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Analysis of a passive control of a chain under wide-band random excitation
by nonlinear energy sinks using generalized orthogonal decompositions

S. Bellizzi1,a and R. Sampaio2

1 LMA, CNRS, UPR 7051, Centrale Marseille, Aix-Marseille Univ, F-13420 Marseille Cedex 20, France.
2 PUC-Rio, Dept of Mechanical Engineering, Rua Marquês de S̃ao Vicente 225, 22453-900 Rio de Janeiro, Brazil.

Abstract. The objective of this paper is to show how the generalized orthogonal decomposition named smooth
decomposition can be used to analyze the energy pumping phenomenon in the context of vibration reduction
under wide-band random excitation.

1 Introduction

The Targeted Energy Transfer (TET) approach represents
a concept in which a strongly purely nonlinear, passive,
local attachment, the Nonlinear Energy Sink (NES), is em-
ployed to reduce the vibrations of the primary system to
which it is attached. The NES can passively absorb and lo-
cally dissipate energy from the primary structure. The en-
ergy interactions occur due to internal resonances making
possible irreversible nonlinear energy transfers from the
primary system to the NES component. The purely non-
linearity of the NES enables it to resonate with any modes
of the primary structure. A description of the TET can be
found in [1]. The TET concept was principally analyzed in
the literature in a deterministic framework. In this study,
wide-band random excitations will be considered.

Generalized orthogonal decompositions provide a pow-
erful tool for random vibrations analysis. The most popular
orthogonal decomposition is the Karhunen-Loève Decom-
position (KLD). Recently, a modified decomposition, that
is not orthogonal in the euclidean sense, named Smooth
Decomposition (SD) has been proposed[2][3][4]. The SD
can be view as a projection of an ensemble of spatially
distributed data such that the vector directions of the pro-
jection not only keep the maximum possible variance but
also the motions resulting along the vector directions are as
smooth as possible in time. The vector directions (or struc-
tures or smooth modes) are defined as the eigenvectors of
an eigenproblem defined from the covariance matrices of
the random field and of the associated time derivative. It
was shown that the SD is an interesting tool to random
analysis. The parameters of the SD can be interpreted in
terms of normal modes and resonance frequencies given
access to an modal analysis of the random problem. With
these properties, the SD analysis gives a dual interpreta-
tion. The modes given by the SD can be ordered through
frequency, as classical modal analysis does, and through
energy levels, as KLD does. This makes the SD a powerful
tool to analyze nonlinear systems in a way similar to modal
analysis of linear systems or in a way similar to KLD.

In this paper, the SD will be used to analyze a chain of
M strongly coupled linear oscillators (the primary system)
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with a strongly nonlinear end-attachment (the NES). This
system was studied in [5] considering impulsive excitation.
We propose here to analyze the targeted energy transfer
when the excitation is white-noise random process. This
kind of excitation differs significantly from the determin-
istic case but in terms of frequency contents, a white-noise
excitation is similar to an impulsive excitation in the de-
terministic case. It permits to analyze the system without
privileging a frequency band.

2 The system under study

2.1 Description of the system

The system is composed of a chain ofM strongly cou-
pled linear oscillators with spring (kc) (named the linear
chain or the primary system) with a strongly nonlinear end-
attachment (the NES). Each mass of the linear chain is con-
nected to the ground by a linear spring (kg) and a linear
dashpot (λg). The equations of motion are given by

mav̈ + λa(v̇ − u̇1) + ka(v − u1) +Ca(v − u1)3 = 0, (1)

ü1 + λgu̇1 + kgu1 − λa(v̇ − u̇1) − ka(v − u1)

−Ca(v − u1)3 + kc(u1 − u2) = 0, (2)

üm + λgu̇m + kgum + kc(2um − um−1 − um+1) = 0, (3)

üM + λgu̇M + (kg + kc)uM + kc(uM − uM−1) = f (t) (4)

with m = 1, · · · ,M − 1 and wherev (respectivelyum) de-
notes the displacement of the NES (respectively themth
mass of the linear chain). It is assumed that the primary
system possesses a weak viscous damping (λg is small).
The NES is constituted of a mass (ma), a linear damper
(λa) and a spring including a linear part (ka) and a cubic
part (Ca). ma is assumed to be small compared to the total
mass of the linear chain and the linear spring is assumed to
be small compared to cubic spring. This system was con-
sidered in [5] under impulsive excitation.

