
HAL Id: hal-00700007
https://hal.science/hal-00700007v1

Submitted on 22 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structural Refinement of Components Keeps Temporal
Properties over Reconfigurations

Julien Dormoy, Olga Kouchnarenko, Arnaud Lanoix

To cite this version:
Julien Dormoy, Olga Kouchnarenko, Arnaud Lanoix. Structural Refinement of Components Keeps
Temporal Properties over Reconfigurations. 18th International Symposium on Formal Methods (FM
2012), Aug 2012, Paris, France. 15 p. �hal-00700007�

https://hal.science/hal-00700007v1
https://hal.archives-ouvertes.fr


Structural Refinement of Components Keeps
Temporal Properties over Reconfigurations

Julien Dormoy1, Olga Kouchnarenko1,3, and Arnaud Lanoix2

1 FEMTO-ST CNRS and University of Franche-Comté, Besançon, France
firstname.name@univ-fcomte.fr

2 LINA CNRS and Nantes University, Nantes, France
arnaud.lanoix@univ-nantes.fr

3 INRIA/CASSIS France

Abstract. Dynamic reconfigurations increase the availability and the
reliability of component-based systems by allowing their architecture
to evolve at runtime. Recently, a linear temporal pattern logic, called
FTPL, has been defined to express desired—architectural, event and
temporal— properties over dynamic reconfigurations of component sys-
tems. This paper is dedicated to the preservation of the FTPL properties
when refining components and introducing new reconfigurations. To this
end, we use architectural reconfiguration models giving the semantics of
component-based systems with reconfigurations, on which we define a
new refinement relation. This relation combines: (i) a structural refine-
ment which respects the component encapsulation within the architec-
tures at two levels of refinement, and (ii) a behavioural refinement which
links dynamic reconfigurations of a refined component-based system with
their abstract counterparts that were possible before the refinement. The
main advantage of the new refinement is that this relation preserves the
FTPL properties. The main contributions are illustrated on the example
of an HTTP server architecture.

1 Introduction

The refinement-based design and development simplifies complex system specifi-
cation and implementation [1,2]. For component-based systems, it is important
in practice to associate a design by refinement with a design by a composition
of their components [3,4].

In this paper we propose a refinement of component-based systems with re-
configurations which preserves event and temporal properties. Our main goal is
to respect component encapsulation, i.e. the refinement of a component must
not cause any changes outside of this component. Moreover, we want the re-
finement to respect the availability of reconfigurations from an abstract level
to a refined one: new reconfigurations handling new components introduced by
the refinement must not take control forever, and no new deadlock is allowed.
The present paper’s contributions are based on our previous works [5,6,7] where
the semantics of component-based architectures with dynamic reconfigurations



2 J. Dormoy, O. Kouchnarenko, A. Lanoix

has been given in terms of labelled transition systems (1). The first contribu-
tion of this paper is a definition of a structural refinement (2) which links two
architectures at two development levels: in a refined architecture every refined
component must have the same interfaces of the same types as before. This way
other components do not see the difference between the refined components and
their abstract versions, and thus there is no need to adapt them. The second
contribution is the definition of a reconfiguration refinement relation (3) link-
ing dynamic reconfigurations of a refined component-based system with their
abstract counterparts that were possible before the refinement.

FTPL
properties

Preservation

|=p

Verification

|=
Abstract reconfiguration model

c3c2
HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

Cache
Handler

File
Server1

File
Server2

c1c0

Structural refinement

v
Reconfiguration 
refinement

v⇢ 3

4

5

1

Refined reconfiguration model

r0 r1 r3 r4 r5
HttpServer

Request
Dispatcher

Cache
Handler

File
Server1

File
Server2

Request
Receiver

Logger
Request
Handler

RequestHandler

r2

2

Fig. 1. Verification and preservation through refinement

Moreover, we want
the refinement to pre-
serve temporal proper-
ties. To express tem-
poral properties over
architectural reconfigu-
rations of component-
based systems a tempo-
ral pattern logic, called
FTPL, has been de-
fined [5] (4). FTPL
allows expressing ar-
chitectural invariants,

both event and temporal properties involving different kinds of temporal patterns
which have been shown useful in practice. The third contribution of this paper
consists in proving that the refinement relation—a special kind of simulation—
preserves (5) the FTPL properties: any property verified at a given refinement
level is ensured, ”for free”, at the following refinement levels, provided that the
refinement relation holds.

