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Abstract 

A basic equation governing the steady-state flow around a single crack in  an infinite porous 
body is given. The flow through the crack obeys to the Poiseiulle’s law and the matrix has an 
anisotropic permeability. A semi-analytical solution is established for this equation in the case 
of elliptical disc-shaped crack. This solution takes a closed-form expression for the case of 
superconducting circular cracks. The results are compared to those obtained for flattened 
ellipsoidal inclusions obeying to the Darcy’s flow law, which are in some works supposed to 
represent the cracks. It is shown that the flow solution for an elliptical disc-shaped crack 
obeying to the Poiseuille’s law is different from that obtained as the limiting case of flattened 
ellipsoidal inclusions. The results are then used to establish dilute Mori-Tanaka and self-
consistent estimates of the effective permeability of porous media containing Poiseuille’s type 
elliptical cracks. 

Keywords: porous media, crack, steady-state flow¸ Poiseuille’s law, Darcy’s law, effective 
permeability,  upscaling 

 

1 Introduction  

The effective permeability of fractured rocks and micro-cracked porous materials is a great 
interest for many environmental and industrial applications such as hydrology, petroleum 
engineering, nuclear waste disposal, geothermal expansion…. Numerous studies dealt with 
permeability of fracture network in three-dimensional media. Koudina et al. [[1] presented a 
method to generate a triangular mesh on three-dimensional network of polygonal fracture 
surfaces, and used the finite volume method to compute the permeability of fractured media. 
The numerical tool developed in this way was employed to study the effective permeability 
of fractures network with statistical distribution [[2]. However, the rock matrix was supposed 
to be impervious in these works which does not correspond to some real cases. Therefore, 
other theoretical and numerical investigations have focused on this problem [[3, [4[5[6, [7, 
[8]. A fundamental problem for modelling the effective permeability of cracked materials is 
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the determination of the steady state flow around a single crack in an infinite homogeneous 
matrix. In this work, we are interested in the case of cracks and fractures that can be 
represented geometrically by zero thickness surfaces with non pressure jump between their 
two faces, which corresponds to an assumption of zero cross section resistance for the 
fracture. Therefore, we do not consider the cases of non-equilibrium flow [[9] or of 
impervious fracture [[10]. In many physical studies, the Poiseuille’s law is chosen 
preferentially to represent the flow in the cracks. The paper devotes to determine flow 
solution around a single crack obeying to the Poiseuille’s law that is the key issue for 
determining the effective permeability. 

The flow in cracks, embedded in an infinite matrix, has been determined in some works by 
using a model of ellipsoidal inclusion, in which the flow is governed by Darcy’s law [[5[11]. 
It is implicitly supposed in these works that the flow in the crack with the Poiseuille’s law is 
obtained as the limiting case of a flattened ellipsoidal inclusion with thickness tending to 
zero. In this study, we show that this is not true, .the solution obtained for the flow in and 
around an elliptical disc-shaped crack obeying to the Poiseuille’s law is different from that 
obtained as a limit of ellipsoidal inclusions obeying to Darcy’s law. Only some partial results, 
for instance, the pressure field in the case of superconducting cracks, are similar in the two 
problems. 

To determine the solution of flow in a matrix containing a single elliptical disc-shaped crack, 
we use recent theoretical results established for the more general problem of multiple 
intersecting fracture surfaces [[12]. The potential solution obtained for this general problem, 
as an extension of preceding works for the 2D case [[13[14], is based on singular integral 
equations allowing to reduce the dimension of the problem from 3D to 2D and, hence, 
particularly interesting for numerical methods. However, it will be seen in the sequel that for 
the case of a single elliptical disc-shaped crack, it allows also deriving semi-analytical 
solutions as an alternative way to the use of harmonic functions [15, 16] or of dual integral 
equations methods [17, 18]. 

The solution obtained for the single crack will be then used to estimate the effective 
permeability of the cracked porous materials by some classical upscaling methods. 

Notations : 

In the sequel, light-face (Greek or Latin) letters denote scalars; underlined letters denote 
vectors, bold-face letters designate second rank tensors or double-index matrices. The scalar 
product of two vectors a and b is labelled as a.b. For second rank tensors, the tensor 
transposed from A is denoted AT, the matrix product is labelled as AB and the determinant as 
|A|. The operation of A on a is labelled as A.a. The convention of summation on repeated 
indices is not used for Latin indices (i, j, k…) that number surfaces, lines, etc., and are noted 
indifferently as subscript or upperscript. ∇ represents the gradient and ∆ the Laplace operator 
for a scalar field and (∇.) the divergence for a vector field.  

 

2  Governing equations  

An infinite porous 3D body Ω containing an elliptical disc-fracture surface Γ is considered 
(Figure 1). The points of Ω are denoted by x = (x1, x2, x3) and, when they are located on the 
crack surface, by z = (z1, z2, z3). The surface Γ is defined by a function z(s) from 2 → 3 
parameterized by s = (s1, s2). Fluid flow through the matrix is governed by Darcy’s law: 
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∀x∈Ω-Γ;    v(x)= -k.∇p(x)      (1)  

where, k is the permeability tensor of porous matrix supposed to be uniform; v(x) and p(x) the 
local velocity and pressure, respectively.  

The local mass balance in the matrix reads: 

∀x∈Ω-Γ;     ∇.v(x)= 0     (2) 

 

 

Figure 1: An infinite porous medium containing a flat elliptical disc shaped crack 

The flow in the fracture surface is characterized by a pressure field p(s) and an infiltration 
field q(s) in this surface. The total infiltration q(s) through a fracture section is determined by 
the integral of fluid velocity v over this physical section of the thickness 2e as follows: 

∀s∈Γ      ( ) ( , )
e

e
q s v s y dy

−
= ∫      (3) 

The crack-matrix mass exchange at a point on the fracture surface excluded its boundary is 
established by considering the mass balance in a small volume surrounding this point and 
reads [[12]: 

∀x∈Γ−L;    � �( ) . ( ) . ( ) 0sv x n s q s+ ∇ =     (4) 

where, . ( )s q s∇  is the surface divergence and L  the set of points on the crack boundaries. In 

addition, analysis of mass balance around a point on the crack boundary leads to the 
following mass balance condition at this point: 

∀z(s)∈L;    ( ) . ( ) 0q s m s =       (5) 
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In this equation, q is the infiltration vector in the crack and m is the outward unit normal 
vector of the boundary line that is tangent to the crack plane. 

