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Abstract

A basic equation governing the steady-state flosuad a single crack in an infinite porous

body is given. The flow through the crack obeys® Poiseiulle’s law and the matrix has an
anisotropic permeability. A semi-analytical solutis established for this equation in the case
of elliptical disc-shaped crack. This solution take closed-form expression for the case of
superconducting circular cracks. The results amapased to those obtained for flattened

ellipsoidal inclusions obeying to the Darcy'’s fldaw, which are in some works supposed to
represent the cracks. It is shown that the flowutsmh for an elliptical disc-shaped crack

obeying to the Poiseuille’s law is different frohmat obtained as the limiting case of flattened
ellipsoidal inclusions. The results are then useddgtablish dilute Mori-Tanaka and self-

consistent estimates of the effective permealilitporous media containing Poiseuille’s type

elliptical cracks.

Keywords: porous media, crack, steady-state flow, Poisetdllaw, Darcy’s law, effective
permeability, upscaling

1 Introduction

The effective permeability of fractured rocks anttnm-cracked porous materials is a great
interest for many environmental and industrial aapions such as hydrology, petroleum
engineering, nuclear waste disposal, geothermadresipn... Numerous studies dealt with
permeability of fracture network in three-dimensibmedia. Koudina et al. [[1] presented a
method to generate a triangular mesh on three-diimeal network of polygonal fracture
surfaces, and used the finite volume method to coenfhe permeability of fractured media.
The numerical tool developed in this way was emgtbto study the effective permeability
of fractures network with statistical distributif®]. However, the rock matrix was supposed
to be impervious in these works which does notespond to some real cases. Therefore,
other theoretical and numerical investigations himeeised on this problem [[3, [4[5]6, [7,
[8]. A fundamental problem for modelling the effieet permeability of cracked materials is
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the determination of the steady state flow aroursihgle crack in an infinite homogeneous
matrix. In this work, we are interested in the cadecracks and fractures that can be
represented geometrically by zero thickness susfagéh non pressure jump between their
two faces, which corresponds to an assumption of zeoss section resistance for the
fracture. Therefore, we do not consider the cadesmom-equilibrium flow [[9] or of
impervious fracture [[10]. In many physical studiethe Poiseuille’s law is chosen
preferentially to represent the flow in the cracKfie paper devotes to determine flow
solution around a single crack obeying to the Ruoileés law that is the key issue for
determining the effective permeability.

The flow in cracks, embedded in an infinite mathas been determined in some works by
using a model of ellipsoidal inclusion, in whicketflow is governed by Darcy’s law [[5[11].

It is implicitly supposed in these works that thaf in the crack with the Poiseuille’s law is
obtained as the limiting case of a flattened etligal inclusion with thickness tending to
zero. In this study, we show that this is not trilee solution obtained for the flow in and
around an elliptical disc-shaped crack obeyinght Roiseuille’s law is different from that
obtained as a limit of ellipsoidal inclusions olbreyito Darcy’s law. Only some patrtial results,
for instance, the pressure field in the case oemugnducting cracks, are similar in the two
problems.

To determine the solution of flow in a matrix cdntag a single elliptical disc-shaped crack,
we use recent theoretical results established Her hore general problem of multiple
intersecting fracture surfaces [[12]. The potengialution obtained for this general problem,
as an extension of preceding works for the 2D ¢H<{14], is based on singular integral
equations allowing to reduce the dimension of tiheblem from 3D to 2D and, hence,

particularly interesting for numerical methods. Hwer, it will be seen in the sequel that for
the case of a single elliptical disc-shaped cratlkallows also deriving semi-analytical

solutions as an alternative way to the use of harenfunctions [15, 16] or of dual integral

equations methods [17, 18].

The solution obtained for the single crack will been used to estimate the effective
permeability of the cracked porous materials byeatassical upscaling methods.

Notations :

In the sequel, light-face (Greek or Latin) lettelsnote scalars; underlined letters denote
vectors, bold-face letters designate second ramdots or double-index matrices. The scalar
product of two vectora and b is labelled asa.b. For second rank tensors, the tensor
transposed from is denotedA’, the matrix product is labelled A8 and the determinant as
|A]. The operation oA on a is labelled asA.a. The convention of summation on repeated
indices isnot used for Latin indiced,(j, k...) that number surfaces, lines, etc., and are noted
indifferently as subscript or upperscript.represents the gradient aftddhe Laplace operator
for a scalar field and{.) the divergence for a vector field.

2 Governing equations

An infinite porous 3D body2 containing an elliptical disc-fracture surfalcdas considered
(Figure 1). The points dR are denoted by = (X1, X2, X3) and, when they are located on the
crack surface, by = (z1, 2, zs). The surfacd is defined by a functiog(s) from R? — &>
parameterized by = (s, S). Fluid flow through the matrix is governed by Dgs law:
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OxOQ-T; V()= -k.Op(x) (1)

where Kk is the permeability tensor of porous matrix sugao® be uniformy(x) andp(x) the
local velocity and pressure, respectively.

