo study of Rb2Hen

Description of the system and methods

The Rb2HeN system is described using the cartesian coordinates of the helium atoms, of the Rb2

center of mass, and the two angles giving the orientation of the diatomic principal axis. The

resulting Hamiltonian is

Ĥ =−
N

∑
j

D j
∂ 2

∂R2
j

+V(R), (3)

whereR is a vector in theN -dimensional space.D j = h̄2/2mj if the jth degree of freedom

corresponds to a translation, andD j = B0 if this degree of freedom corresponds to a rotation. In

the above equation,V is the potential between Rb2 and He and between the He atoms. Since two

rotations are allowed for the rigid linear rotor Rb2, N is equal to 3N+5. The potential interaction

for the full cluster is evaluated using the pair potential approximation. In addition to the Rb2-He

potential we have developed, the He-He interaction potential of Aziz et al.52 has been used. The

rotational constantB0 = 0.01061 cm−1 = 0.0152 K is computed using the geometry of Rb2 and

the massmRb = 84.91 amu.

The Schrödinger equation is solved using the quantum diffusion53–55and path integral56 Monte

Carlo methods (DMC & PIMC). For DMC, the two rotational degrees of freedom are sampled as
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explained in Ref. 57 using infinitesimal rotations of the principal axis frame of the Rb2 rigid rotor.

The implementation of DMC is done with a combination of weights and branching resulting in a

constant ensemble size.58,59 No guiding wave function has been used. For PIMC, we follow Ref.

56 and use the pair density approximation for the He-He interaction while using the simpler Trotter

approximation for the Rb2-He interaction. The implementation of rotational degreesof freedom in

PIMC has been summarized in Ref.60, and the application to linear molecules in4He nanodroplets

can be found in Refs.61,62.

The Rb2He system

Given the exteme shallowness of the interaction potential,an additional study of the smallest clus-

ter Rb2He is done using an approach different from Monte Carlo simulation. The close coupling

method is used to compute the rovibrational state of this vander Waals complex. For this study, the

Jacobi coordinatesR,γ are employed. The corresponding expression of the triatomic Hamiltonian,

within the rigid rotor approximation for Rb2 is

Ĥ =− h̄2

2µR
∂ 2

∂R2R+
L̂2

2µR2 +B0 ĵ2+VAk2He(R,γ) , (4)

whereµ is the Rb2 - He reduced mass,ĵ is the diatomic angular momentum andL̂ is the orbital

angular momentum describing the rotational motion of the Heatom relative to the Rb2 molecule.

As in the Monte Carlo calculations, the spin-rotation and spin-spin coupling interactions of the

diatomic molecule in the3Σ+
u state have been neglected. The close coupled equations, identical

to the ones arising in usual time-independent scattering calculations,63,64 are solved with the ap-

propriate bound state boundary conditions. The R-matrix propagator in the space-fixed reference

frame, implemented in our close coupling code, is used. The method is found quite stable, and no

stabilising transformations are needed. The detailed implementation of the method is found in Ref.

65.

The outward propagation, starting from the classically forbidden region and untilRmatch in the
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region of the potential well, allows the computation of the R-matrix Rout(Rmatch) at this matching

point. The inward propagation is done starting from the asymptotic region untilRmatchwhere the

R-matrix is notedRin(Rmatch). The eigenenergies of the system manifest themselves by a vanishing

determinant of the differenceRout(Rmatch)−Rin(Rmatch).

Calculations are made forJ, the quantum number related to the norm of the total angular

momentum of the system, being equal to zero, so that results can be directly compared with those

obtained with the DMC approach. Including 20 even rotational levels (ortho-states) fromj = 0 to

38 in the diatomic basis and propagating fromRmin = 2 Bohr toRmatch= 13 Bohr outward and

from Rmax= 100 Bohr toRmatchinward, a single bound state is found for the energy of−0.1927 K

(e.g. −0.1339 cm−1). The accuracy of this eigenenergy has been checked by varying both the

sector size andRmax. For a givenRmax, dividing the step size by a factor 2 does change the result

by less than 2%. For the optimal step size, a reduction ofRmax down to 50 Bohr does not affect the

energy value by more than 0.1 %.

