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Optimization of the boundary conditions by genetic algorithms 
 
 

                                                            J.L. Marcelin 
 
 
Abstract – This work examines the possibility of using a stochastic method, called the genetic 
algorithm for the optimization of boundary conditions in finite elements calculations. The 
examples show that using genetic algorithms in order to optimize boundary conditions is an 
efficient way. Copyright © 2012 Praise Worthy Prize - All rights reserved. 
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I. Introduction 

   In numerous application cases (e.g. taking workpieces 
in machining, vibrations of a mechanical structure), the 
optimization of boundary conditions (location and 
nature of the boundary conditions) can bring an 
interesting improvement of the studied structure's 
mechanical behavior. These structures are most often 
calculated with the finite element method, and within 
this framework, the calculation of the sensitivities with 
regard to the boundary conditions remains enough 
complicated due to the discrete nature of the problem, 
and for example, in shape optimization, the boundary 
conditions problem is even most often eluded. Besides, 
the deterministic methods of optimization, called 
gradient methods, need a reliable calculation of these 
sensitivities. Some other stochastic or probabilistic 
methods of optimization are currently in vogue, like the 
simulated annealing method or that of genetic 
algorithms, which main benefits are they assure 
convergence without the use of derivatives, and can be 
used with possibly discrete variable and non-derivable 
functions. The detractors of this method point up 
without reason the high number of calculations, 
especially in the case of an analysis method of finite 
element type.  

    The author has a great experience in genetic 
algorithms ([1] to [6]). Few researches have been made 
on the boundary conditions optimization, and in the 
structural mechanics field, there are almost none. The 
[7] work, described below, deals with the optimization 
of the boundary conditions in electromagnetism. In [7], 
a methodology based on the genetic algorithm is 
proposed to determine the equivalent impedance 
boundary condition for corrugated material coating 
structures. We have find only two papers at our 
knowledge in the structural mechanics field [8] and [9], 
and only one [9] with the use of genetic algorithms. In [8], 
optimization of boundary conditions for maximum 
fundamental frequency of vibrating structures is done. In [9] 
the use of genetic algorithms for the selection of optimal 

support locations of beams is presented. Both elastic 
and rigid supports are considered. The approach of 
adapting the genetic algorithms into the optimal design 
process is described. This approach is used to optimize 
locations of three supports for beams with three types of 
boundary conditions.  

     This article relates to fixed geometry and is to show 
that the optimization of boundary conditions is feasible 
by combining a genetic algorithm and the finite element 
method (the optimization of boundary conditions in 
shape optimization will be dealt with in future research). 
Indeed, in the case of a fixed shape and because of the 
characteristics of the finite element method, the 
calculation volume can be considerably reduced. The 
main reasons that are to be explicated in this work are 
the following: the stiffness matrix is calculated and 
assembled once and for all; in the case of a structure for 
which some boundary conditions can be fixed and other 
can be variables (i.e. entering in the optimization 
framework), it would be possible to triangularize the 
stiffness matrix once and for all, and to take into 
account the variable boundary conditions thanks to a 
penalization process of the energetic functional, to be 
minimized by the boundary conditions. In such 
conditions, even is the number of analyses is still 
important, the calculation time will remain reasonable 
because the analyses won't be systematically complete. 
Various examples will aim at showing that the 
implemented process helps in optimizing the boundary 
conditions and is fairly efficient. 

II. The methods used 

II.1. Genetic algorithms 

The genetic algorithm method has been used several 
times within the various problems of mechanics. These 
algorithms were found to be very efficient, as in the 
case of the damping maximization of composite beams 
or plates or as somewhat diverse issues. The interest of 
these algorithms has also been showed in the difficult 
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case of the optimization of gears. The genetic 
algorithms are now well known and this article is not to 
introduce them in details nor generally.  

       Although it may seem so, the genetic algorithm 
method is not magic at all. It is part of the methods 
called "stochastic". The most famous of this kind of 
method is the already old simulated annealing. The 
main benefit of these methods is that they operate 
simultaneously on a sample of the solution space. The 
genetic method differs from simulated annealing due to 
the operators used to make this population sample 
evolve. The convergence is always ensured toward an 
extremum which is not necessarily the absolute 
extremum, but which is more likely to be absolute than 
if the conventional gradient method is used. Actually, a 
stochastic method explores more largely the solution 
space. 