The local mass balance in the matrix reads:

Ox0Q-T; O.v(x)=0 (2)

Figure 1: An infinite porous medium containing at félliptical disc shaped crack

The flow in the fracture surface is characterizgdabpressure fielgh(s) and an infiltration
field q(s) in this surface. The total infiltratiog(s) through a fracture section is determined by
the integral of fluid velocity over this physical section of the thicknessa2 follows:

O a@=["v(syd 3)

The crack-matrix mass exchange at a point on @eure surface excluded its boundary is
established by considering the mass balance inal ssslume surrounding this point and
reads [[12]:

OxOr-L; [v(X].n(9+0,.49=0 (4)

where, [J,.q(s) is the surface divergence ahdthe set of points on the crack boundaries. In

addition, analysis of mass balance around a pomtthe crack boundary leads to the
following mass balance condition at this point:

Dz(s)0L; q(s).m9=0 )



In this equationg is the infiltration vector in the crack amd is the outward unihormal
vector of the boundary line that is tangent todtaek plane.

The body is submitted at its infinite boundary tprassure fielgh.(X):

jim_ [P —p=()] = (6)

P. satisfiesAp..= 0. For permeability upscaling, a constant presguwadient is supposed to
be prescribed to the matrix at its infinite bourydddesignating byA the far-field pressure
gradient, we have:

P=(X) = A.X (1)

The equations to be satisfied pyre the boundary condition (6), mass balanceq42)(5)
and the constitutive equation (1). The solutioraot®d by Pouya [[12] expresses the pressure
field in the whole matrix as a function of the Itrition vector in the fracture as follows:

POTPPORE S S CLCa O
4mf F[(x-28)k (e 23]

In this equationds represents the surface elementiorThis solution satisfies well the far-
field condition (6). Also, noting that the integtamnction in the right-hand side integral is
equal to—q(s).0,(1/ r) with r =[(x-2).k".(x-2)] * the mass balance (2) can be showrxfor
non situated on the fracture. To establish thatig4yvell satisfied by (8) is little more
technical and we refer to [[12] for its demonswati

ds (8)

It should be noted that the only significant asstiomg limiting the validity of this solution
are that matrix permeabilitiy is assumed to be uniform and that there is nospresgap
between the two sides of the crack surface. Althoug consider in the sequel only the case
of a plane crack surfaces, the solution (8) remaalisl for curved-surface fractures, and, in
its general form given in [[12], for multiple ins&cting fractures.

Also, in equation (8), the constitutive flow law the fracture is not constrained. A linear
relation between the infiltration vector and thegmure gradient, as an extension of the
Poiseuille’s law for the viscous fluid flow betweemo parallel plates, is widely used in the
literature to represent the flow in the crack:

q(8) =-c(9.0; 19 9)

The conductivity tensar depends on the fluid dynamic viscosity u, the hutlc aperture of
the fracturee, and also the roughness of fracture surfaces. dst masesg¢ is supposed
isotropic (in the fracture surface) and replacedabscalarc. In particular, the Poiseuille’s
law, widely used for flow through rock fractured 9], determines from a laminar flow
between two parallel plates separated by a consliatancee and leads t@ = €%/(12p).
However,c can be anisotropic in some cases as shown expedhyeby Gentieret al[[20].
Introducing (9) into (8) leads to an integral egoatinvolving only the unknown pressure
field. A simple analysis shows that the solutiondaonstant pressure gradient along the disc
surface, corresponding to the Eshelby-type ellgsloinclusion with Dracy’s law, does not
satisfy this equation. The comparison between tbeieblle-type crack and the flattened
ellipsoidal inclusion with Darcy’s law will be digssed further in this paper.
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However, in this paper we are interested in the cdsuperconducting cracks corresponding
to the limiting casec—. This is an important limiting case, currently sskbed in the
literature because it allows determining the uppeund of the effective permeability for
fixed crack density and geometry.

3 Superconductive dliptical crack-inclusion

In the case of superconducting fracture, the pressemains constant along the fracture
surface. We consider an elliptical disc shapedkciacand denote byl; andd, the half-
diameters of the ellipse, by the unit vecterande; its principal directions and legs the unit
normal to the crack plane. A coordinate systemefndd with its origin located at the crack
centre and its axes paralleldg e, andes. The equation of the ellipse readB.x = 1 forx.e;

= 0. We note:

A o=1d5 A=102 B=Mele+hele (10)

The general result needed for permeability upsaalis the integral of the infiltration over
the disc surface. This integral is a linear functmf the far-field gradienA and can be
written asW.A, where the tensd¥ is a function ofc, k andB. By application of the linear
transformation [[12], the problem can be changew ithat of an ellipsoidal disc in an
isotropic matrix. Nevertheless, a numerical metiwrequired to solve the general problem
for the case of finite and anisotropic conductivgpsorc. In the following, we consider the
particular case of superconducting crack, o, that allows us to derive an analytical or
semi-analytical solution.

The equation (8) written for a single ellipticahck D embedded in an infinite porous matrix
with isotropic permeabilitk yields:

1 ¢96).C-X

P9 = Ax=— £ T

3 (11)

In this equationg¢ represents the surface elemenfohe general solution can be obtained
by superposition method. It requires three elenmgrgalutions forA parallel toe;, & andes.

A simple analysis shows that férparallel toe; the solution is a uniform gradient pressure
not perturbed by the presence of the craek, p(x) = A.x in the whole body. To build the
complete solution, it is sufficient to determine tbolution forA parallel to thex-axis. Hence,
we try to solve the problem f@e,(x) = AiXa.