Quantum Monte Carlo studies of Rb2HeN

We have simulated Rb2HeN clusters forN = 1,2,3,4,5,6,12 and 20 using PIMC at low tempera-

tures and DMC for up toN = 5. Due to the very weak attraction between Rb2 and He, the stronger

cumulative attraction among the He atoms leads to the formation of a cluster of the He atoms, to

which the Rb2 diatomic is weakly attached. Very low temperatures,T = 1/25.6 K for N = 1, . . . ,6,

andT = 1/6.4 K for N = 12,20, have been used in the calculations in order to prevent evaporation

of the weakly bound clusters.

Table 1 summarizes the total energies of the Rb2HeN clusters and the chemical potential of

4He, as obtained by PIMC and DMC simulations. For the PIMC results, we used a time step of

∆τ = (40K)−1, which is sufficiently small for the weak Rb2-He interaction. The DMC results are

extrapolated values with respect to both time step and ensemble size. The given associated error

bars are estimated from the extrapolation procedure. The statistical error bars of each of the DMC

computations, thus for a given time step and a given ensemblesize, are found smaller than the
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Table 1: EnergiesEN [in K] and chemical potential µN[He] [in K] of He for small Rb 2HeN clus-
ters obtained by PIMC and DMC. The temperatures of the PIMC studies areT = 1/25.6 K
for N = 1−6, and T = 1/6.4 K for N = 12,20.

PIMC DMC
N EN µN[He] EN µN[He]
0 0.0924 − 0.0 −
1 0.13±0.06 −0.02±0.06 −0.1929±0.0004 −0.1929±0.0004
2 −0.26±0.02 −0.45±0.09 −0.5623±0.0009 −0.3694±0.0013
3 −0.78±0.04 −0.58±0.06 −1.223±0.006 −0.6607±0.0069
4 −1.65±0.05 −0.91±0.09 −2.19±0.01 −0.967±0.016
5 −2.76±0.03 −1.18±0.08 −3.42±0.09 −1.23±0.1
6 −4.17±0.10 −1.45±0.13
12 −15.74±0.04 −
20 −37.03±0.05 −

inaccuracy resulting from the extrapolations. We varied the time step from 800 a.u. (0.0025 K−1)

down to 50 a.u. (0.00016 K−1) and the ensemble size up to 8000 walkers. ForN= 1 there is perfect

agreement between the DMC result and the result from the close coupling method mentioned

above. The PIMC energies (second column) are consistently higher than the DMC ground state

energies (fourth column), as expected at finite temperature. In particular the PIMC energy is

positive for the bare Rb2 molecule and the Rb2He dimer, although the latter is bound. The third

and fifth columns give the chemical potential for the He atomsfor PIMC and DMC, respectively.

The chemical potentialµN is the difference between the energy of the Rb2HeN cluster and the

sum of energies of Rb2HeN−1 and a free He atom. At zero temperature, it is simply the difference

µN[He]≡EN−EN−1, while at temperatureT we have to take into account the thermal energy of the

free He atoms,µN[He]≡EN−(EN−1+
3
2KBT). µN[He] decreases withN (i.e. the binding energy of

an additional4He atom increases withN) slowly towards the bulk limit of−7.2K. Our comparison

between PIMC and DMC in Table 1 shows that, despite large differences in total energies,µN[He]

is the same at zero temperature and at the temperature chosenfor the small clusters – within the

(fairly large) error bars of the PIMC result –, with the exception of the Rb2He dimer. This means

the calculation of the chemical potential is essentially unaffected by temperature.

