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Introduction

In this note we are concerned with linear control systems of the form (1.1)

   x (t) + Ax(t) = 0 (t > 0), x(0) = x 0 , y(t) = Cx(t) (t > 0),
where -A is the generator of a strongly continuous semigroup (T (•)) on a Banach space X. The function x(•) takes values in X, and the function y(•) takes values in a Banach space Y . The observation operator C may be an unbounded operator from X to Y . A commonly used minimal assumption on C is that C is bounded X 1 → Y where X 1 denotes the domain D(A) of A equipped with the graph norm. We refer, e.g., to [START_REF] Salamon | Infinite-dimensional linear systems with unbounded control and observation: a functional analytic approach[END_REF][START_REF] Staffans | Well-posed linear systems[END_REF][START_REF]Admissible observation operators for linear semigroups[END_REF][START_REF] Weiss | Admissibility of unbounded control operators[END_REF].

Definition 1.1. Let Y ∞ be a space of functions R + → Y and let, for each τ > 0, denote Y τ the restricted space of functions on [0, τ ]. Then the system (1.1) is called Y τ -admissible for τ ∈ (0, ∞] if the output of the system (1.1) depends continuously on initial state, i.e. if the mapping

X → Y τ , x 0 → y(•) is continuous.
If X and Y are Hilbert spaces, a natural choice for

Y τ is Y τ = L 2 ([0, τ ], Y
). We mainly focus on infinite-time admissibility, that is the case τ =∞. We will write shorthand L 2 -admissibility instead of L 2 (R + ; Y )-admissibility. In other situations, other norms such as the L p -norm may be useful (see e.g. [START_REF] Haak | On Kato's method for Navier-Stokes equations[END_REF]).

In this note we discuss the failure of the Weiss conjecture. In order to do so, we treat the case where Y is a Lorentz-Bochner space L p,q (0, τ ; Y ). We recall some basic definitions and properties of these spaces. We refer to [START_REF] Grafakos | Classical and Modern Fourier Analysis[END_REF][START_REF] Hunt | On L(p, q) spaces[END_REF] for references and further results if Y = C. The vector-valued spaces are discussed e.g. in [START_REF] Blasco | Lorentz spaces of vector-valued measures[END_REF]. We recall the definitions. Let Y be a Banach space. For a measurable, Y -valued function f on a measure space (Ω, µ), define the distribution function

d f (α) = µ ({ω ∈ Ω : f (ω) > α})
of f and the non-decreasing rearrangement f * of f as

f * (t) = inf{s > 0 : d f (s) ≤ t}.
If f is a continuous, real-valued, positive and decreasing function on [0, ∞), it is easy to see that f * = f . For 1 ≤ q ≤ ∞ and p > 1, the Lorentz-Bochner space L p,q (Ω; Y ) is defined as the set of all measurable functions such that the (quasi)norm

f L p,q (o,τ ;X) =          ∞ 0 t 1 /p f * (t) q dt t 1 /q if 1 ≤ q < ∞ sup{α 1 /p d f (α) : α > 0} if q = ∞ is finite. If Y = C
we will simply write L p,q (Ω). Notice that by Fubinis theorem, L p,p (Ω) = L p (Ω). The space L p,∞ is also called weak-Lebesgue space. A typical weak-L p (R + ) function that is not in

L p (R + ) is f (x) = |x| -1 /p
. Lorentz spaces are "natural" function spaces in since they are real interpolation spaces between usual Lebesgue spaces, see [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF]. As such, they appear in the context of the Weiss conjecture, as will be explained in the next section in detail.

Recall the definition of a sectorial operator: a densely defined operator A on a Banach space X is called sectorial of angle ω

∈ [0, π) if the spectrum of A is contained in the open sector S ω = {z ∈ C * : | arg(z)| < ω} and if for all larger angles θ ∈ (ω, π), the operators {λ(λ + A) -1 : λ ∈ S θ }
are uniformly bounded. Negative generators of bounded C 0 -semigroups are sectorial of angle π / 2 . Bounded analytic C 0 -semigroups are characterised by uniform boundedness of the operators tAT (t), t > 0. They are precisely those semigroups whose (negative) generator is sectorial of angle < π / 2 (see e.g. [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF] for details).

2. The Weiss condition and decay rates of observed semigroup orbits Definition 2.1. Let -A be the generator of a bounded strongly continuous semigroup on a Banach space X and C ∈ B(D(A), Y ) be an observation operator. We say that (A, C) satisfies the Weiss condition if the operators By the Laplace transform,