The condition of superconducting crack imposes thatpressur@ must be constant in the
crack surface, and because of symmetry considagtiihis constant is zero. Therefore,
designating, for a field(£), by:

() = J‘Mdg (12)
> &
the solutiong must satisfy:
| (g) = 4TIkA1X1 (13)



Figure 2: Geometrical parameters defining the callion pointx and the integration poirgt
in the elliptical crack surface

To find a solution for this problem, we try fir$tet following expression which is inspired by
the 2D solution given by Pouya & Ghabezloo [[14]:

q°(€)=h./1-EBE g (14)

As shown in Appendix A, the expression foundlfés a linear function of, for g = g’ which
allows us to build the solution for the equatio®)(1The general expression found for this

solution has recourse to themplete elliptic integralsf first and second kinK(A\) andE())
defined by:

/2 /2

j\/— j\/l A2sin?0d8  (0sA<1l)  (15)
1-A2sin

The semi-analytical or iterative numerical methodeduto calculate thesmmplete elliptic
integralskK(A) andE(A) can be found in mathematical handbooks [[21].

Moreover, we define:

w2
A.cos’0

AN OE : do
() ej;o\/)\lcoszeﬂxzsinze
2 A,sin?0 (o
0 (ApA,) = | 2 de
6z0y/A,COS2B+ ) , SiNF0

2
It can be noticed that, @, = d,, denoting byA = 1—(%] , we have:
1



Q1A LA ) + QoA A 2)=diE0‘) (17)
2

dZ @A A ,)+d30,A A )=dKQ)

This system of equations allows the determinatiog,@nd¢, as function oK(A) andE(M).
Then, forg = ¢, it is shown in Appendix A that:

| = -2'11 T[(P]_O\l,)\z) X1 (18)

As a result, (13) is verified if we take = —2k A, and therefore:
1

°®)=->Xnfi-EBLe (19)
0,

According to this expression, the flgR in the crack has a constant direction paralleh®
far-field gradient, as in the case of ellipsoidaréy type inclusions. Howeveg’ is not the
real solution of the flow in the disc. As a matbérfact, it must be noted that the solution of
the equation (13) is not unique. If the veai®é) satisfies].wo = 0 in the disc andh.n = 0 on

its boundary whera is outward unit normal vector to the boundaryntixe calculate:

1@ =~[o@®0(fe-x|")de=-[|g-§ "o nds+f[e- § Dw d=0  @0)
r or r

Consequentlyg = ¢° + w also satisfies (13). This degeneracy of the smiutian be removed

if we suppose that the superconducting crack idittie case of a crack with the conductivity
c = oty wherecp is constant andr— . This implies thatc, g must be a gradient field
(pressure gradient) and satisfy the condition ahmetry of crossed derivatives. This
condition allows us to determine a uniqueaved thatyis symmetric and positive definite.
In the case of a superconducting crack consideedha limit case of an isotropic
conductivity crack, this condition implies thathas to be a gradient field. It can be checked
thatg’ given by (19) is not a gradient field. A complerzeg partw(&) should be added @f

to make it a gradient field satisfying (13). Thtie solution of the infiltration field reads:

a(®) =g"@) + (@) (21)

where, the complementary pasthas to satisfy the following conditions:

0 E0D; O.w=0 (22)
0 £06D: wn =0 23)
0 EUD; 01(q% +0p) =02(q"1 +wn) (24)

The last condition assures tltpis a gradient field. Mathematically, equation (B2¥atisfied
if we take:

W =029, wp = 010 (25)
with ¢ an arbitrary function. Then, the condition (24glgs:



AS¢=%02 1-EBE (26)

where, A $ = (af +6§)¢. Substituting (25) into (23) and rearranging ténens, we find:

0 £06D; 0.t =0 (27)

wheret is the unit tangent vector to the crack bound#dy This equation implies thdt is
constant on the boundary, hence:

0 £0oD; ¢ =do (28)

with, ¢o a constant. A solution for the Poisson’s equati) over the elliptical domain exists
for every Dirichlet boundary condition and in pautiar (28) with constani,. We can tak&o

=0 because the addition of a constant valug times not change the solutian The solution
of equation (26) witlp=0 on the boundary can be determined numericaltiqéngeneral case
and analytically in some special cases. Two pddicoases in which the solution can be
derived analytically are the following:

Case 1: Limit of infinitely long elliptical disc

We suppose the limit case of elliptical disc withfinite extension in the direction 2.
Geometrically, this corresponds to an infinite barfidvidth 2d; parallel to the direction 2.
The solution, for a far-field gradieAy parallel toe; corresponds to that of the 2D case with a
crack of length 2D in the plang( x,) parallel tox;. The solution can therefore be compared
to that given for this case by Pouya & Ghabezldd][In the 3D problemg, o andA, =0

and go(é): -2k df —&Z A g is a gradient field. Thusy = 0. The exact solution is then

9(§)=—2k\/df—if A g which is exactly the solution found in 2D case Pguya &
Ghabezloo [[14].

Case 2: Circular crack with radiusR

In this cased; = d» = R We find @, = @, = 4—]; andq®(&)= 8k_A1\/ R?-r?e withr®=¢.¢.
|

In order to find the expression of the complemgntanction w, we look for a solution of
(26) in the following form:

2 0 (&) =x(8) +02L(r) (29)

where,{(r) satisfies:
AL = —8k—Ai\/ R® —r? (30)
Tt

Then,y has to satisfAy =0. The general solution of (30) is:

Z(r):—8kT’Ai —§1R2./R2—r2 1 REVR- 1 \/7\/: ;'(F? r2) + G Lne C (31)



where,C4, C, are two constants. Thus,

0,0 = —&(—A%E(RZ -r2)" - q} (32)

T r

Substituting this expression in (29) and taking iatcount the boundary conditigiiR)=0,
we find thatx = -C, kAi E"; on the boundary. Hence, the solution of the eqnati =0 is
R

X&) =-C, kAi Ez and therefore the solution fris:

¢:—8k_AE_§|:%(R2_ rZ)SIZ_Q}_QS_kA\li (33)

T r m R?

