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Optimization of the boundary conditions by genatgorithms

J.L. Marcelin

Abstract — This work examines the possibility of using a sastib method, called the genetic
algorithm for the optimization of boundary condit®o in finite elements calculations. The
examples show that using genetic algorithms in otdeoptimize boundary conditions is an
efficient way Copyright © 2012 Praise Worthy Prize - All righteserved.
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. Introduction

In numerous application cases (e.g. taking wiedgs
in machining, vibrations of a mechanical structutbg
optimization of boundary conditions (location and
nature of the boundary conditions) can bring an
interesting improvement of the studied structure's
mechanical behavior. These structures are mosh ofte
calculated with the finite element method, and imith
this framework, the calculation of the sensitisti@ith
regard to the boundary conditions remains enough
complicated due to the discrete nature of the grbl
and for example, in shape optimization, the boundar
conditions problem is even most often eluded. Besid
the deterministic methods of optimization, called
gradient methods, need a reliable calculation efeh
sensitivities. Some other stochastic or probalilist
methods of optimization are currently in vogueglike
simulated annealing method or that of genetic
algorithms, which main benefits are they assure
convergence without the use of derivatives, andhEan
used with possibly discrete variable and non-défwva
functions. The detractors of this method point up
without reason the high number of calculations,
especially in the case of an analysis method afefin
element type.

The author has a great experience in genetic
algorithms [1] to [6]). Few researches have been made
on the boundary conditions optimization, and in the
structural mechanics field, there are almost ndre
[71 work, described below, deals with the optimization
of the boundary conditions in electromagnetism[7iln
a methodology based on the genetic algorithm is
proposed to determine the equivalent impedance
boundary condition for corrugated material coating
structures. We have find only two papers at our
knowledge in the structural mechanics figd{l and [9],
and only one [9] with the use of genetic algorithrits [8],
optimization of boundary conditions for maximum
fundamental frequency of vibrating structures isaldn [9]
the use of genetic algorithms for the selectionpifmal
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support locations of beams is presented. Both ielast
and rigid supports are considered. The approach of
adapting the genetic algorithms into the optimadigie
process is described. This approach is used tonizeti
locations of three supports for beams with threesyof
boundary conditions.

This article relates to fixed geometry andoishow
that the optimization of boundary conditions issibte
by combining a genetic algorithm and the finitenedat
method (the optimization of boundary conditions in
shape optimization will be dealt with in future easch).
Indeed, in the case of a fixed shape and becaut® of
characteristics of the finite element method, the
calculation volume can be considerably reduced. The
main reasons that are to be explicated in this vewek
the following: the stiffness matrix is calculatedida
assembled once and for all; in the case of a strei¢or
which some boundary conditions can be fixed anéroth
can be variables (i.e. entering in the optimization
framework), it would be possible to triangulariZee t
stiffness matrix once and for all, and to take into
account the variable boundary conditions thanks to
penalization process of the energetic functionalpé
minimized by the boundary conditions. In such
conditions, even is the number of analyses is still
important, the calculation time will remain reasblea
because the analyses won't be systematically coeple
Various examples will aim at showing that the
implemented process helps in optimizing the boundar
conditions and is fairly efficient.

Il. Themethods used

II.1. Genetic algorithms

The genetic algorithm method has been used several
times within the various problems of mechanics. Sehe
algorithms were found to be very efficient, as et
case of the damping maximization of composite beams
or plates or as somewhat diverse issues. The gttefe
these algorithms has also been showed in the wliffic
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case of the optimization of gears. The genetic
algorithms are now well known and this article @& to
introduce them in details nor generally.

Although it may seem so, the genetic algonit
method is not magic at all. It is part of the metho
called "stochastic". The most famous of this kirfd o
method is the already old simulated annealing. The
main benefit of these methods is that they operate
simultaneously on a sample of the solution spabe. T
genetic method differs from simulated annealing ttue
the operators used to make this population sample
evolve. The convergence is always ensured toward an
extremum which is not necessarily the absolute
extremum, but which is more likely to be absolutart
if the conventional gradient method is used. Adyal
stochastic method explores more largely the salutio
space.