The body is submitted at its infinite boundary to a pressure field p∞(x): 

    lim
x →∞

[p(x) – p∞(x)] = 0     (6) 

p∞ satisfies ∆p∞= 0. For permeability upscaling, a constant pressure gradient is supposed to 
be prescribed to the matrix at its infinite boundary. Designating by A the far-field pressure 
gradient, we have: 

     p∞(x) = A.x       (7) 

The equations to be satisfied by p are the boundary condition (6), mass balances (2), (4), (5) 
and the constitutive equation (1). The solution obtained by Pouya [[12] expresses the pressure 
field in the whole matrix as a function of the infiltration vector in the fracture as follows: 

( ) ( )

1

3/21

( ) . . ( ( ))1
( ) ( )

4 ( ) . . ( )

q s x z s
p x p x ds

x z s x z s

−

∞
−

Γ

−
= +

π  − − 
∫

k

k k
   (8) 

In this equation, ds represents the surface element on Γ. This solution satisfies well the far-
field condition (6). Also, noting that the integrant function in the right-hand side integral is 
equal to ( ) . (1 / )xq s r− ∇  with  r = [(x-z).k-1.(x-z)] ½, the mass balance (2) can be shown for x 

non situated on the fracture. To establish that (4) is well satisfied by (8) is little more 
technical and we refer to [[12] for its demonstration. 

It should be noted that the only significant assumptions limiting the validity of this solution 
are that matrix permeability k is assumed to be uniform and that there is no pressure gap 
between the two sides of the crack surface. Although we consider in the sequel only the case 
of a plane crack surfaces, the solution (8) remains valid for curved-surface fractures, and, in 
its general form given in [[12], for multiple intersecting fractures. 

Also, in equation (8), the constitutive flow law in the fracture is not constrained. A linear 
relation between the infiltration vector and the pressure gradient, as an extension of the 
Poiseuille’s law for the viscous fluid flow between two parallel plates, is widely used in the 
literature to represent the flow in the crack: 

     ( ) ( ). ( )sq s s p s= − ∇c      (9) 

The conductivity tensor c depends on the fluid dynamic viscosity µ, the hydraulic aperture of 
the fracture e, and also the roughness of fracture surfaces. In most cases, c is supposed 
isotropic (in the fracture surface) and replaced by a scalar c. In particular, the Poiseuille’s 
law, widely used for flow through rock fractures [[19], determines c from a laminar flow 
between two parallel plates separated by a constant distance e and leads to c = e3/(12µ). 
However, c can be anisotropic in some cases as shown experimentally by Gentier et al.[[20]. 
Introducing (9) into (8) leads to an integral equation involving only the unknown pressure 
field. A simple analysis shows that the solution for a constant pressure gradient along the disc 
surface, corresponding to the Eshelby-type ellipsoidal inclusion with Dracy’s law, does not 
satisfy this equation. The comparison between the Posieulle-type crack and the flattened 
ellipsoidal inclusion with Darcy’s law will be discussed further in this paper. 
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However, in this paper we are interested in the case of superconducting cracks corresponding 
to the limiting case c→∞. This is an important limiting case, currently addressed in the 
literature because it allows determining the upper bound of the effective permeability for 
fixed crack density and geometry.   

 

3 Superconductive elliptical crack-inclusion 

In the case of superconducting fracture, the pressure remains constant along the fracture 
surface. We consider an elliptical disc shaped crack D and denote by d1 and d2 the half-
diameters of the ellipse, by the unit vectors e1 and e2 its principal directions and by e3 the unit 
normal to the crack plane. A coordinate system is defined with its origin located at the crack 
centre and its axes parallel to e1, e2 and e3. The equation of the ellipse reads x.B.x = 1 for x.e3 
= 0. We note: 

λ1 = 1/d1
2,    λ2 = 1/d2

2,     B = λ1e1⊗e1 + λ2 e2⊗e2    (10)  

The general result needed for permeability upscalling is the integral of the infiltration over 
the disc surface. This integral is a linear function of the far-field gradient A and can be 
written as ΨΨΨΨ.A, where the tensor ΨΨΨΨ is a function of c, k and B. By application of the linear 
transformation [[12], the problem can be changed into that of an ellipsoidal disc in an 
isotropic matrix. Nevertheless, a numerical method is required to solve the general problem 
for the case of finite and anisotropic conductivity tensor c. In the following, we consider the 
particular case of superconducting crack, c→ ∞, that allows us to derive an analytical or 
semi-analytical solution.  

The equation (8) written for a single elliptical crack D embedded in an infinite porous matrix 
with isotropic permeability k yields: 

3

( ) . ( )1
( ) .

4
D

q x
p x A x d

k x

ξ ξ −
= − ξ

π ξ −
∫                 (11) 

In this equation, dξ represents the surface element on D. The general solution can be obtained 
by superposition method. It requires three elementary solutions for A parallel to e1, e2 and e3. 
A simple analysis shows that for A parallel to e3 the solution is a uniform gradient pressure 
not perturbed by the presence of the crack, i.e., p(x) = A.x in the whole body. To build the 
complete solution, it is sufficient to determine the solution for A parallel to the x-axis. Hence, 
we try to solve the problem for p∞(x) = A1x1. 

The condition of superconducting crack imposes that the pressure p must be constant in the 
crack surface, and because of symmetry considerations, this constant is zero. Therefore, 
designating, for a field q(ξ), by:  

3

( ) .( )
( )

D

q x
I q d

x

ξ ξ −
= ξ

ξ −
∫       (12) 

the solution q must satisfy: 

I (q) = 4πkA1x1       (13) 
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Figure 2: Geometrical parameters defining the collocation point x and the integration point ξ 
in the elliptical crack surface 

 

To find a solution for this problem, we try first the following expression which is inspired by 
the 2D solution given by Pouya & Ghabezloo [[14]: 

0
1 1( ) 1 . .q h eξ = − ξ ξB       (14) 

As shown in Appendix A, the expression found for I is a linear function of x1 for q = q0 which 
allows us to build the solution for the equation (13). The general expression found for this 
solution has recourse to the complete elliptic integrals of first and second kind K(λ) and E(λ) 
defined by:  

( )
/ 2

2 2
0 1 sin

π

θ=

θλ =
− λ θ

∫
d

K  ,    ( )
/ 2

2 2

0

1 sin
π

θ=

λ = − λ θ θ∫E d  (0 ≤ λ≤ 1) (15) 

The semi-analytical or iterative numerical methods used to calculate these complete elliptic 
integrals K(λ) and E(λ) can be found in mathematical handbooks [[21]. 