The constanC; is determined by the condition thiahas to be finite in the crack or thjats
3
not singular wherr — 0. This imposesC, :R?. Substituting by this expression in (25) and

(21) we find the solution of infiltration in thercular disc under the far-field pressure gradient
A; as follows:

__%E_i _ 2_&5_53 _ — : B
q(®) = HLZN/RZ e (R?( R F)j+3}_@

8 182 p3 2\ Ko 2\V/2
_%[_%(R —( R-r ) j+ar_§(R2_ r)/ }_g

The two components;(§), parallel to the far-field gradient agg(&), normal to this gradient,
are represented in the Figure 34qr=1 andk =1.

(34)

g1 g2

0 16375

I—D.4?153 l 1.3203
-0.84303 0.94306

--1.4146 - 0.56584

--1.8861 \ - 0.18861
L -2.3576 --0.18881
28292 - -0.56583
I-s.snu? I-D.94306
-3.7722 -1.3203
-4.2438 -1.6975

Figure 3: Closed-form solution of infiltration q fracture of unit radius in an infinite
isotropic matrix under a far-field pressure gratdierx;-direction:g; component parallel to
the far-field gradienty, orthogonal to the far-field gradient




The elementary solution for a far-field pressuradigntA, parallel toe, is obtained from (34)
by index changing 4 2. As mentioned above, the solution for the genesak of a far-field
pressure gradienf is obtained by superposition of the three elemgnsolutions. By
introducing the notation:

- ;-1
=88 i (35)
T=06-n0Un (36)

wheren is the unit normal vector to the crack plane, gleeeral solution obtained fgrhas
the following expression:

a©) = it {( RP - R+ R- 63)5{3  R- P+ 2R-2/ R- ng@mg)}T_/ (37)

31

It is important to note here a fundamental diffeeetetween this result and what could be
obtained as the limiting case of flow solution inflattened ellipsoidal inclusion. The
comparison between the two models is presentetiefain the paper. But it is already
possible to note the flow in the elliptical cradken by (37), as seen also in the Figis3ot
uniform and parallel to the farfield gradiewbntrary to the case of ellipsoidal inclusions in
which the fluid velocity is found to be uniform apdrallel, at least if the matrix and inclusion
are isotropic, to the farfield gradient. More pssty, for instance for a far-filed pressure
gradient parallel to thg-axis, the solution given by (37) hasan vanishing component in
they-axis directionas shown by the expression (34) (see the figuretl3e paper). However,
for the same problem modelled by a flattened sptiaranclusion,the fluid velocity in the
inclusion would be parallel to theaxis, so with non component in tiieaxis direction. This
shows the fundamental difference between the twesyf flow and the fact that the solution
for the Poiseuille crack can not be obtained adithiéing case of ellipsoidal inclusions with
Darcy’s law.

The solution (37) could be probably obtained byeotmathematical methods for instance
based on the use of harmonics functions insteaiheofpotential solution (11). But for the
difference underlined here-above, it can not beaiobtd as a limiting case of solutions
presented in the literature for ellipsoidal incuss obeying Darcy’s law.

The solution (37) represents an original and funefatal result that opens the way for further
theoretical investigations concerning flow in cragkporous materials.

4 Pressurefield in the matrix

The solution of the infiltratiorg through the crack in (37) allows the determinatadrthe
pressure field in the matrix by using equation (11)

For the discussions carried on farther in this paipés useful to decomposgin ¢° andw
parts according to (21) and to write:

1 j[9"(;)@@].@ -X)

= AX—
S T

(38)
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The equation (20) shows that the contributiorwab the integral vanishes. Besides, we can
deduce from (19), by superposition and by notirgg enfar-field gradient parallel & does
not induce flow in the fracture, that, for a gehésafield gradient, ¢° is given by:

9°(8)=-2k[1-EBE ®.A (39)

where,

®=(p) e, 0 +(0,) ' e08 (40)

Substituting (40) into (38) yields:

1-¢B
00 =| x-Lo[VEBE 6y g (41)

o oo

The pressure field solution given in this way iseaplicit integral function of the geometrical
parameters of the elliptical disc contained in tiesorB. It is interesting to notice that this
solution is independent of the matrix permeabilty This is due in particular to the
assumption of superconducting crack: the pressalttien would depend ok for crack with
finite conductivity. Anyway, the equation (41) allse us to determine at least numerically the
pressure field around an elliptical crack by diietegration.

For the case of circular disB € R? T) a closed-form expression for the integral (41) ba
derived for a point located on the plane of thekrae. x;= 0. We find (see Appendix B):

IVH_E v (€-x) de=—— (w siny) x (42)
—X

where, is, as shown in Figure 4, the angular diameteéh®efdisc seen from the positign

Figure 4: Parameters in polar coordinate system
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Due to superconducting cragi(x) = 0 whenx is in the crack. We also hawe = (4R/mT
and the expression gb for the points exterior to the disc is given by tfalowing
expression:

x8=0; p(x) = [k%(lu - sinw)} Ax (43)

It can be checked that when— « then—0 and sop(x) — A.x according to (43). The

infinite boundary condition is recovered in thisyw#lso, whenx is on the boundary of the
disc, ¢ = W2 and we find the pressure condition in the dpgg) = 0. Figure 5 displays the
variation of pressure field in the plan containthg superconducting fracture with a far-field
pressure gradie®=(1,0,0).