We assume that the excitation is of the form

f (t) = s0W(t) (5)

where{W(t), t ∈ R} is a gaussian white-noise scalar pro-
cess with intensity one ands0 denotes the excitation level.

Web of Conferences
DOI: 10.1051/
C© Owned by the authors, published by EDP Sciences, 2012

,
2012/

05001 (2012)MATEC 1
matecconf 0105001

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use,
 

distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Article available at http://www.matec-conferences.org or http://dx.doi.org/10.1051/matecconf/20120105001

http://www.matec-conferences.org
http://dx.doi.org/10.1051/matecconf/20120105001


MATEC Web of Conferences

0.005 0.01 0.015 0.02 0.025 0.03
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

s
0

R
M

S

Fig. 1. RMS chain for the system with the NES (circle markers),
with only the linear part of the NES (dotted line), without NES
(dashed line) andRMS NES (square markers) versus level excita-
tion s0.
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Fig. 2.Percentage of energy dissipated by the linear chain (circle
markers) and by the NES (square markers) versus level excitation
s0.

2.2 Passive capacity of vibration reduction

We limit the discussion to some numerical evidences show-
ing that the NES is able to absorb vibrational energy of the
linear chain.

The stationary responses of the system (1)-(4) were in-
vestigated using the following numerical parameter values:
M = 9, λg = 0.001,kg = 1, kc = 1, ma = 0.05,λg = 0.001,
ka = 0.0001,Ca = 1. The excitation levelss0 was used as
the parameter of analysis withs0 ∈ [0.004,0.032].

The Monte-Carlo method was used to estimate the sta-
tionary responses of the system under random excitation.
For a given excitation level, the response time history (dis-
placement and velocity) was obtained from an time history
of excitationW(t) by solving Eqs. (1)-(4) over the time
interval [0,t f ] numerically using the Newmark method.
Zero initial displacement and velocity were assumed. The
time-discretization parameter value was chosen equal to
∆t = 0.143 s (i.e.fe = 7 Hz) and 524286 instants (tf =

74942 s) were simulated. The time histories ofW(t) (a
gaussian white-noise scalar process with intensity one) were
generated using a FFT method[6]. The last-half points of
the displacement and velocity time histories were used to
approximate the second order moments (as the time aver-
ages).

The evolution of the RMS values of the NES displace-
ment (RMSNES =

√

E(v2(t))) and the RMS values of the

primary system (RMSchain =

√

∑M
m=1E(u2

m(t))) versuss0

are displayed Fig. 1.

For small s0, significant vibrations occur only on the
linear chain so the behavior of the system is close to the be-
havior of the linear configurations. Whens0 increases, the
vibrations of the NES increase and simultaneously the vi-
brations of the linear chain are significantly reduced com-
pared to the two linear configurations. Particularly inter-
esting is that a zone (defined by 0.008≤ s0 ≤ 0.021) ap-
pears whereRMS chain does not significantly increase with
s0. This zone will be named ”effective” zone. Finally for
large values ofs0, the vibrations of the linear chain again
increase linearly.

An important measure to evaluate the performance of
NES is given by the energy dissipated by the NES. The
energy dissipated by the linear chain and by the NES is
respectively given by

Ed
chain = λ0

M
∑

m=1

E(u̇2
m(t)) andEd

NES = λNESE((v̇(t)−u̇1(t))2).

The percentages of energy dissipated by the linear chain
(Ed

chain/(E
d
chain + Ed

NES )) and by the NES (Ed
NES /(E

d
chain +

Ed
NES )) are reported versus the excitation level in Fig. 2.

For small s0, the energy is mainly dissipated by the
linear chain. Whens0 increases, the percentage of energy
dissipated by the linear chain decreases whereas the per-
centage of energy dissipated by the NES increases. The op-
timal performance of the NES is obtained fors0 ≈ 0.021
where 70% of energy is dissipated by the nonlinear end-
attachment. This value corresponds to the upper bound of
the ”effective” zone. Finally for large values ofs0, the per-
centage of energy dissipated by the NES decreases whereas
the percentage of energy dissipated by the linear chain turns
to increase and becomes greater than the percentage of en-
ergy dissipated by the NES. The energy pumping phenom-
ena vanishes.