Moreover, we define: 

( )

( )

/2 2
1

1 1 2 2 2
0 1 2

/2 2
2

2 1 2 2 2
0 1 2

cos
,

cos sin

sin
,

cos sin

d

d

π

θ=

π

θ=

 λ θφ λ λ = θ
λ θ + λ θ


λ θ φ λ λ = θ λ θ + λ θ

∫

∫

   (16) 

It can be noticed that, if d1 ≥ d2, denoting by 
2

2

1

1
 

λ = −  
 

d

d
, we have: 
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1 1 2 2 1 2
2

2 2
1 1 1 2 2 2 1 2 2

1
( , ) ( , ) ( )

( , ) ( , ) ( )

E
d

d d d K

 φ λ λ + φ λ λ = λ

 φ λ λ + φ λ λ = λ

   (17) 

This system of equations allows the determination of φ1 and φ2 as function of K(λ) and E(λ). 
Then, for q = q0, it is shown in Appendix A that: 

I = -2h1 π φ1(λ1,λ2) x1       (18) 

As a result, (13) is verified if we take 1 1
1

2k
h A

−=
φ

, and therefore: 

0
1 1

1

2
( ) 1 . .

k
q A eξ = − − ξ ξ

φ
B      (19) 

According to this expression, the flux q0 in the crack has a constant direction parallel to the 
far-field gradient, as in the case of ellipsoidal Darcy type inclusions. However, q0 is not the 
real solution of the flow in the disc. As a matter of fact, it must be noted that the solution of 
the equation (13) is not unique. If the vector ω(ξ) satisfies ∇.ω = 0 in the disc and ω.n = 0 on 
its boundary where n is outward unit normal vector to the boundary, then we calculate: 

( )1 1 1
( ) ( ) . ( ) . . 0I x d x n ds x d

− − −

Γ ∂Γ Γ

ω = − ω ξ ∇ ξ − ξ = − ξ − ω ξ + ξ − ∇ ω ξ =∫ ∫ ∫  (20) 

Consequently, q = q0 + ω also satisfies (13). This degeneracy of the solution can be removed 
if we suppose that the superconducting crack is the limit case of a crack with the conductivity 
c = σc0 where c0 is constant and σ→∞. This implies that c0

-1q must be a gradient field 
(pressure gradient) and satisfy the condition of symmetry of crossed derivatives. This 
condition allows us to determine a unique q saved that c0 is symmetric and positive definite. 
In the case of a superconducting crack considered as the limit case of an isotropic 
conductivity crack, this condition implies that q has to be a gradient field. It can be checked 
that q0 given by (19) is not a gradient field. A complementary part ω(ξ) should be added to q0 
to make it a gradient field satisfying (13).  Thus, the solution of the infiltration field q reads: 

    q(ξ) = q0(ξ) + ω(ξ)           (21) 

where, the complementary part ω has to satisfy the following conditions: 

∀ ξ∈D;   ∇.ω = 0       (22) 

∀ ξ∈∂D;   ω.n  = 0       (23) 

∀ ξ∈D;    ∂1(q
0
2 +ω2)  =∂2(q

0
1 +ω1)      (24) 

The last condition assures that q is a gradient field. Mathematically, equation (22) is satisfied 
if we take: 

ω1 = ∂2ϕ,    ω2 = -∂1ϕ     (25) 

with ϕ an arbitrary function. Then, the condition (24) yields: 
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    1
2

1

2
1 . .s

kA∆ ϕ = ∂ − ξ ξ
φ

B       (26) 

where, ( )2 2
1 2s∆ ϕ = ∂ + ∂ ϕ .  Substituting (25) into (23) and rearranging the terms, we find: 

∀ ξ∈∂D;    ∇ϕ.t =0        (27) 

where t is the unit tangent vector to the crack boundary ∂D. This equation implies that ϕ is 
constant on the boundary, hence: 

∀ ξ∈∂D;    ϕ = ϕ0         (28) 

with, ϕ0 a constant. A solution for the Poisson’s equation (26) over the elliptical domain exists 
for every Dirichlet boundary condition and in particular (28) with constant ϕ0. We can take ϕ0 
=0 because the addition of a constant value to ϕ does not change the solution ω. The solution 
of equation (26) with ϕ=0 on the boundary can be determined numerically in the general case 
and analytically in some special cases. Two particular cases in which the solution can be 
derived analytically are the following: 

Case 1: Limit of infinitely long elliptical disc 

We suppose the limit case of elliptical disc with infinite extension in the direction 2. 
Geometrically, this corresponds to an infinite band of width 2d1 parallel to the direction 2. 
The solution, for a far-field gradient A1 parallel to e1 corresponds to that of the 2D case with a 
crack of length 2D in the plane (x1, x2) parallel to x1. The solution can therefore be compared 
to that given for this case by Pouya & Ghabezloo [[14]. In the 3D problem, d2→∞ and  λ2 = 0 

and  0 2 2
1 1 1 1( ) 2q k d A eξ = − − ξ  is a gradient field. Thus, ω = 0. The exact solution is then 

2 2
1 1 1 1( ) 2q k d A eξ = − − ξ  which is exactly the solution found in 2D case by Pouya & 

Ghabezloo [[14]. 

Case 2: Circular crack with radius R 

In this case, d1 = d2 = R. We find 1 2 4R

πφ = φ =  and 0 2 21
1

8
( )

kA
q R r eξ = −

π
  with r2 =ξ.ξ.  

In order to find the expression of the complementary function ω, we look for a solution of  
(26) in the following form: 

²    ϕ(ξ) = χ(ξ) + ∂2ζ(r)      (29) 

where, ζ(r) satisfies: 

  2 218
s

kA
R r∆ ζ = − −

π
     (30) 

Then, χ has to satisfy ∆χ =0. The general solution of (30) is: 

( ) ( )
2 2

3/22 2 2 3 2 21
1 22 2

8 1 1 1

3 6 9

kA R R r
r R R r R Ln R r C Lnr C

R R r

 − −ζ = − − − − − − + + 
π + −  

 (31) 
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where, C1, C2 are two constants. Thus, 

( )3/22 21 2
2 12

8 1

3

kA
R r C

r

ξ  ∂ ζ = − − − π  
     (32) 

Substituting this expression in (29) and taking into account the boundary condition ϕ(R)=0, 

we find that 1 2
1 2

8kA
C

R

ξχ = −
π

 on the boundary. Hence, the solution of the equation ∆χ =0 is 

1 2
1 2

8
( )

kA
C

R

ξχ ξ = −
π

 and therefore the solution for ϕ is: 

   ( )3/22 21 2 1 2
1 12 2

8 81

3

kA kA
R r C C

r R

ξ ξ ϕ = − − − − π π 
   (33) 

The constant C1 is determined by the condition that q has to be finite in the crack or that ϕ is 

not singular when 0→r . This imposes 
3

1 3

R
C = . Substituting by this expression in (25) and 

(21) we find the solution of infiltration in the circular disc under the far-field pressure gradient 
A1 as follows: 

( )
( ) ( )

2 2 2 3
2 2 3 2 21 1 1 2

12 4

3 1/23 2 2 2 21 1 2 1 2
24 2

8
( )

3 3

8 2

3

kA R
q R r R R r e

r r

kA
R R r R r e

r r

 ξ ξ − ξ  ξ = − − − − − +  π   

ξ ξ ξ ξ  − − − − + −  π   

  (34) 

The two components q1(ξ), parallel to the far-field gradient and q2(ξ), normal to this gradient, 
are represented in the Figure 3 for A1 =1 and k =1. 