PR g
Tl?

LT

F LT

'

Figure 5: Pressure field around a single supercoimyicircular disc crack in an infinite
matrix prescribed by a constant far-field presgreglient parallel ta; direction.

It could be noted that this pressure solution cdadd in principle, obtained as the limiting
case of the pressure field in an infinite matrixntaoning a superconducting ellipsoidal
inclusion. The two problems obey, as a matter of, feo the same equations and boundary
conditions: constant pressure in the crack or sioly constant farfield pressure gradient and
mass conservation equation in the matrix. The solutould be then obtained as a classical
application of potential theories using harmonigsctions. However, we have not found in
the literature any explicit expression of this s as given by (43).
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5 Comparison between Darcy-dlipsoidal inclusions and
Poiseulle-crack

The crack inclusion has been sometimes considesdtiealimiting case of a penny-shaped
inclusion with aspect ratio (ratio between its kimess and diameter) tending to zero.
However, a further investigation shows this siniifaholds only for some partial results and
in restricted cases and this difference seems tgrimged in the literature.

To show this difference, let a circular penny-stthpeclusion be considered with the
revolution axis taken as the third axis of coortiksaand with semi-diameteds = d, = d, d3
<< d. The inclusion has an isotropic permeabilfyembedded in the matrix of isotropic
permeabilityk. The fluid velocityv in the inclusion is found to be uniform and itdueacan
be deduced, for instance, from the results giveshgfiro and Kachanov [[11]. We consider
the limit whene = dg/d— 0 andk — . The contribution of the inclusion to the equivsle
permeability of the material is made through thtegnal of the fluid velocity in the inclusion:

Q= [w®d (44)
J

This integral is a linear function of the far-figjdadientA:
Q=-WA (45)

Shafiro & Kachanov [[11] gave the following geneeadpression ot for an arbitrary value
K of the inclusion and:

* * -1 * -1
w=Q—(k*—k){[1+k 'kE} (zs—_nD_n){nk 'k(l—Eﬂ _nD_r} (46)
Q k 4 k 2

where, Q and Q" represent respectively the matrix reference volieme the inclusion
volume.

Considering the limiting case of a superconductiragk by taking the limi¢ — 0 andk — oo
Shafiro & Kachanov [[11] proposed the following e&psion for this limit:

Y =%;v R3k(3-n0 n (47)

where,v is the crack density. Nevertheless, a carefulystmbws that the limit is not unique
and depends on the valuegi which is degenerate when— 0 andk — . Let us suppose
thatk =bk/e whereb is a fixed ratio, hencek = bk remains constant when- 0 andk — co.
The limit of W from the Shafiro & Kachanov [[11], is obtainedte:

16 4 b
Y="vR°’k——(I-nJ 48
3 b+(4/T[)( o9 (48)

The limit expression (47) corresponds then to 8sumptiorb - co.
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Figure 6: Darcy ellipsoidal inclusion

Let us consider now the ellipsoidal inclusion hamin tends to infinity andl; tends to zero.
At the boundary, we noté" the velocity in the matrix and the velocity in the inclusion. The
velocity in the inclusion is constant for ellipsaidinclusion. We note/= ve,. At the
boundary, the mass balance yieM$ =v™.n, wheren is the unit normal vector to the
EXy

ellipsoid, and thery’“.n=vn1wheren1:\/ — —-
de-r<(l-¢°)

The general value of velocityin the inclusion, for small ratie=ds/d , can be deduced from
the expression given by Shafiro & Kachanov [[11] fioe integral (44) since is constant in
the inclusion. We find, in first order developmerith respect t:

VESR. St S (49)
mek -k
1+
4 kK

The equivalent infiltration vector in the crack sew is deduced from the relation (3) where

the thicknes® is given, for the ellipsoidal inclusion, B= €y d? - r? andv is constant and
given by (49). The limit of the equivalent infiltran q = 2ev for e - 0 is found to be:

_& d?-r? (50)
-0 Tic + 8dk

where,c = 2d:k . We note that for the limit case—x, the equation (50) yields a solution
different from that given by (37). As a matter atf, it yields only the expression gffin the
equation (19) for circular disep{=1v4d), which is not the complete solution for infilti@ in
the Poiseiulle’s crack since it misses the complaarg partw.

It can also be checked that the expression (503 doé satisfy the equation (11). It is then
deduced that, in the general case of finite condtictc, the solution of flow in the crack with
Poiseuille’s law is not given as the limit of thrdss vanishing ellipsoidal inclusions with
Darcy’s law. This implies also that the pressueddf in the inclusion and the matrix are
different for the two problems.

Only in the case of superconducting crack, the suresfields in the two problems are the
same since the pressure is constant in the crattleanclusion. In this case, the integralgof
over the inclusion (determining the contributionth® effective permeability, see the next
section) is also the same for the two models sih@epends only o’ and not on the
complementary parb.
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In conclusion, the limit of the flattened inclusiavith Darcy’s flow does not give in the
general case the same result of pressure andatibh fields that the model of Poiseuille-
type crack.