From our PIMC calculations we computed the probability density ρRb2(r) to find the center of
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mass of Rb2 at a distancer from the center of mass of the HeN cluster. The densities are shown

in Figure 2 for the cluster sizes studied. ForN = 1, ρRb2(r) is of course peaked at the average
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Figure 2: The probability densityρRb2(r) to find the center of mass of Rb2 at a distancer from
the center of mass of the HeN cluster forN = 1;2;3;4;5;6;12;20. ForN = 1−6, the temperature
is T = 1/25.6 K, and forN = 12 and 20T = 1/6.4 K.

distance between Rb2 and He. Note thatρRb2(r) falls off very slowly with r → ∞, because of

the low binding energy. ForN = 2, we see thatρRb2(r) is nonzero atr = 0, thus there is a finite

probability that the two He atoms are on opposite sides of thecenter of mass of Rb2. If, upon

further increasingN, ρRb2(r) developed a peak atr = 0, this would indicate that Rb2 is solvated

inside HeN. However, as expected from the weak Rb2-He attraction, already forN = 3, ρRb2(r)

vanishes atr = 0 and presents a broad peak at a finite value ofr. This means that the He atoms have

zero probability to spread evenly around Rb2, but rather cluster together. Upon further increasing

N, the peak narrows and the position shifts to even largerr. This can be seen forN = 20, where

the Rb2 center of mass is well localized at about 11 Å from the center of mass of the4He20 cluster.

In Figure 3, we show a color map of the He densityρHe(r,z) in the coordinate frame defined

by the center of mass of Rb2 and the molecule axis asz-axis, for N = 1− 6,12,20. The color

encoding is logarithmic. With increasingN, the probability to find He atoms at the poles of Rb2

indeed decreases, which is another indication that the He atoms cluster together, leaving Rb2 on the

“surface” of the cluster. The HeN cluster and Rb2 are attached to each other such that the cluster
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Figure 3: The He densityρHe(r,z) in the coordinate frame defined by the center of mass of Rb2 and
the molecule axis asz-axis, forN = 1−6,12,20. ForN = 1−6, the temperature isT = 1/25.6 K,
and forN = 12,20T = 1/6.4 K.

resides as close as possible to the potential minimum. Thus,the Rb2 axis and the line between the

center of mass of Rb2 and of HeN form a T shape. Extrapolating to the limit of large He droplets,

as produced in experiments (N = (103−104)), the Rb2 should swim on the surface of the droplet

with its axis parallel to the surface. This is confirmed by simulations of Rb2 on the flat surface of

a He film in the following section.

In Ref. 16, Bovinoet al. studied Li2-HeN clusters for both the1Σ+
g and the3Σ+

u state of Li2.

In both cases, Li2 was found to reside on the surface of the clusters, where Li2(1Σ+
g ) favors an

orientation perpendicular to the4He cluster surface and Li2(3Σ+
u ) a parallel orientation. Although

the translational and rotational zero-point motion of Li2 is considerably larger than for Rb2, the

latter result is consistent with our result of a flat orientation for Rb2 in the 3Σ+
u state. Although

Li2 is a homonuclear molecule with a corresponding symmetric interaction with4He, the4He
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distribution around Li2 was found to beasymmetricfor N = 20. This is a notable difference to our

results on Rb2 where we see no evidence for such a peculiar asymmetry.

Rb2 on a 4He surface

We have performed PIMC simulations of Rb2 on the surface of a He film, with the aim of an

approximate representation of Rb2 on the surface of a large He droplet,N = O(103 − 104), as

studied in experiments. The flat He film was simulated by 224 Heatoms adsorbed on an artificial

layer of solid He, at a temperature ofT = 1/3.2K. In the two directions parallel to the film surface,

periodic boundaries (L≈ 28Å) are applied, which implies about 4 “layers” of superfluid He. Since,

due to the weak interaction with He, Rb2 is adsorbed on the surface instead of being solvated by

He, the layered structure of the He film (as opposed to the smooth density inside a He droplet) is

not expected to greatly affect our results on structure and dynamics.

Structure

In Figure 4, we plot the angular probability distributionρ(cosθ) of the angleθ between the Rb2

axis and the surface normal. The orientation of the Rb2 axis is fluctuating around an orientation

parallel to the surface, with zero probability for a perpendicular orientation. Therefore, a rotation

of the molecule out of the surface is impossible for low rotational states, and pendular motion is the

only relevant motion. Since the distributionρ(cosθ) is narrow around cosθ = 0, the orientational

dynamics of Rb2 can be approximated as the direct product of a planar 2D rotormode and a

pendular mode. We will discuss the dynamics of pendular motion and planar rotation further

below.