 

 

 

        

Figure 3: Closed-form solution of infiltration q in fracture of unit radius in an infinite 
isotropic matrix under a far-field pressure gradient in x1-direction: q1 component parallel to 

the far-field gradient, q2 orthogonal to the far-field gradient 
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The elementary solution for a far-field pressure gradient A2 parallel to e2 is obtained from (34) 
by index changing 1↔2. As mentioned above, the solution for the general case of a far-field 
pressure gradient A is obtained by superposition of the three elementary solutions. By 
introducing the notation: 

.r = ξ ξ , 
1ˆ
r

ξ = ξ       (35) 

T = δδδδ - n ⊗ n       (36) 

where n is the unit normal vector to the crack plane, the general solution obtained for q has 
the following expression: 

( )3 3
2 3 2 2 2 2 2 3 2 2

2

8 ˆ ˆ( ) 3 2 2
3

k
q Rr R R r r R r R R r A

r

−     ξ = − + − + − + − − ξ ⊗ ξ    π     
Tδδδδ  (37) 

It is important to note here a fundamental difference between this result and what could be 
obtained as the limiting case of flow solution in a flattened ellipsoidal inclusion. The 
comparison between the two models is presented farther in the paper. But it is already 
possible to note the flow in the elliptical crack given by (37), as seen also in the Fig. 3, is not 
uniform and parallel to the farfield gradient contrary to the case of ellipsoidal inclusions in 
which the fluid velocity is found to be uniform and parallel, at least if the matrix and inclusion 
are isotropic, to the farfield gradient. More precisely, for instance for a far-filed pressure 
gradient parallel to the x-axis, the solution given by (37) has a non vanishing component in 
the y-axis direction as shown by the expression (34) (see the figure 3 in the paper). However, 
for the same problem modelled by a flattened spheroidal inclusion, the fluid velocity in the 
inclusion would be parallel to the x-axis, so with non component in the y-axis direction. This 
shows the fundamental difference between the two types of flow and the fact that the solution 
for the Poiseuille crack can not be obtained as the limiting case of ellipsoidal inclusions with 
Darcy’s law. 

The solution (37) could be probably obtained by other mathematical methods for instance 
based on the use of harmonics functions instead of the potential solution (11). But for the 
difference underlined here-above, it can not be obtained as a limiting case of solutions 
presented in the literature for ellipsoidal inclusions obeying Darcy’s law. 

The solution (37) represents an original and fundamental result that opens the way for further 
theoretical investigations concerning flow in cracked porous materials. 

4 Pressure field in the matrix 

The solution of the infiltration q through the crack in (37) allows the determination of the 
pressure field in the matrix by using equation (11). 

For the discussions carried on farther in this paper, it is useful to decompose q in q0 and ω 
parts according to (21) and to write: 

0

3

( ) ( ) .( )1
( ) .

4 D

q x
p x A x d

k x

 ξ + ω ξ ξ − = − ξ
π ξ −
∫     (38)  
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The equation (20) shows that the contribution of ω to the integral vanishes. Besides, we can 
deduce from (19), by superposition and by noting that a far-field gradient parallel to e3 does 
not induce flow in the fracture, that, for a general far-field gradient A, q0 is given by: 

0( ) 2 1 . . .q k Aξ = − − ξ ξB ΦΦΦΦ       (39) 

where, 

  1 1
1 21 1 2 2= ( ) ( )e e e e− −φ ⊗ + φ ⊗ΦΦΦΦ     (40) 

Substituting (40) into (38) yields:  

3

1 . .1
( ) . ( ) .

2 D

p x x x d A
x

 − ξ ξ
 = − ξ − ξ
 π ξ − 

∫
B

ΦΦΦΦ    (41) 

The pressure field solution given in this way is an explicit integral function of the geometrical 
parameters of the elliptical disc contained in the tensor B. It is interesting to notice that this 
solution is independent of the matrix permeability k. This is due in particular to the 
assumption of superconducting crack: the pressure solution would depend on k for crack with 
finite conductivity. Anyway, the equation (41) allows us to determine at least numerically the 
pressure field around an elliptical crack by direct integration. 

For the case of circular disc (B = R-2 T) a closed-form expression for the integral (41) can be 
derived for a point located on the plane of the crack, i.e. x3 = 0. We find (see Appendix B): 

( )3

1 . .
( ) sin

2D

x d x
Rx

− ξ ξ πξ − ξ = ψ − ψ
ξ −

∫
B

     (42) 

where, ψ is, as shown in Figure 4, the angular diameter of the disc seen from the position x. 

 

 x2 

x1 

R 

x 

ξ ϕ 
ρ ψ 

u 

v ρ2 

ρ1 

 

Figure 4: Parameters in polar coordinate system 
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Due to superconducting crack, p(x) = 0 when x is in the crack. We also have ΦΦΦΦ = (4R/π)T  
and the expression of p for the points exterior to the disc is given by the following 
expression: 

x.e3 = 0 ;   ( )1
( ) 1 sin .p x A x

 = − ψ − ψ π 
     (43) 

It can be checked that when x → ∞ then ψ→0 and so p(x) → A.x according to (43). The 
infinite boundary condition is recovered in this way. Also, when x is on the boundary of the 
disc, ψ = π/2 and we find the pressure condition in the disc, p(x) = 0. Figure 5 displays the 
variation of pressure field in the plan containing the superconducting fracture with a far-field 
pressure gradient A=(1,0,0).  

 

 

Figure 5: Pressure field around a single superconducting circular disc crack in an infinite 
matrix prescribed by a constant far-field pressure gradient parallel to x1 direction. 

 
 
It could be noted that this pressure solution could be, in principle, obtained as the limiting 
case of the pressure field in an infinite matrix containing a superconducting ellipsoidal 
inclusion. The two problems obey, as a matter of fact, to the same equations and boundary 
conditions: constant pressure in the crack or inclusion, constant farfield pressure gradient and 
mass conservation equation in the matrix. The solution could be then obtained as a classical 
application of potential theories using harmonics functions. However, we have not found in 
the literature any explicit expression of this solution as given by (43).  
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5 Comparison between Darcy-ellipsoidal inclusions and 
Poiseulle-crack  

The crack inclusion has been sometimes considered as the limiting case of a penny-shaped 
inclusion with aspect ratio (ratio between its thickness and diameter) tending to zero. 
However, a further investigation shows this similarity holds only for some partial results and 
in restricted cases and this difference seems to be ignored in the literature. 