The remainder of the paper is organised as follows. We briefly recall in Sect. 2
the architectural (re-)configuration model and the FTPL syntax and semantics.
We then define in Sect. 3 the structural refinement between two architectural
configurations, before integrating it into the reconfiguration model refinement.
Section 4 shows that the refinement relation preserves FTPL properties. Finally,
Section 5 concludes and gives some perspectives.

2 Architectural Reconfiguration Model

This section briefly recalls the architectural reconfiguration model given in [5,6],
and the temporal pattern logic for dynamic reconfigurations, called FTPL in [5].

2.1 Component-based architectures

In general, the system configuration is the specific definition of the
elements that define or prescribe what a system is composed of.
The architectural elements we consider (components, interfaces and



Structural Refinement of Component-based Systems 3

Components

Parameters

Required
Interfaces

Provided
Interfaces

PTypes ITypes Interfaces

mandatory

optional

stopped
started

Binding

Delegate

InterfaceType

Contingency

Requirer

Provider

SupplierParent
State

Definer

ParamType
Value

Fig. 2. Architectural elements and relations

parameters) are the core
entities of a component-
based system, and re-
lations over them ex-
press various links be-
tween these basic archi-
tectural elements. In this
section we sum up formal
definitions given in [5,6].
To this end, we consider
a graph-based representa-
tion in Fig. 2, inspired by the model for Fractal in [8].

In our model, a configuration c is a tuple 〈Elem,Rel〉 where Elem is a set
of architectural elements, and Rel ⊆ Elem × Elem is a relation over architec-
tural elements. The architectural elements of Elem are the core entities of a
component-based system:

– Components is a non-empty set of the core entities, i.e. components;
– RequiredInterfaces and ProvidedInterfaces are defined to be subsets of
Interfaces;

– Parameters is a set of component parameters;
– ITypes is the set of the types associated with interfaces;
– PType is a set of data types associated with parameters. Each data type is

a set of data values. For the sake of readability, we identify data type names
with the corresponding data domains.

The architectural relation Rel then expresses various links between the previ-
ously mentioned architectural elements.

– InterfaceType is a total function that associates a type with each interface;
– Supplier is a total function to determine the component of a provided or of

a required interface; Provider is a total surjective function which gives the
component having at least a provided interface of interest, whereas Requirer
is only a total function;

– Contingency is a total function which indicates for each required interface
whether it is mandatory or optional;

– Definer is a total function which gives the component of a considered pa-
rameter;

– Parent is a partial function linking sub-components to the corresponding
composite component. Composite components have no parameter, and a
sub-component must not be a composite including its parent component;

– Binding is a partial function to connect a provided interface with a re-
quired one: a provided interface can be linked to only one required interface,
whereas a required interface can be the target of one or more provided inter-
faces. Moreover, two linked interfaces do not belong to the same component,
but their corresponding components are sub-components of the same com-
posite component. The considered interfaces must have the same interface
type. Also, they have not been involved in a delegation yet;



4 J. Dormoy, O. Kouchnarenko, A. Lanoix

– Delegate describes delegation links. It is a partial bijection which associates
a provided (resp. required) interface of a sub-component with a provided
(resp. required) interface of its parent. Both interfaces must have the same
type, and they have not been involved in a binding yet;

– State is a total function which associates a value from {started, stopped}
with each instantiated component: a component can be started only if all
its mandatory required interfaces are bound or delegated;

– Last, V alue is a total function which gives the current value of a considered
parameter.

Example 1. To illustrate our model, let us consider an example of an HTTP
server from [9,8]. The architecture of this server is depicted in Fig. 3. The Re-
questReceiver component reads HTTP requests from the network and transmits
them to the RequestHandler component. In order to keep the response time as
short as possible, RequestHandler can either use a cache (with the component
CacheHandler) or directly transmit the request to the RequestDispatcher com-
ponent. The number of requests (load) and the percentage of similar requests
(deviation) are two parameters defined for the RequestHandler component:

1. The CacheHandler component is used only if the number of similar HTTP
requests is high.

2. The memorySize for the CacheHandler component must depend on the over-
all load of the server.

3. The validityDuration of data in the cache must also depend on the overall
load of the server.

4. The number of used file servers (like the FileServer1 and FileServer2 compo-
nents) used by RequestDispatcher depends on the overall load of the server.