These results indicate that the NES modifies signifi-
cantly the dynamic of the linear chain. In reference of the
excitation level, three behaviors can be observed. For small
values ofs0 no coupling appears between the linear chain
and the NES. When a specific threshold is exceeded, the
vibrations of the NES become large whereas the vibrations
of the linear chain are significantly reduced compared to
the linear cases. This is the energy pumping phase charac-
terized by a transfer of energy from the primary system to
the NES. This behavior characterizes the ”effective” zone.
Finally, the energy pumping phenomenon vanishes below
a certain level of excitation.

The performance of the NES can also be analyzed in
the frequency domain using the PSD function (not shown
here).

3 Smooth decomposition

Let {U(t), t ∈ R} be aRn-valued second-order stationary
random process with zero mean indexed byR. We assume
that {U(t), t ∈ R} has a time-derivative process{U̇(t), t ∈
R} which is also a second-order stationary process. The
covariance matrices of{U(t), t ∈ R} and {U̇(t), t ∈ R}
are denotedRU = E(U(t)T U(t)) andRU̇ = E(U̇(t)T U̇(t))
respectively.
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The SD of{U(t), t ∈ R} is defined by the series in the
separated-variables form

U(t) =
n
∑

k=1

aS
k (t)ΦS

k (6)

where the Smooth Components (SCs) are defined by

aS
k (t) =

ΦS T

k RUU(t)

ΦS T

k RUΦ
S
k

=
ΦS T

k RU̇U(t)

ΦS T

k RU̇Φ
S
k

(7)

and the Smooth Modes (SMs)ΦS
k are characterized by the

optimization problem

max
Φ∈Rn

JS D(Φ) with JS D(Φ) =
E(< U(t),Φ) >2)

E(< U̇(t),Φ >2)
=
ΦT RUΦ

ΦT RU̇Φ

and solved the eigenproblem

RUΦ
S
k = µ

S
k RU̇Φ

S
k . (8)

Based on the properties of the matricesRU and RU̇, the
SMs (ΦS

1 ,Φ
S
2 , · · · ,Φ

S
n ) constitutes aRU-orthogonal and

RU̇-orthogonal basis ofRn and all the eigenvalues named
Smooth Values (SVs) are greater than zero. Notice that the
following ordering,µS

1 ≥ µ
S
2 ≥ · · · ≥ µ

S
n > 0, will be used

in the sequel.
All the properties of the SD are reported in [3]. We will

just recalled here the physical interpretation of the param-
eters of the SD. We assume thatRU andRU̇ are the covari-
ance matrices of the steady state solution of a discrete lin-
ear mechanical system under zero-mean white-noise ran-
dom excitation. If the damping is proportional and if the
modal-excitation terms are uncorrelated then the following
results hold:

– the SMs are related to the normal modes by

ΦS = ΦL−T
(9)

whereΦS = [ΦS
1Φ

S
2 · · ·Φ

S
n ] andΦL = [ΦL

1Φ
L
2 · · ·Φ

L
n ]

denotes the modal matrix associated to the undamped
linear system;

– the SVs are related to the natural resonance frequencies
by

µS = (Ω2)−1 (10)

whereµS = diag(µS
k ) andΩ2 = diag(ω2

k) with ωk de-
notes the natural resonance frequencies associated to
the undamped linear system.

As it will be shown hereafter, the relations (9) and (10)
can be used to perform modal analysis from SD.

4 Smooth decomposition analysis

The SD approach gives access to the smooth parameters
but also to the classical modal parameters. We will focus
here on these characteristics. The smooth parameters were
obtained solving the eigenproblem (8) using the covari-
ance matricesRU and RU̇ of the response of the system
(1)-(4) estimated from the numerical simulations (see Sec-
tion 2.1). Same data have been used as in Section 2.2.

The resonance frequencies estimated from SVs (with
Eq. (10)) are shown Fig. 3 whereas the percentage of en-
ergy captured by the SMs are plotted Fig. 4.

The following observations can be made:
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Fig. 3. SD of the system with NES: resonance frequencies esti-
mated from SD versus level excitations0.
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Fig. 4.SD of the system with NES: percentage of energy captured
by the SMs versus excitation levels0 (right).

– For s0 = 0.004, the ten resonance frequencies esti-
mated from the SVs are related to the natural reso-
nance frequencies of the underlying linear system (i.e.
Ca = 0) (see Fig. 3). The smaller resonance frequency
(≈ 0.04 Hz) is greater than the natural frequency of the
linear part of the NES, the nine remaining frequencies
are equal to the natural frequencies of the linear chain.