[1.2.  Optimization of the boundary conditions

This kind of optimization consists in combining a
standard calculation program by finite elements)(FE
(called thereafter analysis program) and the geneti
algorithm.

The analyze program is a standard FE code. Thie cod
is simply to be called each time the genetic atbani
must estimate the cost function for a given
chromosome. This is done for all the individualsthue
population; consequently, for example, for
individuals and 30 generations, there will be 6Btd
element half-analyses (the total stiffness being
calculated once and for all), which is relativetywl
compared to the??possible solutions. On the opposite,
for the various tests that are done, especiallyseho
introduced after, there was not necessary to impfera
penalization strategy of the “total potential engrg
functional by the imposed boundary conditions, bsea
convergence was fast enough. The programmer work
simply consists in drafting a "pre-analysis" praogrenat

20

can decode the chromosome in question and that can

automatically modify the finite element data file
accordingly, and then in creating a "post-analysis"
program that can extract the cost function from the
finite element result file. Both these programs,tlas
calling of the finite element code, are built i thenetic
program that drives the process.

Choosing the coding and the objective function

The problem contains two difficulties: First, the
implementation of a solution code in the form of a
simple and efficient chromosome and then the
development of an objective function. The most
generally used code is simple and natural (it lzeimnats
that are to be set forth in the examples): It caa the
often used code for the boundary conditions intdini
element programs, 0 being a free freedom degreeland
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a fixed freedom degree. The various codes of the
concerned nodes are arranged end to end in a
chromosome that is made of n binary digits that
correspond to the n degrees of freedom that can be
fixed. When it comes to the objective function, it
depends on the posed problem. The first two exasnple
are static cases, where the aim is to minimize the
maximum displacement, or to minimize a deformation
or a stress; the third example is a dynamic case tlze
objective is to maximize the first natural frequgnit is

also possible to try to remove two resonance
frequencies. A lot of other choices are possihlehsas
multi-objective functions or penalizing the objeeti
function by limitations.

Obtained results

Before each use, the genetic algorithm asks the use
to specify the values of the following parameters:

the number of individuals contained in a population
the maximum number of generations,

the chromosomes length,

the crossover probability,

the mutation probability.

It is clear that the algorithm gives best resultgen
the chosen values for the first two parametersaye
(within the limits of capacity of the used hardware
Practically speaking, the number of individuals
contained in a population will be around 1 to 5etfm
the number of digits contained in a chromosome.
However, the crossover and mutation probabilities a
more difficult to choose. It has already been shat
mutation is a far less frequent phenomenon than
crossover; in [2], it is recommended the following
values:

Pcrossover = 0,60 ; Pmutation =0,03

These recommenced values come from a numerical
experimentation on numerous examples. In any event,
the crossover probability must be clearly supetdothe
mutation probability because mutation is less fesdqu
For example, if any mutation is removed, the
algorithm yet converges toward an extremum but it
is unlikely to be the absolute extremum. Theordtica
speaking, convergence is obtained when all the cost
values of a population stabilize around a maximum
value. Practically speaking, convergence is rashmw,

with ebb and flow, due to the very nature of the
algorithm. The user only has to stop the processnwh
the maximum value of a population cost does notvevo
anymore; he then manually selects the most infarest
individual(s) of the final population to compareeith
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benefits.

[11.Examples
Test 1

The first very easy, static test is made witle t
axisymmetric workpiece (of CL axis and z symmetry)
illustrated on figure 1 and aims at verifying andking
the implementation of the used techniques reliable
stiffness has been calculated once and for all rout
penalization has been applied to the boundary
conditions; since the calculations are fast endoglthe
tests, this procedure has never been implemented.