(2.1) Re(λ) 1 /2 C(λ + A) -1 , Re (λ) 
(2.2) C(λ+A) -1 x = ∞ 0 e -λt CT (t)x dt for x ∈ D(A). If C is L 2 -admissible, i.e. if CT (•)x ∈ L 2 (R + ; Y ), taking norms in (2.
2) and using Cauchy-Schwarz inequality (2.1) follows. The Weiss conjecture [START_REF]Two conjectures on the admissibility of control operators, Estimation and control of distributed parameter systems (Vorau[END_REF] states that if X and Y are Hilbert spaces, L 2 -admissibility and the Weiss condition (2.1) are equivalent. This equivalence is known to be true in a certain number of cases, for instance for normal semigroups [START_REF]Two conjectures on the admissibility of control operators, Estimation and control of distributed parameter systems (Vorau[END_REF] or semigroups of contractions with scalar output [START_REF] Jacob | The Weiss conjecture on admissibility of observation operators for contraction semigroups[END_REF]. However, the conjecture is wrong, even in a restricted version were the output space is Y = C [START_REF] Jacob | Counterexamples concerning observation operators for C 0semigroups[END_REF]. For more results and references concerning the Weiss conjecture we refer to the survey [START_REF]Admissibility of control and observation operators for semigroups: a survey, Current trends in operator theory and its applications[END_REF]. Recall the following result of Le Merdy.

Theorem 2.2 ( [10, Theorem 4.1]). Let T (t) be a bounded analytic semigroup on a Banach space X. Assume that its generator -A is injective and that C satisfies the Weiss condition (2.1). Then C is (infinite time) L 2 -admissible provided that A admits upper square function estimates.

It is known [START_REF] Le | The Weiss conjecture for bounded analytic semigroups[END_REF] that the extra assumption of upper square function estimates in Le Merdy's theorem cannot dropped: it suffices to observe that C = A 1 /2 satisfies (2.1), and that admissibility of A 1 /2 actually is an upper square function estimate. What can be obtained instead of L 2 -admissibility when dropping the assumption of upper square function estimates? We give an answer in the next two theorems.

Theorem 2.3. Let T (t) be an exponentially stable analytic semigroup on a Banach space X. Then the following conditions are equivalent.

(a) The Weiss condition (2.1) (b) There is a constant K > 0 such that

(2.3) CT (t)x Y ≤ Kt -1 /2 x X , t > 0 (c) C is L 2,∞ admissible.
The next result tells us that the weak Lebesgue norm is optimal in the sense that it is the endpoint for the 'Weiss conjecture' within the scale of Lorentz spaces L p,q . Theorem 2.4. There exists an exponentially stable analytic semigroup T (t) on a Hilbert space H and a scalar valued observation operator C such that CT (•)x is not in any L 2,q (0, τ ; Y ) for whatsoever choice of q < ∞ or τ > 0.

Proof of Theorem 2.3. We first show the equivalence of (a) and (b). In [START_REF] Haak | Perturbation, Interpolation, and Maximal Regularity[END_REF]Corollary 4.7] it is shown that the Weiss condition is equivalent to C being bounded from Z to Y , where Z := (X, Ẋ1 )1 /2,1 is the real interpolation space between X and the homogeneous domain space Ẋ1 of A. Since A is invertible, Ẋ1 = X 1 . On the other hand, for analytic semigroups, the space Z is characterised by the fact that

CT (t) Z→Y t -1 /2 .
This is essentially shown in [5, Proposition 3.9]. For the sake of completeness we repeat the short argument. Indeed, by analyticity of the semigroup, T (t) X→ Ẋ1 t -1 and T (t) Ẋ1→ Ẋ1 1 and from the boundedness of C on X 1 we deduce

CT (t) X→Y t -1 and CT (t) Ẋ1→Y 1.
The estimate Z → Y then follows by interpolation. For the converse, notice that

Cx Y = c ∞ 0 CAT (2t)x dt Y ≤ c ∞ 0 CT (t)AT (t)x Y dt ≤ c ∞ 0 t -1 /2 AT (t)x Y dt ∼ c x Z .
Putting both results together we obtain that the Weiss condition (2.1) is equivalent to (2.3). It is clear that (b) implies (c). The remaining implication can be shown in Hilbert spaces by a dyadic decomposition argument and Fourier transform. The following quicker and more general argument has been pointed out to us by Peer Kunstmann: let Re(λ) > 0 and f (t) := e -Re(λ)t on [0, ∞). Then f * (t) = f (t) since f is decreasing and continuous. One has therefore [START_REF] Grafakos | Classical and Modern Fourier Analysis[END_REF]Theorem 1.4.17]) and the Laplace transform (2.2) to conclude that

f L 2,1 (R+) = ∞ 0 t 1 /2 f * (t) dt t = Re(λ) -1 /2 ∞ 0 s -1 /2 e -s ds = Re(λ) -1 /2 Γ( 1 / 2 ). Now use the duality (L 2,1 (R + )) = L 2,∞ (R + ) (see
C(λ + A) -1 x Y ≤ ∞ 0 CT (t)x Y f (t) dt ≤ f L 2,1 (0,∞) CT (•)x L 2,∞ (R+;Y ) ≤ CRe(λ) -1 /2 x .
Proof of Theorem 2.4. Recall that Lorentz spaces satisfy L 2,p ⊂ L 2,q for p ≤ q. It suffices therefore to show that C is not L 2,q -admissible for any finite q > 2. To this end we fix 2 < q < ∞. The idea is to extend the counterexample of Jacob and Zwart [START_REF] Jacob | Counterexamples concerning observation operators for C 0semigroups[END_REF] in the following sense: not only do we pass from q = 2 to q ≥ 2 (recall L 2,2 = L 2 ), but, in contrast with their abstract argument referencing to interpolation sequences, we simply provide an explicit element x ∈ H for which the observed orbit CT (t)x does not lie in the Lorentz space L 2,q (0, τ ; Y ). The main idea however is identical to the construction of Jacob and Zwart: on Hilbert spaces there exist conditional bases (e n ) that satisfy (a) (e n ) is not Besselian, i.e. there is no constant c B > 0 such that