Just like for adsorbed alkali atoms, the He density is deformed below the Rb2 molecule: the

adsorbed Rb2 forms a dimple on the He surface. In Figure 5 we show the He density with respect to

the center of mass and to the projection of the Rb2 axis on the film plane. The figure shows a quarter

of the dimple, the rest follows by reflection symmetry about thexzandyzplanes. The He density is
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Figure 4: Angular distributionρ(cosθ) of the molecule axis of Rb2 on a He surface.θ is defined
with respect to the surface normal. The error bars are smaller than the symbols. The line is a
Gaussian fit.

illustrated by a blue isosurface (at half the equilibrium density of bulk4He) as well as a color map

of the density below in thexzandyzcut planes. The reference frame for the He density is defined

by the Rb2 location and orientation: the center of mass is situated at (0.,0.,0.), and the projection

of the molecular axis on the plane of the surface defines thex-axis. Since Rb2 is adsorbed with

the molecule axis essentially parallel to the surface, the dimple is of course anisotropic, with two

minima roughly below the two Rb atoms. This can be seen better in Figure 6, where we show

the isosurface of the He density at half the equilibrium density of 4He again, with additional color

indicating the height of the isosurface in a quantitative manner. The two dimple minima are about

2.6Å deep, measured with respect to He surface further away from the Rb2 molecule. This is to be

compared to the average distance of the Rb2 center of mass from the He surface which has a value

of 3.8Å. This is larger than the depth of the dimple which means that the dimple is indeed shallow.

The density representation in Figure 5 contains also information about the density deep inside

the He film, namely in thexzandyzplanes. We see significant layering below the dimple, which

is due to interaction with the wall adsorbing the4He film. Since these layers are well below the

dimple, they will have only a small effect on Rb2. In addition to this layering of the He film

unrelated to Rb2, there is a density increase right below the “waist” of the Rb2 molecule in the
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Figure 5: The figure shows a quarter of the anisotropic dimplein the He surface below Rb2, the
rest follows by reflection symmetry about thexzandyzplanes. The He surface is illustrated by a
blue isosurface, with the density shown in in thexzandyzcut planes (see text for details).

yzplane. There, the Rb2-He interaction is strongest, attracting additional helium – but not strong

enough to lead to full solvation of the moleculeinsidehelium.

Dynamics

In the following three paragraphs we approximate the dynamics by assuming that the in-plane and

out-of-plane rotations of Rb2 are not coupled. As it will turn out that the excitation energies of the

latter motion are by two order of magnitude larger than the former, this assumption makes indeed

sense.
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Figure 6: Isosurface of the He density relative to the Rb2 molecule for half the equilibrium density
0.022/2 Å−3, with the Rb2 center of mass at (0.,0.,0.).

Mean field approach: Pendular oscillations

We first treat the pendular motion in a mean field approach. This assumes that it can be described

by an effective Hamiltonian

Heff = B0L̂2+VH(cosθ) (5)

whereL̂ is the angular momentum operator acting on the angle variable θ andφ of the molecule

axis, andVH is an effective static mean field potential generated by the He environment, which by

symmetry is independent ofφ .

Explicitely, Heff is given by (u≡ cosθ )

Heff =−B0

( ∂
∂u

(1−u2)
∂
∂u

+
1

1−u2

∂ 2

∂φ2

)

+VH(u). (6)

The angular probability distributionρ(cosθ), see Figure 4, is localized aroundu = cosθ = 0,

hence we assumeu2 ≪ 1 and use the following approximation forHeff

Heff ≈−B0
∂ 2

∂u2 +VH(u)−B0
∂ 2

∂φ2 (7)

which decouplesthe out-of-plane rotation associated withθ and the in-plane rotation associated
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with φ . In the mean field approach the latter motion is free, leadingto an effective rotational

constant identical to the gas phase rotational constant. A better approximation to the in-plane

rotation (still assuming decoupling, but exact otherwise)is used in the section below.