For this test, the chromosome is a 10-binary-digit
string, the first 5 digits are the codes of the rtary
conditions of the 5 nodes that can be locked foitmw

z, and the following 5 are the codes of the boupdar
conditions of the 5 nodes that can be locked foitmw

y; therefore, the chromosome 1011001000
corresponds to the boundary conditions applied to
nodes 1, 3, 4, and 7.

There are 2 possibilities. The objective is to minimize
the d displacement of the node to which forces are
applied. Since the genetic algorithm actually setbles
maximum of an objective function, the chosen oliject

is to maximize the 1-d function. The interest aéttest

is that the optimal solution is known: It is of ¢sa the
11121211111 chromosome, but the test helps in
validating the process and in estimating how maags
are necessary for the genetic algorithm calculatioget
this solution. We take here 40 individuals per
population. The number of individuals in a popuatis
usually around 1 to 5 times the chromosome’s dizeg(
the number of digits). The maximum is reached ity on
5 generations (for the crossover and mutation
probabilities provided in the last part), which
corresponds to 200 half-analyses or a bit lessaflmra
solution that appears several times during theqe®ds
calculated once and for all) and which is low corapa

to the possible ¥ combinations. Non-consistent
convergence is characteristic of genetic algorithms
because the best individual of each population weasy
unlikely be eliminated; besides, if the algorithm i
forced to keep only the bests, the method is not
probabilistic anymore and the algorithm may be more
efficient or diverge in some cases. Besides, if
optimization is launched again with the same
parameters, the obtained convergence is not ahall
same, because the process is totally random.

Copyright © 2006 Praise Worthy Prize - All rightsserved
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Figure 1
Test 2

This test illustrates a first industrial application the
taking of workpieces in machining, always with slep
data that help in validating and checking the
implemented strategy.

The quality of the workpiece depends on the
deformations caused by the machining, becauseeof th
machining process itself or because of the holding
process of the workpiece on its support. The chosen
workpiece is of z axis revolution and is illustrten
figure 2. There are three surfaces to be machiSéd,
S2, and S3. For this test, the calculations arg dohe
for the S2 surface.

Contrary to the preceding test, where the 10 sedect
nodes could be locked, the clamping chuck can baly
applied to one of the 8 possible nodes (nodes B6)p

the spindle stopper can be applied to one of thedgs,
numbered from 1 to 8. The test remains easy and
calculates the genetic algorithm’s behavior becdhee
optimal solution can be forecasted and the numiber o
possible solutions is limited, which would not et
case with a thinner mesh. The same type of codartha
the previous test can be taken, that is to saythieafirst

8 chromosome digits concern the nodes 1 to 8,Hmut t
possible number of 1s in the algorithm is limitedltin

this part of the chromosome; the 8 following digi®

for the nodes 9 to 16, but any chromosome having a
number of 1 greater than 1 in this part will be oged
from the process. For example, 1000000001000000 is
an acceptable chromosome. This code type has not
been kept for this example because it leads toidié-d
long chromosomes and assumes the genetic algoisthm
modified. Another type of possible coding is toltwua
2-decimal-long chromosome; for example, 29 means
that the nodes 2 and 9 are subjected to boundary
conditions; the first digit varies between 1 andaBd

the second one between 9 and 16.

Intgtranal Review of Mechanical Engineering, Vol.xx,
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The chosen code in this example uses 6 binarysdiast
in 100011. The decoding is done as followed (fetsll
that the decoding program and that of modificatidn
the finite element data file is to be designed ey wser
for each new example and must be placed immediately
before the analysis): The first 3 digits give ttwale of

the forced node 1 to 8, according to the following
correspondence: 000 (node 1), 001 (node 2), 01@e(no
3), 011 (node 4), 100 (node 5), 101 (node 6), hib@ié¢