HttpServer

httpRequest

RequestHandler
(deviation, load)

handler getDispatcher

getCacheRequestReceiver

request getHandler

RequestDispatcher

dispatcher getServer

CacheHandler
(validityDuration,

memorySize)

cache
FileServer2

server2

FileServer1
server1

Fig. 3. HTTP Server architecture

We now introduce a set CP of configuration propositions which are con-
straints on the architectural elements and the relations between them. These
constraints are specified using first order (FO) logic formulas over constants
{>,⊥}, variables in V to reason on elements of Elem, functions and relations
from Rel, predicates SP = {∈,=, . . .}, connectors ∧, ∨, ¬, ⇒, and quantifiers ∃,
∀ [10]. Then the interpretation of functions, relations, and predicates over Elem
is done according to basic definitions in [10] and the model definition in [5].



Structural Refinement of Component-based Systems 5

The configuration properties are expressed at different specification levels.
At the component model level, the constraints are common to all the compo-
nent architectures. Furthermore, some constraints must be expressed to restrict
a family of component architectures (a profile level), or to restrict a specific
component architecture (an application level).

Example 2. Let CacheConnected be a configuration property defined by

∃ cache, getCache ∈ Interfaces.

Provider(cache) = CacheHandler
∧ Requirer(getCache) = RequestHandler
∧ Binding(cache) = getCache


This property expresses that the CacheHandler component is connected to the
RequestHandler component through their respective interfaces.

2.2 Reconfigurations: from a Component Architecture to Another

To make the component-based architecture evolve dynamically, we introduce re-
configurations which are combinations of primitive operations such as instanti-
ation/destruction of components; addition/removal of components; binding/un-
binding of component interfaces; starting/stopping components; setting param-
eter values of components. The normal running of different components also
changes the architecture by modifying parameter values or stopping compo-
nents. Let Rrun = R ∪ {run} be a set of evolution operations, where R is a
finite set of reconfiguration operations, and run is an action to represent running
operations. Given a component architecture and Rrun, the possible evolutions
of the component architecture are defined as a transition system over Rrun.

Definition 1. The operational semantics of component systems with reconfigu-
rations is defined by the labelled transition system S = 〈C, C0,Rrun ,→, l〉 where
C = {c, c1, c2, . . .} is a set of configurations, C0 ∈ C is a set of initial configu-
rations, Rrun is a finite set of evolution operations, → ⊆ C × Rrun × C is the
reconfiguration relation4, and l : C → CP is a total function to label each c ∈ C
with the largest conjunction of cp ∈ CP evaluated to true on c.

Let us note c ope→ c′ when a target configuration c′ = 〈Elem′, Rel′〉 is reached
from a configuration c = 〈Elem,Rel〉 by an evolution operation ope ∈ Rrun.
Given the model S = 〈C, C0,Rrun ,→, l〉, an evolution path (or a path for short)
σ of S is a (possibly infinite) sequence of configurations c0, c1, c2, . . . such that
∀i ≥ 0.(∃ opei ∈ Rrun.(ci opei→ ci+1 ∈→)). We write σ(i) to denote the i-th
configuration of a path σ. The notation σi denotes the suffix path σ(i), σ(i +
1), . . ., and σji denotes the segment path σ(i), σ(i+1), σ(i+2), ..., σ(j− 1), σ(j).
The segment path is infinite in length when the last state of the segment is
repeated infinitely. Let Σ denotes the set of paths, and Σf (⊆ Σ) the set of
finite paths.

4 Actually, → is a reconfiguration function because of the architectural model.



6 J. Dormoy, O. Kouchnarenko, A. Lanoix

Example 3. For the HTTP server, the reconfiguration operations are: Add-
CacheHandler and RemoveCacheHandler which are respectively used to add and
remove the CacheHandler component; AddFileServer and removeFileServer which
are respectively used to add and remove the FileServer2 component; Memory-
SizeUp and MemorySizeDown which are respectively used to increase and to
decrease the MemorySize value; DurationValidityUp and DurationValidityDown to
respectively increase and decrease the ValidityDuration value. A possible evolu-
tion path of the HTTP server architecture is given in Fig. 4.