6 Application to the effective permeability of cracked porous
materials

The effective permeabilityz of the heterogeneous domain is calculated fromatrexage
velocity and average pressure gradient in this domBor a domainQ containing a
distribution of zero-thickness fracturEs the equivalent average velocity is defined by:

\_/Eé[i\_/da)+2jgds] (51)

I

It can be shown that if a pressure condition c@wading to a uniform macroscopic gradient
is applied on the boundary €f, i.e., p(X) = Ax onodQ, the average pressure gradiénis
equal toA:

1
G==—|0OpdQ=A 52
G Qi_p y: (52)

We assume that the permeability tensor of the moroatrix is constant and equal ko
Introducing (1) and (52) into (51) and usidg= - k .G vyield:
K=k +K (53)

where, k' is the contribution of the cracks to the effectipermeability obtained by the
following relationship:

1 -
sz:rj'jgds KA (54)

The dilute Mori-Tanaka scheme estimates the lefidhade of (54) as the sum of the integral
of g over each individual crack by neglecting the dfeaf cracks interactions. As seen in
section 3, the infiltration in the crack is expe$dyq = o° + w. According to (25)w can be
written as:w = esx[¢. Using this relation and (28), we calculate:

[w(€)ds=-e,0[00 ds=- g0 [ ¢ ndE~¢, [ tdEO (55)
D D oD oD

Therefore, onlyg” contributes to the integral over the crack surf&em the results given in
Section 3, we deduce:

Q=[q@ds=| £¢) ds —4—3k SO (56)
r r
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where, the tenso® defined by (40) and5. = 1td, d, = T[/|B|1/2 represents the area of the

ellipseI. Comparing this relation to (54), the Mori-Tanastimate ofk’ for an isotropic
matrix containing a family of elliptical cracksfisund as follows:

kfzgvk<sr¢> (57)

where,v is the crack density,e: number of cracks (centres) per unit volume aSapb<> is
the average value &® calculated over the cracks population. For arragat distribution
of circular cracks with radiug, we find:

32

k' = k R®3 (58)

and the following expression for the dilute Morifieka effective permeability:
RMT = k(1+%2v R3j (59)

The self-consistent estimate is obtained by reptacivhen calculating the contribution of
cracks to the effective permeability in equatioB)(3he matrix permeability by the unknown
effective permeability. Therefore, equation (59ds to the following equation for the self-

consistent estimatida®®:

kS®=k+ 3 2{59 R (60)
Furthermore,
kse = % (61)
1->SvR®
9

The dilute Mori-Tanaka (59) estimation is foundgiwe the first order development for small
v of the self-consistent estimation (61) (Figure BY. introducing the dimensionless crack

. __ 4 . : . . .
density v :§m R3, the self-consistent estimation becomes singubaraf critical value

V= 3—5[ =1.18. The model is valid only for small valueswofind we do not think a physical

signification can be attached to this singularitgttappears for relatively high values of crack
density.

It is worth noting that occasionally this singutgrnas been related to the percolation limit of
the cracks network [[5]. However, Dormieux and Konifb] obtained a different critical
value for self-consistent mode -%n~ 2.36. The percolation threshold has sometimes
been studied numerically. When the domain size irstef some fracture network
configuration percolate and some do not for a gidemsity. It can be only defined a
percolation threshold/ . for the limit of infinite size of domain. Studyintpe hexagonal

fracture networks with isotropic distribution, Bagwbv et al. [[3] found that there is rarely
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percolation for finite fracture network with < 0.4 2; percolating and nonpercolating fracture
network coexist for the range of densiti@s42<v < 1.7(C and almost all the fracture are
connected whew >1.70. Huseby et al. [[22] gave a more accurate rdeulihe percolation
threshold,v =1.00 for infinite matrix, which is very close to theitaral value obtained in
this work by the self-consistent scheme.

1 | [ B A S —
0 0.2 04 0.6 0.8 1
4TVR3/3

Figure 7: Dilute Mori-Tanaka and self-consisterttreates of effective permeability

7 Extension to anisotropic matrix

The linear transformation presented in Pouya [[@é2h be used to extend the solutions
obtained in the previous sections for ellipticahatt in an isotropic matrix to the case of
anisotropic matrices. Considering a reversiblsdeM, we define theransformedvariables

E, 9@) andB@ as follows:
X=Mx, ¥®=Myx,  pK)=pE (62)

Thereforeg =M .x transforms the domai@ to a domairS, the crack$ to a new geometrE
The flow problem is then transformed to a new peabl corresponding to matrix
permeability.

Let us consider an infinite homogeneous porous umedimbedding an elliptical crack with a
geometry defined by two principal axesande, and half-diameterd; andd,. A pressure
gradientA is imposed at the infinite boundary of the domalife refer to Pouya [[12] for the
complete set of transformation relations for diéfetr variables in which the tensor of
permeability is taken the following expression:

K=MKkMT (63)
17



The transformation to the problem studied in prasicsection is applied by taking

M = k. In the transformed problem, we find an isotrapiatrix with unit permeabilityg
=$. The equation of the elliptical cragkB.£ = 1 is equivalent t§ . M™™BM™.& = 1 or

B.g = 1 with:

[Waall

B =JkBvk (64)

The tensorg defines the geometry of the crack in the transéatnproblem. In order to

. . ... OO .
calculate the half-dlamete&, Ez and the principal directions;, €, (unit vectors) of the
transformed ellipse, we need to write:

ool

=8 08 +2,80% (65)

The expressiond 1 and A ,, and of(%l and(%l that can be deduced fro, and A, by the
same relations (16) are required for writing théutons of pressure and velocity in the
transformed problem. However, if only the presdiglel in the matrix in equation (41) or the
application to effective permeability in equatidb6) is envisaged, it is easier to express
directly @ as function oB (see Appendix C):

®=f5+gB (66)

where,f andg are scalar functions & =B:d andf} = |B|.