To show this difference, let a circular penny-shaped inclusion be considered with the 
revolution axis taken as the third axis of coordinates and with semi-diameters d1 = d2 = d, d3 
<< d. The inclusion has an isotropic permeability k* embedded in the matrix of isotropic 
permeability k. The fluid velocity v in the inclusion is found to be uniform and its value can 
be deduced, for instance, from the results given by Shafiro and Kachanov [[11]. We consider 
the limit when ε = d3/d→0 and k*→∞. The contribution of the inclusion to the equivalent 
permeability of the material is made through the integral of the fluid velocity in the inclusion: 

 
*

( )Q v d
Ω

= ξ ξ∫      (44) 

This integral is a linear function of the far-field gradient A:  

 Q = -ΨΨΨΨ.A      (45) 

Shafiro & Kachanov [[11] gave the following general expression of ΨΨΨΨ for an arbitrary value 
k* of the inclusion and ε: 

 

1 1* * *
*( ) 1 ( ) 1 1

4 2

k k k k
k k n n n n

k k

− −    Ω − πε − πε  = − + ⊗ + + − ⊗     Ω       

Ψ δ −Ψ δ −Ψ δ −Ψ δ −   (46) 

where, Ω and Ω* represent respectively the matrix reference volume and the inclusion 
volume. 

Considering the limiting case of a superconducting crack by taking the limit ε →0 and k*→∞  
Shafiro & Kachanov [[11] proposed the following expression for this limit: 

  316
( - )

3
R k n nν ⊗Ψ = δΨ = δΨ = δΨ = δ     (47) 

where, ν is the crack density. Nevertheless, a careful study shows that the limit is not unique 
and depends on the value of εk* which is degenerate when ε →0 and k*→∞. Let us suppose 
that k* =bk/ε where b is a fixed ratio, hence, εk* = bk remains constant when ε →0 and k*→∞. 
The limit of ΨΨΨΨ from the Shafiro & Kachanov [[11], is obtained to be: 

 316
( - )

3 (4 / )
ν ⊗

+ π
I

b
R k n n

b
Ψ =Ψ =Ψ =Ψ =    (48) 

The limit expression (47) corresponds then to the assumption b →∞. 
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x2 

x1 

d 

d3 

x3 

 

Figure 6: Darcy ellipsoidal inclusion 

Let us consider now the ellipsoidal inclusion having k* tends to infinity and d3 tends to zero.  
At the boundary, we note vm the velocity in the matrix and vi the velocity in the inclusion. The 
velocity in the inclusion is constant for ellipsoidal inclusion. We note vi= ve1. At the 
boundary, the mass balance yields vi.n = vm.n, where n is the unit normal vector to the 

ellipsoid, and then, vm.n = vn1 where 1
1 2 2 2(1 )

x
n

d r

ε=
− − ε

. 

The general value of velocity v in the inclusion, for small ratio ε=d3/d , can be deduced from 
the expression given by Shafiro & Kachanov [[11] for the integral (44) since v is constant in 
the inclusion. We find, in first order development with respect to ε:  

*

*

1
4

k k
v

k k

k

−= −
πε −+

        (49) 

The equivalent infiltration vector in the crack section is deduced from the relation (3) where 

the thickness e is given, for the ellipsoidal inclusion, by 2 2e d r= ε −  and v is constant and 
given by (49). The limit of the equivalent infiltration q = 2ev  for ε→ 0 is found to be: 

2 2

0

8
lim

8

kc
q d r

c dkε→
= − −

π +
    (50) 

where, c = 2d3k
*. We note that for the limit case c→∞, the equation (50) yields a solution 

different from that given by (37). As a matter of fact, it yields only the expression of q0 in the 
equation (19) for circular disc (φ1=π/4d), which is not the complete solution for infiltration in 
the Poiseiulle’s crack since it misses the complementary part ω. 

It can also be checked that the expression (50) does not satisfy the equation (11). It is then 
deduced that, in the general case of finite conductivity c, the solution of flow in the crack with 
Poiseuille’s law is not given as the limit of thickness vanishing ellipsoidal inclusions with 
Darcy’s law. This implies also that the pressure fields in the inclusion and the matrix are 
different for the two problems. 

Only in the case of superconducting crack, the pressure fields in the two problems are the 
same since the pressure is constant in the crack or the inclusion. In this case, the integral of q 
over the inclusion (determining the contribution to the effective permeability, see the next 
section) is also the same for the two models since it depends only on q0 and not on the 
complementary part ω.  
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In conclusion, the limit of the flattened inclusion with Darcy’s flow does not give in the 
general case the same result of pressure and infiltration fields that the model of Poiseuille-
type crack. 

 

6 Application to the effective permeability of cracked porous 
materials 

The effective permeability ̂k  of the heterogeneous domain is calculated from the average 
velocity and average pressure gradient in this domain. For a domain Ω containing a 
distribution of zero-thickness fractures Γ

j, the equivalent average velocity is defined by:  

   V ≡ 1

jj

v d q ds
Ω Γ

 
 +

Ω   
∑∫ ∫ω       (51) 

It can be shown that if a pressure condition corresponding to a uniform macroscopic gradient 
is applied on the boundary of Ω, i.e., p(x) = A.x  on ∂Ω, the average pressure gradient G is 
equal to A: 

1
G p d A

Ω

= ∇ Ω =
Ω ∫

      (52) 

We assume that the permeability tensor of the porous matrix is constant and equal to k. 

Introducing (1) and  (52) into (51) and using  V = - k̂ .G  yield: 

k̂ = k + kf       (53) 

where, kf is the contribution of the cracks to the effective permeability obtained by the 
following relationship: 

1

jj

q ds
ΓΩ∑ ∫ = -kf.A      (54) 

The dilute Mori-Tanaka scheme estimates the left-hand side of (54) as the sum of the integral 
of q over each individual crack by neglecting the effects of cracks interactions. As seen in 
section 3, the infiltration in the crack is expressed by q = q0 + ω. According to (25), ω can be 
written as: ω = e3×∇ϕ. Using this relation and (28), we calculate: 

03 3( ) . 0
D D D D

ds e ds e n dl t d l
∂ ∂

ω ξ = − ∧ ∇ϕ = − ∧ ϕ = −ϕ =∫ ∫ ∫ ∫   (55) 

Therefore, only q0 contributes to the integral over the crack surface. From the results given in 
Section 3, we deduce: 

0 4
( ) ( ) .