c0 c1run c01Remove
CacheHandler

c2
Add

CacheHandler

c3
Memory
SizeUp

c03run
c4

Add
FileServer

c5
Duration

ValidityUp

HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

File
Server1

HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

Cache
Handler

File
Server1

File
Server2HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

Cache
Handler

File
Server1

Fig. 4. Part of an evolution path of the HTTP server architecture

2.3 FTPL: a Temporal Logic for Dynamic Reconfigurations

<temp> ::= after <event> <temp>
| before <event> <trace>
| <trace> until <event>

<trace> ::= always cp
| eventually cp
| <trace> ∧ <trace>
| <trace> ∨ <trace>

<event>::= ope normal
| ope exceptional
| ope terminates

Let us first give the FTPL syntax. Basically,
constraints on the architectural elements and
the relations between them are specified
as configuration propositions in Sect. 2.1.
In addition, the language contains events
from reconfiguration operations, trace prop-
erties and, finally, temporal properties. Let
PropFTPL denote the set of FTPL formulae.

Let cp ∈ CP be a configuration property, and c a configuration. We say that
c satisfies cp, written c |= cp, when l(c) ⇒ cp. We also say that cp is valid on
c. Otherwise, we write c 6|= cp when c does not satisfy cp. For example, for
the CacheConnected configuration property from Example 2 and the path from
Fig. 4, we have c2 |= CacheConnected whereas c1 6|= CacheConnected.

Definition 2 (FTPL semantics). Let σ ∈ Σ. The FTPL semantics Σ ×
PropFTPL → B is defined by induction on the form of the formulae as follows:

For the events:
σ(i) |= ope normal if i > 0 ∧ σ(i− 1) 6= σ(i) ∧ σ(i− 1)

ope→ σ(i) ∈→
σ(i) |= ope exceptional if i > 0 ∧ σ(i− 1) = σ(i) ∧ σ(i− 1)

ope→ σ(i) ∈→
σ(i) |= ope terminates if σ(i) |= ope normal ∨ σ(i) |= ope exceptional

For the trace properties:
σ |= always cp if ∀i.(i > 0 ⇒ σ(i) |= cp)
σ |= eventually cp if ∃i.(i > 0 ∧ σ(i) |= cp)
σ |= trace1 ∧ trace2 if σ |= trace1 ∧ σ |= trace2
σ |= trace1 ∨ trace2 if σ |= trace1 ∨ σ |= trace2

For the temporal properties:
σ |= after event temp if ∀i.(i > 0 ∧ σ(i) |= event⇒ σi |= temp)

σ |= before event trace if ∀i.(i > 0 ∧ σ(i) |= event⇒ σi−1
0 |= trace)

σ |= trace until event if ∃i.(i > 0 ∧ σ(i) |= event ∧ σi−1
0 |= trace)



Structural Refinement of Component-based Systems 7

An architectural reconfiguration model S = 〈C, C0,Rrun ,→, l〉 satisfies a
property φ ∈ PropFTPL, denoted S |= φ, if ∀σ.(σ ∈ Σ(S)∧σ(0) ∈ C0 ⇒ σ |= φ).

Example 4. The FTPL framework allows handling architectural invariants
from [9,8]. The following property expresses an architectural constraint saying
that at least there is always one file server component connected to Request-
Dispatcher.

always

(
∃getServer ∈ Interfaces.

(
Requirer(getServer) = RequestDispatcher
∧∃i ∈ Interfaces.(Binding(i) = getServer)

))
Example 5. The following temporal property specifies that after calling up the
AddCacheHandler reconfiguration operation, the CacheHandler component is
always connected to RequestHandler. In other words, the CacheConnected
configuration property from Example 2 holds on all the path after calling up
AddCacheHandler:

after AddCacheHandler normal always CacheConnected

3 Refinement of Architectural Reconfiguration Models

This section defines a new notion of a structural configuration refinement be-
tween two architectural configurations, and then gives the reconfiguration model
refinement as defined in the style of Milner-Park’s simulation.

3.1 Structural Configuration Refinement

In this section we introduce a structural refinement of a component-based ar-
chitecture. This refinement aims to respect component encapsulation, i.e. the
refinement of a component does not cause any changes outside of this compo-
nent. In fact, the refined component must have the same interfaces of the same
types as before. This way other components do not see the difference between
the component and its refined version, and thus there is no need to adapt them.