For smallu, the mean field potentialVH(u) can be approximated byVH(u) ≈ au2, leading to

harmonic pendular states for the out-of-plane rotation,i.e. Hermite polynomials. In particular the

ground state is given by a Gaussianψ0(u)∼ e−αu2
, with α = 1

2

√

a
B0

. Indeed, we fitted a Gaussian

ψ2
0(u) = e−2αu2

to ρ(u) and obtained a virtually perfect fit, yieldingα = 15.1 (±0.1%), see also

Figure 4. The resulting potential parameter isa = 13.9K. The ground state energy (zero point

energy) is thusE0 = 1
2h̄ω =

√
aB0 = 0.47K, and the pendular excitation energies follow from

En−En−1 = h̄ω = 0.94K.

Full dynamics: Planar rotation

The above mean field approach would yield only the trivial approximationBeff = B0 for the planar

rotational constant. Keeping the assumption of decoupled in-plane and out-of-plane rotations, we

can improve on the estimate ofBeff by using the path integral correlation function (PICF) method,

where we fit the imaginary time correlation function obtained by PIMC to the exact free 2D rotor

correlation function, usingB as a fitting parameter. We have employed this method for OCS in

4HeN cluster and obtained good results forBeff.62

The 2D rotor correlation function can be derived easily, because the exact wave function is

known: 〈φ |m〉= ψm(φ) = eimφ√
2π , whereH|m〉=−B ∂ 2

∂φ2 |m〉= Bm2|m〉. With the appropriate corre-

lation operatoreiMφ , we first define the associated spectral function

SM(ω) =
1
Z ∑

mn
δ (h̄ω −Em+En)e

−βEn|〈m|eiMφ |n〉|2

=
1
Z ∑

n
δ (h̄ω −B(M+n)2+Bn2)e−βBn2

, (8)

with Z = ∑ne−βBn2
. SM(ω) cannot be sampled directly with PIMC, but its Laplace transform can
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be sampled:

FM(τ) =
∫ ∞

−∞
dωe−ωτSM(ω) =

1
Z ∑

n
e−B(M+n)2τe−Bn2(β−τ). (9)

FM(τ) can be calculated by bringing it into the following form

FM(τ) =
1
Z

Tr
{

eiM(φ(τ)−φ(0))e−βH
}

(10)

which can be trivially sampled by PIMC.

In Figure 7 we plot the imaginary time correlation functionFM(τ) for the lowest angular mo-

mentum quantum numberM = 1, fromτ = 0 toτ = β/2. The free 2D rotor fit yielding an effective

0.988

0.992

0.996

1.000

0.0 0.4 0.8 1.2 1.6

F 1
(τ

)

τ [1/K]

PIMC
fit

Figure 7: Correlation functionF1(τ) and free 2D rotor fit yielding an effective rotational constant
Beff. Its value is 103%±3% of the gas phase valueB0, i.e. indistinguishable fromB0. For better
visibility, only every other PIMC data point is plotted.

rotational constantBeff is also shown. The fittedBeff value is 103%±3% of the gas phase value

B0, i.e. indistinguishable fromB0 within the error bar. Fitting toFM(τ) for M = 2, . . . ,5 gives the

same result. This means that Rb2 rotates almost freely in the film plane, with only weak coupling

to surface excitations (ripplons) of the He film. Hence the rotational dynamics of the heavy rotor

Rb2 on the surface of helium is very different from the dynamics of heavy rotors solvated inside

helium, where a reduction to only 20-40% of the gas phase value is found.3 Information about

the coupling of adsorbed molecules like Rb2 with surface excitations could be extracted by study-
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ing decay mechanism, leading to a homogeneous linewidth, but such detailed information about

rotational spectra cannot be obtained by PIMC.

Full dynamics: Pendular oscillations

As for the in-plane rotation, we use the PICF method to calculate the excitation energies of the

pendular states including dynamic coupling between Rb2 and the He film as opposed to the mean

field approach above. For that purpose we sample a suitable correlation function. The resulting

correlation function is fitted by the corresponding correlation function of the harmonic oscillator.

We expect changes from the mean field result, due to aperpendiculareffective moment of inertia

due to the dynamic response of the helium.