3

k
Q q ds q ds S AΓ

Γ Γ

= ξ = ξ = −∫ ∫ ΦΦΦΦ     (56) 
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where, the tensor ΦΦΦΦ  defined by (40) and 
1/2

1 2 /S d dΓ = π = π B  represents the area of the 

ellipse Γ. Comparing this relation to (54), the Mori-Tanaka estimate of kf for an isotropic 
matrix containing a family of elliptical cracks is found as follows: 

    f 4

3
k SΓ= ν < >k ΦΦΦΦ       (57) 

where, ν is the crack density, i.e: number of cracks (centres) per unit volume and <SΓΦΦΦΦ > is 
the average value of SΓΦΦΦΦ calculated over the cracks population. For an isotropic distribution 
of circular cracks with radius R, we find: 

f 332

9
k R= νk δδδδ       (58) 

and the following expression for the dilute Mori-Tanaka effective permeability: 

332ˆ 1
9

MTk k R
 = + ν 
 

     (59) 

The self-consistent estimate is obtained by replacing, when calculating the contribution of 
cracks to the effective permeability in equation (58), the matrix permeability by the unknown 
effective permeability. Therefore, equation (59) leads to the following equation for the self-

consistent estimation̂sck : 

 332ˆ ˆ
9

sc sck k k R= + ν      (60) 

Furthermore, 

3

ˆ
32

1
9

sc k
k

R
=

− ν
      (61) 

The dilute Mori-Tanaka (59) estimation is found to give the first order development for small 
ν of the self-consistent estimation (61) (Figure 7). By introducing the dimensionless crack 

density 34

3
Rν = πν , the self-consistent estimation becomes singular for a critical value 

3
1.18

8

πν = ≈ . The model is valid only for small values of ν and we do not think a physical 

signification can be attached to this singularity that appears for relatively high values of crack 
density.  
It is worth noting that occasionally this singularity has been related to the percolation limit of 
the cracks network [[5]. However, Dormieux and Kondo [[5] obtained a different critical 

value for self-consistent model, 
3

2.36
4

πν = ≈ . The percolation threshold has sometimes 

been studied numerically. When the domain size is finite, some fracture network 
configuration percolate and some do not for a given density. It can be only defined a 
percolation threshold cν  for the limit of infinite size of domain. Studying the hexagonal 

fracture networks with isotropic distribution, Bogdanov et al. [[3] found that there is rarely 
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percolation for finite fracture network with 0.42ν ≤ ; percolating and nonpercolating fracture 
network coexist for the range of densities 0.42 1.70≤ ν ≤  and almost all the fracture are 
connected when 1.70ν ≥ .  Huseby et al. [[22] gave a more accurate result for the percolation 
threshold, 1.00ν ≥  for infinite matrix, which is very close to the critical value obtained in 
this work by the self-consistent scheme. 
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Figure 7: Dilute Mori-Tanaka and self-consistent estimates of effective permeability  

 

7 Extension to anisotropic matrix 
The linear transformation presented in Pouya [[12] can be used to extend the solutions 
obtained in the previous sections for elliptical crack in an isotropic matrix to the case of 
anisotropic matrices.  Considering a reversible tensor M, we define the transformed variables 

x∼, v∼(x∼) and p∼(x∼) as follows:  

x∼ =M.x  , v∼(x∼) =  M.v(x) , p∼(x∼) = p(x)     (62) 

Therefore, x∼ =M.x transforms the domain Ω to a domain Ω
∼

, the cracks Γ to a new geometry Γ
∼

The flow problem is then transformed to a new problem corresponding to matrix 
permeability. 

Let us consider an infinite homogeneous porous medium embedding an elliptical crack with a 
geometry defined by two principal axes e1 and e2 and half-diameters d1 and d2. A pressure 
gradient A is imposed at the infinite boundary of the domain. We refer to Pouya [[12] for the 
complete set of transformation relations for different variables in which the tensor of 
permeability is taken the following expression: 

k
∼
 = M k M T       (63) 
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The transformation to the problem studied in previous section is applied by taking 

M = -1k . In the transformed problem, we find an isotropic matrix with unit permeability: k
∼

 = δ. The equation of the elliptical crack ξ.B.ξ = 1 is equivalent to ξɶ .M-1,TBM-1.ξɶ  = 1 or 

. .ξ ξBɶ ɶɶ  = 1 with:  

=B k B kɶ        (64) 

The tensor B
∼

 defines the geometry of the crack in the transformed problem. In order to 

calculate the half-diameters d
∼

1, d
∼

2 and the principal directions e
∼

1, e
∼

2 (unit vectors) of the 
transformed ellipse, we need to write: 

                                             1 21 1 2 2B e e e e= λ ⊗ + λ ⊗ɶ ɶɶ ɶ ɶ ɶ ɶ     (65) 

The expressions λɶ 1 and λɶ 2, and of φ
∼

1 and φ
∼

1 that can be deduced from λɶ 1 and λɶ 2 by the 
same relations (16) are required for writing the solutions of pressure and velocity in the 
transformed problem. However, if only the pressure field in the matrix in equation (41) or the 
application to effective permeability in equation (56) is envisaged, it is easier to express 
directly ΦΦΦΦ as function of B (see Appendix C): 

f gBΦ = δ +Φ = δ +Φ = δ +Φ = δ +        (66) 

where, f and g are scalar functions of B = B:δδδδ  and β = |B|.  

As a matter of fact, the pressure transformation p∼(x∼) = p(x) leads to A
∼
.x∼= A.x at infinity; hence, 

A
∼
 = k .A. Moreover, 0( )q ξɶɶ in the transformed problem is given by (39) such as: 

                                              0( ) 2 1 . . .Αq kξ = − − ξ ξ ΦΦΦΦɶɶ ɶ ɶ ɶɶ ɶɶ B     (67) 

where 1k =ɶ  and: 

                                              = ( , ) ( , )f B g Bβ βɶ ɶɶ ɶ ɶɶ BΦ δ +Φ δ +Φ δ +Φ δ +       (68) 

The general transformation rule for infiltration vectors is (see in Pouya [[12]): 

 0 011
.

. .
k

k
q q

n n
−=ɶ      (69) 

Replacing by these values function of initial variables yields: 

 0( ) 2 .k. 1 . . .k kq n n Aξ = − − ξ ξ ɶB ΦΦΦΦ      

with ɶB given by (64), : = :B =ɶ ɶB k Bδδδδ  and =β =ɶ ɶB k B  and the expressions the functions f 

and g given in Appendix C. In this way, q0(ξ) is calculated explicitly for arbitrary elliptical 
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shaped crack in a matrix with arbitrary anisotropic permeability k. The pressure field in the 
matrix is deduced from:  

( ) ( )
0 1

3/21

( ) . ( )1
( ) .