Example 6. Let us illustrate our goal on the example of the HTTP server. We
consider the configuration cA given Fig. 5, and we refine the RequestHandler
by two new components: RequestAnalyzer and Logger, to obtain a new refined
configuration cR. RequestAnalyzer handles requests to determine the values of
the deviation and load parameters. Logger allows RequestAnalyzer to memorise
requests to chose either RequestDispatcher or CacheHandler, if it is available,
to answer requests. The “old” RequestHandler component becomes a composite
component which encapsulates the new components. Its interfaces remain the
same as the interfaces of the old component.

Let cA = 〈ElemA, RelA〉 and cR = 〈ElemR, RelR〉 be two architectural con-
figurations at two—an abstract and a refined—levels of refinement. To distin-
guish architectural elements at the abstract level and at the refined level, the
elements are renamed to have ElemA ∩ ElemR = ∅. To define the structural



8 J. Dormoy, O. Kouchnarenko, A. Lanoix

cA

RequestHandler

cR

HttpServer

httpRequest

RequestReceiver

request getHandler
handler

Logger
log

RequestAnalyzer
(deviation, load)

Rhandler RgetDispatcher

RgetCache

getLog

getDispatcher

getCache
RequestDispatcher

dispatcher getServer

CacheHandler
(validityDuration,

memorySize)

cache
FileServer2

server2

FileServer1
server1

HttpServer

httpRequest

RequestHandler
(deviation, load)

handler getDispatcher

getCacheRequestReceiver

request getHandler

RequestDispatcher

dispatcher getServer

CacheHandler
(validityDuration,

memorySize)

cache
FileServer2

server2

FileServer1
server1

Fig. 5. A refinement of the HttpServer component

refinement, we have to link together an abstract and a refined configuration,
i.e. express how all the architectural elements and relations are associated with
their refined versions: a gluing predicate gp must be defined as the conjunction
of equalities between the abstract and the refined elements and relations.

In addition to this gluing predicate gp, component-based structural con-
straints are necessary to ensure that the proposed refinement respects the com-
ponent semantics, i.e. which changes are allowed or prescribed during the re-
finement process. These architectural constraints, named AC, are defined as the
conjunction of the propositions given in Table 1, with the following meanings:

– In the system parts not concerned by the refinement, all the core entities
and all the relations between them remain unchanged through refinement
(constraints (G), (H), (I) and (J));

– The new elements introduced during the refinement process must satisfy the
following constraints:
• In the refined architecture the new components must be subcomponents

of components existing before refinement (constraint (K));
• The new interfaces are associated with the new components (con-

straint (C));
• The new parameters are associated with the new components (con-

straint (E));
– Finally, for the architectural elements existing before and impacted by the

refinement, the constraints are as follows:
• All the interfaces of the components existing before and detailed during

the refinement must be delegated interfaces, these components being
composites after refinement (constraints (A), (B) and (L));

• All the parameters of the components existing before and detailed during
the refinement must be associated with the new subcomponents (con-
straints (D) and (F)).



Structural Refinement of Component-based Systems 9

∀iA ∈ InterfacesA,
∃iR ∈ InterfacesR .


gp⇒ (iA = iR)∧
ContingencyA(iA) = ContingencyR(pR)∧
∀tA ∈ ITypesA.
InterfaceTypeA(iA) = tA ⇒
∃tR ∈ ITypesR.(InterfaceTypeR(iR) = tR ∧ gp⇒ (tA = tR) )

 (A)

∀iA ∈ InterfacesA,
∀cA ∈ ComponentsA .

 SupplierA(iA) = cA ⇒
∃iR ∈ InterfaceR, ∃cR ∈ ComponentsR.
(SupplierR(iR) = cR ∧ gp⇒ (iA = iR ∧ cA = cR) )

 (B)

∀iR ∈ InterfaceR,
∀iA ∈ InterfaceA .


¬(gp⇒ (iA = iR))⇒
∃cR ∈ ComponentsR.(

SupplierR(iR) = cR∧
∀cA ∈ ComponentsA.¬(gp⇒ (cA = cR))

)
 (C)

∀pA ∈ ParametersA,
∀tA ∈ PTypesA .