– For s0 between 0.04 and 0.08, the first resonance fre-
quency estimated from the SVs rapidly increases up to
the frequency value 0.16 Hz which corresponds to the
natural resonance frequency of the first mode of the
linear chain whereas all the nine remaining resonance
frequencies estimated from the SVs remain constant.
For this excitation level band, the energy is captured
by the first SM. The maximum value of the percentage
of captured energy (≈ 82%) is obtained fors0 ≈ 0.008.

– Around s0 = 0.01, the second resonance frequency
(0.16 Hz) estimated from the SVs (i.e. the resonance
frequency of the first normal mode of the linear chain)
begins to increase whereas the first resonance frequency
estimated from the SVs becomes asymptotic (with re-
spect the excitation level) to 0.16 Hz. For this exci-
tation level, the energy is concentrated on the second
SM. At this excitation level, this resonance interaction
can be interpreted as a resonance capture.

– Increasing slightlys0, the third resonance frequency
(0.175 Hz) estimated from the SVs (i.e. the resonance
frequency of of the second normal mode of the linear
chain) begins to increase whereas the second resonance
frequency estimated from the SVs (i.e. the resonance
frequency of the first normal mode of the linear chain)
becomes asymptotic (with respect the excitation level)
to 0.175 Hz. At this level, the energy becomes con-
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Fig. 5. SD of the system with NES: mode shapes of the first four
normal modes estimated from the SMs ordering with respect to
the modal energy fors0 = 0.004 (cross markers), 0.008 (aster-
isk markers), 0.013 (circle markers), 0.019 (square markers) and
0.027 (diamond markers). The normal modes of the underlying
linear system is also depicted (red line).

centrated on the third SM. The maximum value of the
percentage of captured energy (≈60%) is obtained for
s0 ≈ 0.012. At this excitation level, this resonance in-
teraction can be interpreted as a resonance capture.

– Still increasing the levels0, resonance interactions ap-
pear involving successively the higher resonance fre-
quencies of the normal mode of the linear chain. This
behavior can be interpreted as a resonance captures
cascades. This behavior are related to the left shift of
the resonant peak observed on the PSD of (ui) (not
shown here).

Compared to a KLD analysis, more informations have
been deduced from the SD analysis. In particular, the res-
onance capture phenomenon as well as the resonance cap-
tures cascades phenomenon have been revealed. These ob-
servations are very similar to that presented in [5] where
impulsive excitations were used.

A complementary analysis can be derived from the SD
approach ordering the SMs with respect to the energy cap-
tured by each SM (i.e. the energy of the S components)
starting from the highest energy component to the lowest
one. In Fig. 5, the mode shapes of the first four normal
modes estimated from the SMs ordering with respect the
energy of the SCs are displayed for five different excitation
level values. We also reported the mode shape of the nor-
mal modes of the underlying linear system (i.e.CNES = 0).

From Fig. 5, we can make the following observations:

– For s0 = 0.004, the mode shapes of the first four en-
ergical dominant SMs coincide with the mode shapes
of the first four dominant KL modes of the underlying
linear system (i.e.CNES = 0).

– For s0 ≥ 0.008, the mode shapes of the first energi-
cal dominant normal modes are nearly identical of the
first normal mode of the underlying linear system (i.e.
CNES = 0). This mode is spatially localized on the
NES. The localization of the mode shape of the energi-
cal dominant SM on the NES for large excitation level
is an indication of transfer of energy from the linear
chain towards the NES.

These observations are very similar to that obtained with
the KL analysis. They confirm the importance of the order-
ing of the SMs. Two ordering can be used for SMs, one, the
µ-ordering as used in Eqs. (9) and (10) is correlated to the
classical ordering of the resonance frequencies, the other,

the energy-ordering is correlated with the ordering used
given by KLD.

5 Conclusions

In this paper, a random nonlinear system that presents en-
ergy pumping phenomenon is analyzed using SD approach.
The system presents features very similar to the ones ob-
served in the deterministic case when the system is impul-
sively forced although the tools of analysis are completely
different. The energy pumping occurs for some excitation
level, it is due to a localization phenomenon and resonance
captures with any mode of the system (in resonance cap-
tures cascades). The results confirm the efficiency of the
SD. The smooth modes represent well how the energy is
distributed in the system and clearly point out the localiza-
tion phenomenon (as KLD does) and the resonance cap-
tures cascades (KLD does not). Contrary to KLD, it is also
remarkable how the distribution of energy is related to the
frequencies associated with the SD.
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