7), 111 (node 8), and the following 3 digits prawid
the forced node 9 to 16 code, according to the same
type of correspondence; therefore the example
100011 matches to the forced nodes 5 and 12. Of
course, this example is still an easy test becanke64
combinations are possible and they can all be ik

to reach the problem optimum. The objective is to
minimize the maximum equivalent deformation or the
equivalent Von Mises stress that appears where
forces are applied. The best solution found by the
genetic algorithm is the combination of nodes 8 &éd

for which the Von Mises stress equals to 17.009
daN/mnf. This result is found after a dozen finite
element calculations (and from the second generatio
for a 6-individual population). In contrast, thengéc
algorithm can be instructed to find the less good
solution: the program is launched again with the
objective of maximizing the main Von Mises stresscl

this less good solution is the combination of notlesd

9; for which the Von Mises stress equals to 17.195
daN/mnf. The test remains easy because the mesh siz
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is limited. It could be more complicated if the rhagas
thinner and if the genetic algorithm was instructed
find a compromise solution that would be valid to
machine the S1, S2 and S3 surfaces.

Test 3

This test takes up the dynamic test offerefBjrand
helps in validating the implemented strategy, once
again on an easy case. The chosen example isfthat o
square plate, measuring 30.5 cm with a thickness of
0.328 cm in deflection vibrations (Young's modulus
73.1 GPa, density 2,821 kgnThis plate rests on 4
points that are located symmetrically on the diaden
(figure 3). The objective is to find the optimathtion
of the supports, maximizing the first fundamental
frequency.

AlY
T A
\\\
B
:
Figure 3

In [8], this problem is solved with a conventional
gradient method, from a calculation of the frequesic
sensitivities with regard to the boundary condison
location. Since this is only the first symmetric aroof
deflection, only a quarter of the plate is meshi&].
finds two equivalent optimal points (A and B on
figure 3) that correspond respectively to frequenci
of 169.46 Hz and 169.67 Hz. Actually, In [8], itasly
used a 36-element mesh for the whole plate anddy st
with thinner meshes has shown that the optimum is
actually located between the A and B points. Thist t
is often used in the literature; all the authorsl fthat
the optimal point is located between A and B.

Implementing a genetic algorithm strategy assumes
that the support point location is coded under a
chromosome on the main diagonal of the quartehef t

e blate. With the chosen mesh, that is 15 X 15 eléspen

there are only 16 possibilities that can all begiated
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to get the reference solution that actually coresis to
the points 7 and 8, with frequencies around 205THz.
code of the 16 possible points is simply a binang:o
0000 corresponds to the node 1, 0001 to the node 2,
0010 to the node 3 and so forth until the node 16
(1111). Let's recall that the objective is to makim
the first frequency. For a 4-individual populati@n2-
individual population (0110, node 7 and 0111, n8jle

is obtained after the thirtieth generation, which
shows the genetic algorithm convergence, but its
efficiency is more convincing with longer
chromosomes (as in the example 1).

IV.Conclusion

This study has shown the efficiency of genetic
algorithms in responding to the problem of the
optimization of the boundary conditions in finite
elements. This study is above all a feasibilitydgtand
will soon be complemented by industrial exampldse T
study can easily be spread to other fields than
mechanics; for example, in thermal science, it Wdé
easy to design chromosomes containing not only the
information on the boundary condition type, butoals
that regarding the condition value to be optimigiolv
value, heat transfer coefficient value); it couldoabe
applied in fluid mechanics. The efficiency canldbié
improved in the case of important calculations .(e.g
shape optimization), using neural networks to araly
the problem, instead of using a conventional finite
element analysis. Actually, the use of neural netwo
to model mechanical structures appears to give good
results [10]. It would be possible to make the héay
of a neural network in parallel with the first gestéons
that would be calculated by finite elements (tkatsing
the results of the finite element analyses). Orue t
learning stage is over, the neural network would
completely replace the calculations by finite elatse
The calculations would therefore become much faster
and the genetic algorithm method, contrary to the
deterministic methods, does not need extremelyiggec
calculations of the objective function.

Translated by Amandine MARCELIN, on behalf of
AMTrad’gram (www.amtradgram.com).
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