4 . .D

q x
p x A x d

x x

−

−

ξ ξ −
= + ξ

π ξ − ξ −
∫

k

k k
   (70) 

For extension of the results concerning the effective permeability, it is sufficient to write (57) 
for the transformed problem: 

     f 4

3
k SΓ= ν < >k ɶɶ ɶ ɶɶ ΦΦΦΦ       (71) 

Noting that 1k =ɶ , /ν = ν = νM kɶ , /SΓ = π Bɶ ɶ , f f=k k k kɶ , and using the 

expressions obtained here above for ɶΦΦΦΦ  and Bɶ , we find: 

f 4

3
SΓ= ν < >k k kɶΦΦΦΦ      (72) 

Substituting (72) into (53) allows us to determine the effective permeability of a porous body 
with anisotropic matrix permeability k containing a distribution of elliptical superconducting 
cracks by using the Mori-Tanaka or the self-consistent estimate. 

In practice, field observation permits us to determine the cracks geometries (size, aperture 
and orientation) and also their density [[23]. An estimation of the crack conductivity is also 
required that can be obtained by a Poiseuille’s model. However, in our work, only 
superconducting disc-shaped cracks are considered. The crack network is assumed to be 
randomly distributed. With these data, the models given in Section 6 are suitable to 
estimating the effective permeability. 

 

8 Conclusions and perspectives 

The equation governing the steady state flow around a crack surface in an infinite porous 
body, deduced from previous investigations [[12], was considered in this paper. An analytical 
solution was derived for this equation in the case of a superconducting and elliptical disc 
shaped crack. 

Cracks have been very often modelled as flattened ellipsoidal inclusions obeying Darcy’s law 
because for this problem analytical results are available. The question raises then if this model 
can represent well a crack with zero thickness and obeying to the Poiseuille’s law. In the 
literature, it is often implicitly responded positively to this question: it is assumed that the 
flow field in and around a crack with Poiseille’s law can be obtained as the limiting case of 
the flow field in and around a flattened ellipsoidal inclusion with Darcy’s law when its 
thickness tends to zero. The results obtained in the present work allowed the comparison. We 
could show that the equivalence between the two models does not hold in the general case. 
Only some partial results in restricted cases, mainly the case of superconducting cracks, can 
be obtained as a limit case. In general, for cracks with finite conductivity, the pressure 
gradient through the mean crack surface is constant in ellipsoidal inclusion model but not in 
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Poiseuille’s type crack. These results change fundamentally the vision we can have for the 
flow in a Poiseuille’s type crack.   

The results obtained for a single crack have been used to estimate the effective permeability 
of cracked porous materials. The dilute Mori-Tanaka model is a very simple model that does 
not take into account the interaction between cracks. The expression of the effective 
permeability is a linear function of the crack density according to this model, for anisotropic 
matrix permeability and elliptical disc cracks. The crack interaction is taken into account 
implicitly in the self consistent model. We established the exact expression of the effective 
permeability according to this model for circular cracks in a matrix with isotropic 
permeability. This non linear model presents a singularity for a critical value of crack density 
that is sometimes interpreted as representing the percolation threshold of crack network. This 
critical value is then compared to analogous values given in the literature, and found to be 
very close to that obtained by numerical simulation for the percolation threshold of crack 
networks. 

The analytical solutions given in this paper open the way for deeper theoretical investigations. 
The effective permeability of micro-cracked materials can take benefit from these results as 
well as the study of crack interactions within a porous body. Also it is worth reminding that a 
fundamental assumption underlying the present work was the infinite transversal conductivity 
of cracks that removes the possibility of pressure jump between to sides of the crack. But in 
some physical cases, cracks act as an impervious membrane with a pressure discontinuity 
across the crack surface [[3, [10, [24]. The approach used by Martin [[24] could be used in 
this case to extend some of the results of the present paper to these types of cracks. 

Analytical infiltration solution through a single crack obtained here was restricted to the case 
of superconducting cracks. For the case of Poiseiulle-type cracks with finite conductivity, 
semi-analytical and numerical calculations are required that we have investigated in an 
ongoing work and we hope present the results in a future paper. Moreover, numerical study 
allows us to take into consideration explicitly the crack interaction and the crack intersection. 
The three-dimensional effective permeability model that can be obtained in this way would 
allow extending the two-dimensional application to CO2 storage [[25] to a three-dimensional 
modelling.  

 

 

Appendix A: Integral calculation for a point inside the elliptical disc  

Replacing by the (14) in the main text in (12), the following equation (A.1) is found in which 
B is diagonal with eigenvalues λ1, λ2, and ξ.B.ξ = λ1ξ1

2 + λ2ξ2
2. We use for ξ the polar 

coordinates (ρ,θ) in the local coordinate system having x as origin (see Figure 3). We have 
ξ1= x1+ρ cos θ,  ξ2=x2+ρ sinθ. Thus, we have: 

1 1 13

1 . .
( )

D

I x d
x

− ξ ξ
= ξ − ξ

ξ −
∫

B
=

2

0 0

1 . .
cos

m

d d
ρπ

θ= ρ=

− ξ ξ
ρ θ θ

ρ∫ ∫
B

    (A.1) 

It is obvious that this integral must be considered as the Cauchy principal value: 



21 

1 1
0

l imI I εε→
=   ,  

2

1
0

( )cosI J d
π

ε ε
θ=

= θ θ θ∫      (A.2) 

where: 

2
1 . .

( ) 1 ( )
m m d

J d e g
e

ρ ρ

ε
ε ε

− ξ ξ γ ρθ = ρ = − ρ +
ρ ρ∫ ∫

B
    (A.3) 

with: 

   2 2
1 2cos sinγ = λ θ + λ θ ,   2 2

1 2 1 2( s in cos )H x x= γ − λ λ θ + θ  

2
1 1 2 2cos sin

,
x x

e g
H H

λ θ + λ θγ= =       (A.4) 

We take the variable α: 

     sinα = eρ+g         (A.5) 

When ρ varies between ε and ρm, α varies between αε = Arcsin(ρε +g) to π/2. In this interval, 
cosα ≥ 0, and variable change ρ→α allows calculating: 

/2 21
( ) (s in )

s in

g
J g d

e g
ε

π

ε
α=α

 γ −θ = − α + α α − 
∫      (A.6) 

and find: 

[ ]
2(1 )

( ) ( ) cos ( / 2 )ε ε ε ε
γ − γθ = θ − α + π − αg

J F g
e e

   (A.7) 