II.2. Optimization of the boundary conditions 

This kind of optimization consists in combining a 
standard calculation program by finite elements (FE) 
(called thereafter analysis program) and the genetic 
algorithm. 

The analyze program is a standard FE code. This code 
is simply to be called each time the genetic algorithm 
must estimate the cost function for a given 
chromosome. This is done for all the individuals of the 
population; consequently, for example, for 20 
individuals and 30 generations, there will be 600 finite 
element half-analyses (the total stiffness being 
calculated once and for all), which is relatively low 
compared to the 220 possible solutions. On the opposite, 
for the various tests that are done, especially those 
introduced after, there was not necessary to implement a 
penalization strategy of the “total potential energy" 
functional by the imposed boundary conditions, because 
convergence was fast enough. The programmer work 
simply consists in drafting a "pre-analysis" program that 
can decode the chromosome in question and that can 
automatically modify the finite element data file 
accordingly, and then in creating a "post-analysis" 
program that can extract the cost function from the 
finite element result file. Both these programs, as the 
calling of the finite element code, are built in the genetic 
program that drives the process.  

Choosing the coding and the objective function 

  The problem contains two difficulties: First, the 
implementation of a solution code in the form of a 
simple and efficient chromosome and then the 
development of an objective function. The most 
generally used code is simple and natural (it has variants 
that are to be set forth in the examples): It can use the 
often used code for the boundary conditions in finite 
element programs, 0 being a free freedom degree and 1 

a fixed freedom degree. The various codes of the 
concerned nodes are arranged end to end in a 
chromosome that is made of n binary digits that 
correspond to the n degrees of freedom that can be 
fixed. When it comes to the objective function, it 
depends on the posed problem. The first two examples 
are static cases, where the aim is to minimize the 
maximum displacement, or to minimize a deformation 
or a stress; the third example is a dynamic case, and the 
objective is to maximize the first natural frequency; it is 
also possible to try to remove two resonance 
frequencies. A lot of other choices are possible, such as 
multi-objective functions or penalizing the objective 
function by limitations. 

Obtained results 

Before each use, the genetic algorithm asks the user 
to specify the values of the following parameters: 

the number of individuals contained in a population,  

the maximum number of generations,   

the chromosomes length,  

the crossover  probability,   

the mutation probability. 

 It is clear that the algorithm gives best results when 
the chosen values for the first two parameters are high 
(within the limits of capacity of the used hardware). 
Practically speaking, the number of individuals 
contained in a population will be around 1 to 5 times 
the number of digits contained in a chromosome. 
However, the crossover and mutation probabilities are 
more difficult to choose. It has already been said that 
mutation is a far less frequent phenomenon than 
crossover; in [2], it is recommended the following 
values: 

Pcrossover = 0,60 ; Pmutation =0,03 

These recommenced values come from a numerical 
experimentation on numerous examples. In any event, 
the crossover probability must be clearly superior to the 
mutation probability because mutation is less frequent. 
For example, if any mutation is removed, the 
algorithm yet converges toward an extremum but it 
is unlikely to be the absolute extremum. Theoretically 
speaking, convergence is obtained when all the cost 
values of a population stabilize around a maximum 
value. Practically speaking, convergence is rather slow, 
with ebb and flow, due to the very nature of the 
algorithm. The user only has to stop the process when 
the maximum value of a population cost does not evolve 
anymore; he then manually selects the most interesting 
individual(s) of the final population to compare their 
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benefits. 

III. Examples 

Test 1 

    The first very easy, static test is made with the 
axisymmetric workpiece (of CL axis and z symmetry) 
illustrated on figure 1 and aims at verifying and making 
the implementation of the used techniques reliable. The 
stiffness has been calculated once and for all but no 
penalization has been applied to the boundary 
conditions; since the calculations are fast enough for the 
tests, this procedure has never been implemented. 

For this test, the chromosome is a 10-binary-digit 
string, the first 5 digits are the codes of the boundary 
conditions of the 5 nodes that can be locked following 
z, and the following 5 are the codes of the boundary 
conditions of the 5 nodes that can be locked following 
y; therefore, the chromosome 1011001000 
corresponds to the boundary conditions applied to 
nodes 1, 3, 4, and 7. 