|α k | 2 ≤ c B α k e k .
(b) (e n ) is Hilbertian, i.e. there is a constant c H > 0 such that

α k e k ≤ c H |α k | 2 . (c) inf e n > 0 A concrete example is given in [12, Example II.11.2]: let β = 1 2q ∈ ( 1 4 , 1 2 
) and consider e 2n (s) = |s| β e ins and e 2n+1 (s) = |s| β e -ins on H = L 2 (-π, π). Let T (t) be the exponentially stable and analytic semigroup given by T (t)e n = e -4 n t e n and consider an observation operator C : H → C given by Ce n = 2 n for n ∈ N. so that ξ n = 2n -γ cos(γπ/2)Γ(γ) + O( 1 n ). In our case, γ = 1 -2β, and so ξ n ∼ n 2β-1 = n -1 /q when n → +∞. Finally notice that ξ n ≥ 0 since

Thus, if x = ξ k e k , |CT ( 
ξ n = 2 n-1 l=0 2π 0 (2πl + x) γ-1 cos(x) dx and each term in the sum is positive : let f (x) = (2πl+x) γ-1 . Then f ∈ C ∞ (R + ) is positive, decreasing and convex. Therefore, g(x) = f (x) -f (x+π) satisfies g (x) = f (x) -f (x+π) = πf (η) ≤ 0. So g is decreasing and positive. Thus, 2π 0 f (x) cos(x) dx = π 0 f (x) -f (x+π) cos(x) dx ≥ 0.
Now let us come back to the observed semigroup orbits: recall that for exponentially stable semigroups admissibility in arbitrary small finite time or in infinite time are equivalent. The lack of L 2,q -integrability must therefore happen near the origin. For our choice of x ∈ H and t ∈ [4 -n-1 , 4 -n ), one has

|CT (t)x| = ∞ k=0
ξ k 2 k e -4 k t ≥ ξ n 2 n e -1 ∼ n -1 /q 2 n ∼ (1+| log(t)|) -1 /q t -1 /2 =: f (t).

But f ∈ L 2,q (0, τ ) howsoever we choose τ ∈ (0, 1).

Open problem: An inspection of the proof of Theorem 2.3 shows that the implication (b) ⇒ (c) ⇒ (a) always holds. It is only for (a) ⇒ (b) that analyticity is used. This hypothesis is not optimal since the implication is trivially true in all cases when C is even L 2 -admissible (i.e. when the Weiss conjecture holds). It follows that on Hilbert spaces the cases of (a) norm-continuous semigroups, (b) normal semigroups, (c) exponentially stable right invertible semigroups and (d) in case Y = C contraction semigroups and (e) diagonal semigroups on a Riesz basis are covered (see [START_REF]Admissibility of control and observation operators for semigroups: a survey, Current trends in operator theory and its applications[END_REF] for references). Our analysis of an non-Riesz basis example underlines further the idea that the Weiss condition (2.1) and L 2,∞ -admissibility should be equivalent on Hilbert spaces.

  > 0 are uniformly bounded in B(X, Y ) when λ runs through the open right half plane.

t)x| = k 2 k 0 s γ e ins ds s = n -γ πn 0 s γ e is ds s . 0 s γ e ins ds s = n -γ e iπγ/ 2 πn 0 s γ e -s ds s - π / 2 0(

 200s0202 e -4 k t ξ k . Let x(s) = |s| -β 1 [-π,π] . Since x is square integrable, there exist (ξ n ) such that x(s) = n≥0 ξ n e n (s). )|s| -β e -ins ds and ξ 2n+1 = 1 2π π -π x(s)|s| -β e ins ds. Let us determine the growth order of the coefficients: by symmetry, ξ 2n = ξ 2n+1 . Let γ > 0. Then π The function ϕ(z) = z γ-1 e iz is holomorphic on the open right half plane. By deplacing the integral from [0, nπ] to the positive imaginary axis, π nπe iθ ) γ e inπe iθ dθ .The first integral behaves as n -γ e iπγ/2 Γ(γ) + O( 1 n ); the second is O( 1 n ) as can be seen by estimating e -nπ sin(t) using 2 π t ≤ sin(t) ≤ t on [0, π / 2 ]. By complex conjugation, 0 -π |s| γ e ins ds s = π 0 s γ e -ins ds s = π 0 s γ e ins ds s .
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