As a matter of fact, the pressure transformaﬂ(&bl =p(x) leads togﬁz: A.x at infinity; hence,
§= Jk A Moreover,go(g) in the transformed problem is given by (39) such as

6°(¢)=-2kJ1-EBE ®A (67)

| SR
| v

wherek =1 and:
®=f(B,)5+ g(Bp)B (68)

The general transformation rule for infiltrationcters is (see in Pouya [[12]):

<0 Y
= k™. 69
d Jnk.n d (69)

Replacing by these values function of initial vales yields:

9°(®)=-2/nkn/1-EBEVk vk A

with B given by (64),B = B:d=k : B andf} = ‘E‘=|k||B| and the expressions the functidns
andg given in Appendix C. In this way() is calculated explicitly for arbitrary elliptical

18



shaped crack in a matrix with arbitrary anisotropezmeabilityk. The pressure field in the
matrix is deduced from:

1 q°@) k 'E-x)

2l e

For extension of the results concerning the effegiermeability, it is sufficient to write (57)
for the transformed problem:

p(X) = Ax+ E (70)

kf:gvkérd» (71)

Noting that K =1, ¥=v/|M|=v,[k], ér:n/\/@, k' =JVkk'Jk, and using the

expressions obtained here abovedorand B , we find:
i _4 x
k =3V k <S>k (72)

Substituting (72) into (53) allows us to determihe effective permeability of a porous body
with anisotropic matrix permeability containing a distribution of elliptical supercomting
cracks by using the Mori-Tanaka or the self-coesitséstimate.

In practice, field observation permits us to defesrthe cracks geometries (size, aperture
and orientation) and also their density [[23]. Astimation of the crack conductivity is also
required that can be obtained by a Poiseuille’s ehotHowever, in our work, only
superconducting disc-shaped cracks are considditeal.crack network is assumed to be
randomly distributed. With these data, the modeigerg in Section 6 are suitable to
estimating the effective permeability.

8 Conclusionsand per spectives

The equation governing the steady state flow arcarmtack surface in an infinite porous
body, deduced from previous investigations [[124sveonsidered in this paper. An analytical
solution was derived for this equation in the casa superconducting and elliptical disc
shaped crack.

Cracks have been very often modelled as flattefig$@dal inclusions obeying Darcy’s law
because for this problem analytical results aréawa. The question raises then if this model
can represent well a crack with zero thickness alelying to the Poiseuille’s law. In the
literature, it is often implicitly responded posély to this question: it is assumed that the
flow field in and around a crack with Poiseillean can be obtained as the limiting case of
the flow field in and around a flattened ellipsdidiaclusion with Darcy’s law when its
thickness tends to zero. The results obtainedamtksent work allowed the comparison. We
could show that the equivalence between the twoefsodioes not hold in the general case.
Only some patrtial results in restricted cases, imdire case of superconducting cracks, can
be obtained as a limit case. In general, for cragkd finite conductivity, the pressure
gradient through the mean crack surface is congtagllipsoidal inclusion model but not in
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Poiseuille’s type crack. These results change fonahdially the vision we can have for the
flow in a Poiseuille’s type crack.

The results obtained for a single crack have besenl tio estimate the effective permeability
of cracked porous materials. The dilute Mori-Tanakadel is a very simple model that does
not take into account the interaction between @ackhe expression of the effective
permeability is a linear function of the crack dgnaccording to this model, for anisotropic
matrix permeability and elliptical disc cracks. Theack interaction is taken into account
implicitly in the self consistent model. We estahkd the exact expression of the effective
permeability according to this model for circularacks in a matrix with isotropic
permeability. This non linear model presents adenfy for a critical value of crack density
that is sometimes interpreted as representing éheofation threshold of crack network. This
critical value is then compared to analogous valyiesn in the literature, and found to be
very close to that obtained by numerical simulationthe percolation threshold of crack
networks.

The analytical solutions given in this paper ogemway for deeper theoretical investigations.
The effective permeability of micro-cracked matksriean take benefit from these results as
well as the study of crack interactions within aqus body. Also it is worth reminding that a
fundamental assumption underlying the present w@X the infinite transversal conductivity
of cracks that removes the possibility of presgunep between to sides of the crack. But in
some physical cases, cracks act as an impervionsbraee with a pressure discontinuity
across the crack surface [[3, [10, [24]. The apgmoased by Martin [[24] could be used in
this case to extend some of the results of theeptgsper to these types of cracks.

Analytical infiltration solution through a singleack obtained here was restricted to the case
of superconducting cracks. For the case of Poiseiybe cracks with finite conductivity,
semi-analytical and numerical calculations are ireguthat we have investigated in an
ongoing work and we hope present the results ut@dé paper. Moreover, numerical study
allows us to take into consideration explicitly ttrack interaction and the crack intersection.
The three-dimensional effective permeability mothelt can be obtained in this way would
allow extending the two-dimensional application@2 storage [[25] to a three-dimensional
modelling.