There are 210 possibilities. The objective is to minimize 
the d displacement of the node to which forces are 
applied. Since the genetic algorithm actually seeks the 
maximum of an objective function, the chosen objective 
is to maximize the 1-d function. The interest of this test 
is that the optimal solution is known: It is of course the 
1111111111 chromosome, but the test helps in 
validating the process and in estimating how many steps 
are necessary for the genetic algorithm calculation to get 
this solution. We take here 40 individuals per 
population. The number of individuals in a population is 
usually around 1 to 5 times the chromosome’s size (here 
the number of digits). The maximum is reached in only 
5 generations (for the crossover and mutation 
probabilities provided in the last part), which 
corresponds to 200 half-analyses or a bit less (because a 
solution that appears several times during the process is 
calculated once and for all) and which is low compared 
to the possible 210 combinations. Non-consistent 
convergence is characteristic of genetic algorithms 
because the best individual of each population may very 
unlikely be eliminated; besides, if the algorithm is 
forced to keep only the bests, the method is not 
probabilistic anymore and the algorithm may be more 
efficient or diverge in some cases. Besides, if 
optimization is launched again with the same 
parameters, the obtained convergence is not at all the 
same, because the process is totally random. 

 

 

 

 

 

 

       

 

 

 

 

Figure 1 

 Test 2  

 
This test illustrates a first industrial application in the 

taking of workpieces in machining, always with simple 
data that help in validating and checking the 
implemented strategy. 
 
 The quality of the workpiece depends on the 

deformations caused by the machining, because of the 
machining process itself or because of the holding 
process of the workpiece on its support. The chosen 
workpiece is of z axis revolution and is illustrated on 
figure 2. There are three surfaces to be machined, S1, 
S2, and S3. For this test, the calculations are only done 
for the S2 surface. 
 

Contrary to the preceding test, where the 10 selected 
nodes could be locked, the clamping chuck can only be 
applied to one of the 8 possible nodes (nodes 9 to 16); 
the spindle stopper can be applied to one of the 8 nodes, 
numbered from 1 to 8. The test remains easy and 
calculates the genetic algorithm’s behavior because the 
optimal solution can be forecasted and the number of 
possible solutions is limited, which would not be the 
case with a thinner mesh. The same type of code that in 
the previous test can be taken, that is to say that the first 
8 chromosome digits concern the nodes 1 to 8, but the 
possible number of 1s in the algorithm is limited to 1 in 
this part of the chromosome; the 8 following digits are 
for the nodes 9 to 16, but any chromosome having a 
number of 1 greater than 1 in this part will be removed 
from the process. For example, 1000000001000000 is 
an acceptable chromosome. This code type has not 
been kept for this example because it leads to 16-digit-
long chromosomes and assumes the genetic algorithm is 
modified. Another type of possible coding is to build a 
2-decimal-long chromosome; for example, 29 means 
that the nodes 2 and 9 are subjected to boundary 
conditions; the first digit varies between 1 and 8, and 
the second one between 9 and 16.  
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Figure 2 
 
 
The chosen code in this example uses 6 binary digits, as 
in 100011. The decoding is done as followed (let's recall 
that the decoding program and that of modification of 
the finite element data file is to be designed by the user 
for each new example and must be placed immediately 
before the analysis): The first 3 digits give the code of 
the forced node 1 to 8, according to the following 
correspondence: 000 (node 1), 001 (node 2), 010 (node 
3), 011 (node 4), 100 (node 5), 101 (node 6), 110 (node 
7), 111 (node 8), and the following 3 digits provide 
the forced node 9 to 16 code, according to the same 
type of correspondence; therefore the example 
100011 matches to the forced nodes 5 and 12. Of 
course, this example is still an easy test because only 64 
combinations are possible and they can all be calculated 
to reach the problem optimum. The objective is to 
minimize the maximum equivalent deformation or the 
equivalent Von Mises stress that appears where 
forces are applied. The best solution found by the 
genetic algorithm is the combination of nodes 8 and 16, 
for which the Von Mises stress equals to 17.009 
daN/mm2. This result is found after a dozen finite 
element calculations (and from the second generation 
for a 6-individual population). In contrast, the genetic 
algorithm can be instructed to find the less good 
solution: the program is launched again with the 
objective of maximizing the main Von Mises stress; and 
this less good solution is the combination of nodes 1 and 
9; for which the Von Mises stress equals to 17.195 
daN/mm2. The test remains easy because the mesh size 

is limited. It could be more complicated if the mesh was 
thinner and if the genetic algorithm was instructed to 
find a compromise solution that would be valid to 
machine the S1, S2 and S3 surfaces. 