ParameterTypeA(pA) = tA ⇒
∃pR ∈ ParametersR, ∃tR ∈ PTypesR. ParameterTypeR(pR) = tR
∧ V alueA(pA) = V alueR(pR)
∧gp⇒ (pA = pR ∧ tA = tR)


 (D)

∀pR ∈ ParametersR,
∀pA ∈ ParametersA .

 ¬(gp⇒ (pA = pR))⇒
∃cR ∈ ComponentsR. ∀cA ∈ ComponentsA.(

DefinerR(pR) = cR ∧ ¬(gp⇒ (cA = cR))
)
 (E)

∀pA ∈ ParametersA,
∀cA ∈ ComponentsA .


DefinerA(pA) = cA ⇒
∃pR ∈ ParametersR, ∃cR ∈ ComponentsR.(

Definer(pR) = cR ∨ (DefinerR(pR), cR) ∈ Parent+R
∧gp⇒ (pA = pR ∧ cA = cR)

)
 (F)

∀riA ∈ IRequiredA,
∀piA ∈ IProvidedA .

 BindingA(riA) = piA ⇒
∃riR ∈ IRequiredR, ∃piR ∈ IProvidedR.
BindingR(riR) = piR ∧ gp⇒ (riA = riR ∧ piA = piR)

 (G)

∀iA, i′A ∈ InterfaceA.

 DelegateA(iA) = i′A ⇒
∃iR, i′R ∈ InterfaceR.
DelegateR(iR) = i′R ∧ gp⇒ (iA = iR ∧ i′A = i′R)

 (H)

∀cA, c′A ∈ ComponentsA,
∃cR, c′R ∈ ComponentsR

.

(
gp⇒ (cA = cR ∧ c′A = c′R)
∧ ParentA(c′A) = cA ⇒ ParentR(c′R) = cR

)
(I)

∀cA ∈ ComponentsA.
(
∃cR ∈ ComponentsR.
gp⇒ (cA = cR) ∧ StateA(pA) = StateR(pR)

)
(J)

∀cA, c′A ∈ ComponentsA,
∀cR ∈ ComponentsR .

 (cA, c
′
A) 6∈ ParentA ∧ (gp ∧ c′A 6= cR)∧

∃c′R ∈ ComponentsR.
gp⇒ (c′A = c′R) ∧ ParentR(cR) = c′R

 (K)

∀cA, c′A ∈ ComponentsA,
∀c′R ∈ ComponentsR

.


(cA, c

′
A) 6∈ ParentA ∧ gp⇒ (c′A = c′R)∧

∃cR ∈ ComponentsR.
ParentR(cR) = c′R∧
∀iA ∈ InterfaceA, ∀iR ∈ InterfaceR.(

gp⇒ (iA = iR) ∧ SupplierR(iR) = cR∧
∃i′R ∈ InterfaceR.(iR = Delegate(i′R))

)
 (L)

Table 1. Structural refinement constraints AC



10 J. Dormoy, O. Kouchnarenko, A. Lanoix

Definition 3 (Structural Configuration Refinement). Let cA =
〈ElemA, RelA〉 and cR = 〈ElemR, RelR〉 be two configurations, gp the gluing
predicate and AC the architectural constraints. The configuration cR refines cA
wrt. gp and AC, written cR v cA, if lR(cR) ∧ gp ∧AC ⇒ lA(cA).

3.2 Reconfiguration Models Refinement

As an architecture may dynamically evolve through reconfigurations, it con-
cerns refined architectures, where new non primitive reconfigurations may be
introduced to handle the new components. For example, in the refined sys-
tem presented Fig. 5, a possible new reconfiguration RemoveLogger consists in
removing the Logger component which does not exist at the abstract level.

We consider the new reconfigurations introduced during the refinement pro-
cess as being non observable: they are called τ -reconfiguration. In addition,
we define a one-to-one function fc to link the refined reconfiguration actions
with the abstract ones as follows: fc : RrunR \ {τ} → RrunA such that
∀rR.(rR ∈ RrunR \ {τ} ⇒ ∃rA.(rA ∈ RrunA ∧ fc(rR) = rA).