The pendular term of the approximate effective HamiltonianHeff Eq. (5) is equivalent to a

1D harmonic oscillator. Hence we need to calculate an appropriate correlation functionF(t) in

imaginary time. The parameters to be fitted to the PICF are the rotational constantB and the

potential parametera.

The Hamiltonian of a particle of massM in a one-dimensional harmonic oscillator potential

of frequencyω is

H =
h̄2

2M

d2

du2 +
1
2
M ω2u2. (11)

Comparing with the effective pendular Hamiltonian in the approximation of small pendular oscil-

lations, Eq. (7), we can therefore associate

B≡ h̄2

2M
, a≡ 1

2
M ω2, (12)

hence

h̄ω = 2
√

aB. (13)

We choose the auto-correlation function of the coordinateu= cosθ

F(τ) = 〈u(τ)u(0)〉β =
1
Z

Tr{u(τ)u(0)e−βH}. (14)
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We calculate the trace in the basis of the harmonic oscillator states|n〉. The canonical partition

function is

Z = Tr{e−βH}= e−β h̄ω/2

1−e−β h̄ω . (15)

We expressu in terms of the creation and annihilation operator of harmonic oscillator states to

obtain the matrix elements needed for calculatingF(τ),

F(τ) =
1
Z ∑

n,m
|〈n|x|m〉|2e−τh̄ω(m+1/2)e−(β−τ)h̄ω(n+1/2)

=
1
Z

B
h̄ω ∑

n
e−β h̄ω(n+1/2)

[

(n+1)e−τh̄ω +ne+τh̄ω
]

. (16)

The (derivatives of) the geometric sums can be evaluated to obtain the simple analytical expression

F(τ) = B
1

h̄ω
e−(β−τ)h̄ω +e−τh̄ω

1−e−β h̄ω . (17)

The parameters̄hω andB appearing inF(τ), Eq. (17), can now be obtained by fitting to the exact

auto-correlation functionF(τ) which we sample by PIMC.

In Figure 8, we plotF(τ) obtained by PIMC (symbols) and the effective free harmonic oscilla-

tor fit (full line). The fit yields a reduced effective rotational constantB= Beff for the pendular mo-

tion, with a value of 87% of the gas phase valueB0. The fitted oscillator frequency is̄hω = 0.89K,

which is slightly lower than the value 0.94K obtained by the mean field approach above. For com-

parison, we also showF(τ) with the parameters obtained in mean field approximation (dashed

line), which has only qualitatively the right shape, but does not agree quantitatively with the exact

F(τ) from PIMC.

Superfluidity and Bose-Einstein condensation

At the temperature of our PIMC simulations,T = 0.31K, 4He is essentially 100% superfluid if not

perturbed by the interaction with the adsorbed Rb2 molecule. Note that the same applies for the

interaction due to the wall, which is not the focus of this work. The suppression of superfluidity
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Figure 8: Correlation functionF(τ) obtained by PIMC (symbols) and the free HO fit (blue line)
yielding a reduced effective rotational constantBeff for the pendularmotion. For comparison,
F(τ) computed with the parameters obtained in mean field approximation (green dashed line) is
also shown. For better visibility, only every other PIMC data point is plotted.

of 4He close to molecules inside4He nanodroplets has been actively investigated by PIMC simu-

lations.66,67 The concept of the local nonsuperfluid fraction adiabatically following the molecule

rotation permits to quantitatively account for the increase of the effective moment of inertia for

heavy molecules. The local superfluid density is calculatedby a coordinate-dependent area esti-

mator.68 The local nonsuperfluid density is obtained by subtraction of this local superfluid density

from the total density. In the present case, one can expect that the superfluid fraction for a rotation

axis perpendicular to the surface is only slightly suppressed below the Rb2 molecule, because the

Rb2-He interaction is weak. The nonsuperfluid density is therefore a small quantity resulting from

the difference of two large numbers, both of them afflicted bystochastic noise from the PIMC

simulation. Furthermore, due to the position of the molecule on the surface of4He rather than at

the center of the droplet, arguments based on rotational symmetry of linear rotors cannot be used

to lower the computational cost. Instead we would have to sample the local superfluidity in all

three dimensions. The area estimator is subject to large stochastic noise, which would be amplified

by orders of magnitude by three dimensional binning. In conclusion, we doubt that the probably

small local nonsuperfluid fraction below the Rb2 can be obtained in reasonable simulation times.
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A more appropriate starting point for the study of the local nonsuperfluid fraction induced by a sur-

face adsorbed dopant would be a particle of spherical symmetry, e.g. an alkali atom. Furthermore,

it would be favorable to have a steep dimple rather than a shallow one, since the nonsuperfluid

fraction would be larger.