Where: 

/ 2 1
( )

s in
ε

π

ε
α=α

θ = α
α −∫F d

g
       (A.8) 

Now we can write: 

[ ]1,
0

( ) ( ) cosI J J d
π

ε ε ε
θ=

= θ − θ + π θ θ∫      (A.9) 

When changing θ to θ+π, the functions γ, e, H remain unchanged, but g is changed to –g, αε  
to  α'ε = Arcsin(ρε -g) and the uε to u'ε = tan (α'ε/2). It can be shown that: 

[ ]
/2

0
/2

1
lim ( ) ( )

s in
F F d

g

π

ε εε→
−π

θ − θ + π = α
α −∫            (A.10) 
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where the integral in the right-hand side must be considered as the Cauchy principal value 
and can be shown to take the following values: 

 

/2

/2
2

1
1

sin 1
1

0 1

d i f g
g

g
g

i f g

π

−π

 −πα = >
α − −


 = <

∫
           (A.11) 

By using this result (with |g|<1) and the limits 
0 0

l im l im ' s in( )ε εε→ ε→
α = − α = Arc g , we find: 

    1
0

cos
g

I d
e

π

θ=

γ= −π θ θ∫              (A.12) 

Replacing by (A.4) for γ, g and e in this expression and after integration we obtain: 

( )
/2 2

1 1 1 1 1 2 12 2
0 1 2

cos
2 2 ,

cos sin
I x d x

π

θ=

θ= − πλ θ = − πφ λ λ
λ θ + λ θ

∫            (A.13) 

where the function φ1(λ1,λ2) is defined by the equation (16) in the main text. 

Furthermore, using the same notation with x1=x2=0, and thus, g=0 and e=γ, we have: 

1/2 2 2
2 2

2
1 20 0 0 0 0

2
1 . . 1

3 3

m d
d d d d

ρ γπ π π

θ= ρ= θ= ρ= θ=

θ π− ξ ξ ρ ρ θ = − γ ρ ρ ρ θ = =
γ λ λ∫ ∫ ∫ ∫ ∫M          (A.14) 

 

Appendix B: Integral calculation for a point outside the circular disc  

As seen in Figure 4 in the text, the integral in the left-hand side of (42) can be re-written in the 
polar coordinate system as follows: 

2

1

2'

3
'

1 . . 1 . / ( cos sin )
( )

D

R u v
I x d d d

x

ρψ

−ψ ρ

− ξ ξ − ξ ξ ϕ + ϕ
= ξ − ξ = ρ θ

ρξ −
∫ ∫ ∫

B
 (B.1) 

where: 

 ψ' = ψ/2     (B.2) 

Also, we can write 2 21
1 . / 1 ( )R e g

eR
− ξ ξ = − ρ +  with: 

22 2

1

sin
e

R x
=

− ϕ
 and 

cosg e x= − ϕ . Then the symmetries with respect to ϕ→-ϕ imply that we can write: 

'

'

1
( )cosI J d u

eR

ψ

−ψ

 
 = ϕ ϕ ϕ
 
 
∫    where: 

2

1

21 ( )
( )

e g
J d

ρ

ρ

− ρ +
ϕ = ρ

ρ∫  
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For the same variable change (A.5), α varies between −π/2  to π/2 when ρ varies between ρ1  
and ρ2. By the same method than in the previous case, and using (A.11) with, this time, |g|>1, 
we calculate: 

( )2

1 1
( )cos 1 1 cos ' cos cos

sin '

g
J

eR eg

  πϕ ϕ = − − π = − ψ − ϕ ϕ   ψ 
  (B.3) 

where, sin '
R

x
ψ = .  Thus, by integration and using 

s in '
u x

R

ψ= , we find finally,  

( ) ( )
'

'

1
( )cos 2 ' s in 2 ' s in

2 2
I J d u x x

eR R R

ψ

−ψ

  π π
 = ϕ ϕ ϕ = ψ − ψ = ψ − ψ
 
 
∫   (B.4) 

 

Appendix C: Linear relation between two tensors B and Ф 

For a general second order tensor B, we note B = B:δδδδ and β =|B| (determinant of B). For 

1 21 1 2 2e e e e= λ ⊗ + λ ⊗B  we have 1 2B = λ + λ   and β =λ1λ2. Therefore, λ1 and λ2 are the 

solutions of:  

1,2
: 4

2

B − β
λ =

∓ B B
    (C.1) 

For a given B, we define:   1 1
1 21 1 2 2e e e e− −= φ ⊗ + φ ⊗ΦΦΦΦ  where 1φ  and 2φ  verify equation  

(17) in the main text. i.e: 

2 1
1 2 ( )E

λ − λ
φ + φ = λ

λ
,  2 1

1 22

1
( )

1
K

λ − λ
φ + φ = λ

λ− λ
  (C.2) 

with 1

2

1
λλ = −
λ

 and K(λ) and E(λ) the complete elliptical integrals of first or second kind.  

The solutions of 1φ , 2φ can be written as: 

     [ ]
2

2 1
1 2

1

1 1
. ( ) ( )

( , )
K E

B

λ − λ − λφ = λ − λ =
λ χ βλ

    (C.3) 

2
2 1

2 2 2
2

1 1 1
( ) ( )

( , )
K E

B

 λ − λ − λφ = − λ + λ = λ χ βλ λ 
   (C.4) 

Remarking that two tensors Ф and B have the same principal directions e1, e2, we can write: 

Bσ τΦ = δ +Φ = δ +Φ = δ +Φ = δ +       (C.5) 
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where σ, τ are two scalars and 
1

2
B= −B B δδδδ . From this relation we deduce that: 

3= σΦ : δΦ : δΦ : δΦ : δ ,      
2

2 2( 4 )
4

det B
τσ − − β=ΦΦΦΦ    (C.6)                          

So, φ1  and φ2 can be determined from the system of equations : 

1 2

1 1
3+ = σ

φ φ
  ,  

2
2 2

1 2

1
( 4 )

4
B

τ= σ − − β
φ φ

   (C.7) 

From these equations, we determine σ and τ function of φ1 and φ2  and so, finally, function of 
B and β: 

( )1 2
1

( , )
3

Bσ β = χ + χ ,   
2 2
1 2 1 2

2

7
( , )

9
B

χ + χ − χ χτ β =
α

,  
: 4

( , )
2

B
− β

α β =
B B

 (C.8)  

Finally, we define two scalar functions f and g as follows: 

  

1
( , )

2
f B Bβ = σ − τ ,  ( , )g B β = τ     (C.9) 

These allow writing:      

f gBΦ = δ +Φ = δ +Φ = δ +Φ = δ +              (C.10)
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