          Test 3 

    This test takes up the dynamic test offered in [8] and 
helps in validating the implemented strategy, once 
again on an easy case. The chosen example is that of a 
square plate, measuring 30.5 cm with a thickness of 
0.328 cm in deflection vibrations (Young's modulus 
73.1 GPa, density 2,821 kg/m3). This plate rests on 4 
points that are located symmetrically on the diagonals 
(figure 3).  The objective is to find the optimal location 
of the supports, maximizing the first fundamental 
frequency.  

 

 

 

 

 

 

 

 

 

 

Figure 3 

In [8], this problem is solved with a conventional 
gradient method, from a calculation of the frequencies’ 
sensitivities with regard to the boundary conditions 
location. Since this is only the first symmetric mode of 
deflection, only a quarter of the plate is meshed. [8] 
finds two equivalent optimal points (A and B on 
figure 3) that correspond respectively to frequencies 
of 169.46 Hz and 169.67 Hz. Actually, In [8], it is only 
used a 36-element mesh for the whole plate and a study 
with thinner meshes has shown that the optimum is 
actually located between the A and B points. This test 
is often used in the literature; all the authors find that 
the optimal point is located between A and B. 

Implementing a genetic algorithm strategy assumes 
that the support point location is coded under a 
chromosome on the main diagonal of the quarter of the 
plate. With the chosen mesh, that is 15 X 15 elements, 
there are only 16 possibilities that can all be calculated 

A 

B 

x 

y 

2F 
F 

S3 

S2 

S1 

y 

x 
9 
10 
11 
12 
13 
14 
15 
16 

1 2 3 4 5 6 7 8 



 
First Author, Second Author, and Third Author 

 
 

Copyright © 2006 Praise Worthy Prize - All rights reserved                                      International Review of Mechanical Engineering, Vol. xx, n. 
x 

to get the reference solution that actually corresponds to 
the points 7 and 8, with frequencies around 205 Hz. The 
code of the 16 possible points is simply a binary one: 
0000 corresponds to the node 1, 0001 to the node 2, 
0010 to the node 3 and so forth until the node 16 
(1111). Let’s recall that the objective is to maximize 
the first frequency. For a 4-individual population, a 2-
individual population (0110, node 7 and 0111, node 8) 
is obtained after the thirtieth generation, which 
shows the genetic algorithm convergence, but its 
efficiency is more convincing with longer 
chromosomes (as in the example 1). 

IV. Conclusion 

    This study has shown the efficiency of genetic 
algorithms in responding to the problem of the 
optimization of the boundary conditions in finite 
elements. This study is above all a feasibility study and 
will soon be complemented by industrial examples. The 
study can easily be spread to other fields than 
mechanics; for example, in thermal science, it would be 
easy to design chromosomes containing not only the 
information on the boundary condition type, but also 
that regarding the condition value to be optimized (flow 
value, heat transfer coefficient value); it could also be 
applied in fluid mechanics. The efficiency can still be 
improved in the case of important calculations (e.g. 
shape optimization), using neural networks to analyze 
the problem, instead of using a conventional finite 
element analysis. Actually, the use of neural networks 
to model mechanical structures appears to give good 
results [10]. It would be possible to make the learning 
of a neural network in parallel with the first generations 
that would be calculated by finite elements (that is using 
the results of the finite element analyses). Once the 
learning stage is over, the neural network would 
completely replace the calculations by finite elements. 
The calculations would therefore become much faster, 
and the genetic algorithm method, contrary to the 
deterministic methods, does not need extremely precise 
calculations of the objective function. 

Translated by Amandine MARCELIN, on behalf of 
AMTrad’gram (www.amtradgram.com).  
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