The notion of Bose-Einstein condensation is usually not invoked in the field of spectroscopy

of doped4He nanodroplets. Nevertheless, the expected modification of the condensate fraction

by an adsorbed particle on4He is an interesting question. The condensate fraction is only 7-

8% in bulk 4He due to condensate depletion by the He-He interactions. However, as we move

away from the surface towards the vacuum side, the condenstate fraction tends towards 100%

because4He becomes more and more dilute (less interaction). An adsorbed particle like the Rb2

molecule increases the interaction for4He atoms below the adsorbant, thus this should lead to

a local depletion of the surface condensate. As for the localnonsuperfluid fraction below the

adsorbant, a spherical particle would be a more appropriatestarting point to study the depletion

effect.

Conclusions

Superfluid helium nanodroplets have become a unique tool forlow temperature matrix spec-

troscopy of isolated atoms and molecules, and of molecular complexes. Helium nanodroplet

isolation spectroscopy has made possible numerous high resolution spectroscopic studies of the

high-spin alkali dimers bringing valuable insight into their properties at the microscopic level.

In this work, a study of Rb2 in its ground triplet state in a weakly perturbing environment of

superfluid4He has been presented. We have neglected the vibrational motion of the Rb2 molecule,

treating the molecule as a rigid rotor. A study of small Rb2HeN clusters showed an agglomeration

of the He atoms to a cluster and a localization of Rb2 outside of the He cluster. In addition,

we found a parallel orientation of Rb2 with respect to the surface of the helium cluster. This

orientation is confirmed in a further study of Rb2 on the surface of an infinite helium film taken as
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an approximation to the surface of a large He droplet of thousands of He atoms, as typically used

in experiments. Analysis of the He density relative to Rb2 shows that even in the limit of a flat

surface, only a shallow (anisotropic) dimple forms in the Hefilm below the Rb2 molecule, with a

maximum depth of only 2.6Å. The rotational dynamics of Rb2 on a helium surface indicate that the

in-plane rotation is weakly perturbed by the He surface. Conversely, the out-of-plane rotation is

completely hindered, allowing only pendular motion of the Rb2 molecule that is well approximated

by harmonic oscillator modes with a frequency ofh̄ω = 0.89K, similar to the result of a simpler

mean field treatment.

These studies are done using a completely new potential energy surface, calculated at theab

initio level using the CCSD(T) method, with a recent effective core potential for the rubidium

atom. The analytic representation of the potential, implemented using the RKHS method, is found

to reproduce well theab initio data.

In addition to the Monte Carlo calculations, the bound statesof the smallest cluster, Rb2He,

have been determined with the close coupling method. The energy obtained for the unique bound

state of this van der Waals complex is found to be in good agreement with the DMC result.

In the future, several important points deserve to be studied. First of all, the vibration of Rb2

should be taken into account. A full 3-dimensional potential energy surface is currently under

construction in our group. Such a surface is a mandatory firststep to provide a theoretical insight

of the recent experimental results on the decoherence of vibrationally excited alkali dimers on

the surface of helium droplets.15,19,20,69Secondly, the spin statistics, entirely neglected here, along

with the fine structure of Rb2 in triplet states could play an important role. The questionof possible

effects of helium atoms on the fine structure constants couldthen be addressed. On the longer term,

the question of electronic excitations of Rb2 could be looked at. However, the accurate calculation

of electronically excited states of such an heavy alkali dimer remains itself a considerable challenge

which is increased by the need to represent the weak interaction with helium atoms. Still the

presence of many crossings and non adiabatic couplings between these excited electronic states

could be the ground of spectroscopic and dynamical subtleties.
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