Appendix A: Integral calculation for a point insidethe eliptical disc

Replacing by the (14) in the main text in (12), thkowing equation (A.1) is found in which
B is diagonal with eigenvalues,, A,, and&.B.§ = MEZ + 82 We use forf the polar
coordinates,0) in the local coordinate system havir@s origin (see Figure 3). We have
&1= X3+p €c0osB, &=x,+p sirb. Thus, we have:

I (El—xl)E T T “1_iBE dpcosfde (A.1)
D

le- H o0g=o

It is obvious that this integral must be consideaedhe Cauchy principal value:
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21
I, =liml, , |, = jJs(e)cosede (A.2)
06=0

Po [1— Py
5= [VTERE g =Y [\1-(@+ 97 ?p (A3)

with:

= JA,c0s20+ A, siP0, H =y’ -A\,(X,Sin0+x,cod f

2 -
A X, COSO+A X, SirB
=—\|/_| , g=-1"1 H 272 (A.4)

We take the variable:
sirm = ep+g (A.5)

Whenp varies between andpn, o varies between, = Arcsin(e +g) to 172. In this interval,
cosu = 0, and variable change—a allows calculating:

w2 1- 2
3.0=Y | (,—g—(sinowg)jda (A.6)
€, \sina—g
and find:
1- 2
J€(6)=%Fs(6)—ze[cosas+g(r[/2—0(8j (A7)
Where:
2 1
F.®)= [ ————da (A.8)
aZq, SINO—Q

Now we can write:
T
= [[3.(6)-3.(0+m]cosvde (A.9)
6=0

When changind to 6+, the functionsy, e H remain unchanged, bgtis changed tog; a.
to a's = Arcsinfe -g) and theu, to u'; = tan ('s/2). It can be shown that:

w2 1

Iing[Fs(e)—Fs(e+Tl)]: Ifda (A.10)
£ s,Sina-g
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where the integral in the right-hand side must bestered as the Cauchy principal value
and can be shown to take the following values:

[ =2 —da=—"T""o if [g>1
g 1- (A11)

=0 if |g| <1
By using this result (withg|<1) and the Iimitslirrg) a, = —Iirrg)a' . = Arcsin(g), we find:
€ €
Tt
y=-n[ Ycosade (A.12)
6=0 e
Replacing by (A.4) foy, g ande in this expression and after integration we obtain

2 2
= -2 x| cos 8 d6 = —2m, (A 1A ,) X, (A.13)

60y/A;COS?B+A , SirFO

where the functiom(A1,A,) is defined by the equation (16) in the main text.

Furthermore, using the same notation withx,=0, and thusg=0 ande=y, we have:

2rt ly

[ [T eMZptpte= | | iy’ papcd= j

6=0p=0 6=0p=0

(A.14)

ﬁ

Appendix B: Integral calculation for a point outside thecircular disc

As seen in Figure 4 in the text, the integral ia lft-hand side of (42) can be re-written in the
polar coordinate system as follows:

- 2
J.ﬂ/ &BE (€ -x) d = IJ. 1-&¢ /R (l_Jcos¢+VS|r¢) odo (B.1)

Je-x° o, P
where:
P =q/2 (B.2)
) 1 . 1
Also, we can write ([1-88/R>=—./1- (@ + g)° with: e= and
J1-&Z eR\/ (+ 9)

JR [ sin?

g=-¢|Acosp. Then the symmetries with respect ¢e+¢ imply that we can write:

| = {T—J(d))cosd)dd)}u where: J(¢)—j\'1 (ep 9)°
-’
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For the same variable change (A&)yaries betweerTt/2 to1/2 whenp varies betweep;
andp,. By the same method than in the previous caseusimg) (A.11) with, this timeg|>1,
we calculate:

1 1
e—RJ(d))cosd) =( /1—?— g%n:—si:w.( cog - cof) cas (B.3)

sing’
R

where,siny '=—. Thus, by integration and using=

X, we find finally,

| = lIJJ'IiJ(q))cosrbd(b uzl(zp'— sinm)'le Y- sinp)x (B.4)
weR - 2R - 24 - '

Appendix C: Linear relation between two tensors B and @

For a general second order ten8orwe noteB = B:d and[3 =|B| (determinant oB). For
B=Ae, Uge+A,e 0 e wehaveB=A;+A, andf =A:A,. ThereforeA; andA; are the
solutions of:

Ao = (C.1)

For a givenB, we define: & = (pl'lgz1 Ue + (pgl_e2 O _e, where @, and ¢, verify equation
(17) in the main texi.e:

CEREEYN

A

= —\/)‘2_)‘1 K(\) (C.2)

¢+, = N

with A = 1—% andK (1) andE(L) the complete elliptical integrals of first or sed kind.

2

The solutions ofp,, @, can be written as:

SRUERUEE o St PUNSN

C.3
1(B B (€3)

1
X2(B.B)

(C.4)

A=A, | 1-22
Py = l{_

X z KA+ E(?\)}

Remarking that two tenso® andB have the same principal directiomnse,, we can write:

®=06+1B (C.5)
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whereos, T are two scalars anB =B —% Bd. From this relation we deduce that:

2
®:5=30, de@zoz—%(82—4{3) (C.6)

So,@ andg, can be determined from the system of equations :

2
Lilog, L :02—%(82—4[3) (C.7)

O P, 0,0,

From these equations, we determinandt function ofq, and@, and so, finally, function of
B andf:

2,92 _ B _
o(B.B) =3 (X, +xz), T(BR)=XLTXE KKz, aep =% g

Finally, we define two scalar functiohandg as follows:

f(B,B)zo—%Br, g(BB)=1 (C.9)

These allow writing:

®=15+gB (C.10)
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