Following [11], the refinement relation ρ is defined in the style of Milner-
Park [12] as a τ -simulation having the following properties5:

1. The new reconfiguration actions renamed by τ should not take control for-
ever: the τ - livelocks are forbidden.

2. Moreover, the new reconfiguration actions should not introduce deadlocks.

Definition 4 (Refinement relation). Let SA = 〈CA, C0A,RrunA ,→A, lA〉 and
SR = 〈CR, C0R,RrunR ,→R, lR〉 be two reconfiguration models, r ∈ RrunR and
σR a path of SR. We define the relation ρ ⊆ CR × CA as the greatest binary
relation satisfying the following conditions: structural refinement (cR v cA),
strict transition refinement (4.1), stuttering transition refinement (4.2), non τ -
divergence (4.3), non introduction of deadlocks (4.4).

∀cA ∈ CA, ∀cR, c′R ∈ CR.(cR ρ cA ∧ cR r→ c
′
R ⇒ ∃c′A.(cA

fc(r)→ c
′
A ∧ c

′
R ρ c

′
A)) (4.1)

∀cA ∈ CA, ∀cR, c′R ∈ CR.(cR ρ cA ∧ cR τ→ c
′
R ⇒ c

′
R ρ cA) (4.2)

∀k.(k ≥ 0 ⇒ ∃k′.(k′ > k ∧ σR(k
′ − 1)

r→ σR(k
′
) ∈ →R)) (4.3)

∀cA ∈ CA, ∀cR ∈ CR.(cR ρ cA ∧ cR 6→ ⇒ cA 6→) (4.4)

We say that SR refines SA, written SR vρ SA, if ∀cR.(cR ∈ C0R ⇒ ∃cA.(cA ∈
C0A ∧ cR ρ cA)).

As a consequence of Definition 4, we give an important property of this
relation allowing to ensure the existence of an abstract path for any refined
path.

Proposition 1. Let SA and SR be two reconfiguration models such that SR vρ
SA. Then, ∀cR.(cR ∈ CR ⇒ ∃cA.(cA ∈ CA ∧ cR ρ cA)).
5 These features are common to other formalisms, like action systems refinement [13]
or LTL refinement [1].



Structural Refinement of Component-based Systems 11

Proof (Sketch). Suppose that cR can be reached by a path σR such that σR(0) ∈
C0R and σR(i) = cR. By Clause (4.3) of Def. 4 σR contains a finite number of τ -
reconfiguration actions, and σR is of the form σR(0)

τ→ . . .
τ→ σR(n1)

r1→ σR(n1+

1)
τ→ . . .

rn→ σR(i− nm)
τ→ . . . σR(i). Moreover, there is a configuration cA ∈ C0A

such that σR(0) ρ cA. We can then build a path from cA = σA(0) such that
the configurations of σA are linked by transitions labelled by reconfigurations
fc(r1) . . . fc(rn) : σA = c0A

fc(r1)→ c1A
fc(r2)→ . . .

fc(rn)→ cnA(= σA(j)). This way the
configuration σA(j) is reached, and by Clauses (4.1) and (4.2) of Def. 4 we have
σR(i) ρ σA(j). ut

Example 7. The reconfiguration path of the HTTP server from Fig. 4 can be
refined as depicted in Fig. 6, where the abstract configuration c4 are refined by
the configurations r5 and r6: the new reconfigurations renamed by τ concern
the new component Logger introduced during the refinement: it is possible to
add or to remove the Logger component.

HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

Cache
Handler

File
Server1

File
Server2

HttpServer

Request
Dispatcher

Cache
Handler

File
Server1

File
Server2

Request
Receiver

Logger
Request
Handler

RequestHandler

HttpServer

Request
Dispatcher

Cache
Handler

File
Server1

File
Server2

Request
Receiver Request

Handler

RequestHandler

HttpServer

Request
Receiver

Request
Handler

Request
Dispatcher

Cache
Handler

File
Server1

HttpServer

Request
Dispatcher

Cache
Handler

File
Server1

Request
Receiver

Logger
Request
Handler

RequestHandler

c0 c1
run c01

Remove
CacheHandler c2

Add
CacheHandler c3

Memory
SizeUp

c03
run c4

Add
FileServer c5

Duration
ValidityUp

r0 r1runR
r01Remove

CacheHandlerR

r2⌧
r3

Add
CacheHandlerR

r4
Memory
SizeUpR

r04runR
r5

Add
FileServerR

r6⌧
r7

Duration
ValidityUpR

⇢

⇢
⇢ ⇢ ⇢ ⇢ ⇢ ⇢

⇢ ⇢

/ RemoveLoggerR/ AddLoggerR

Fig. 6. A refinement of a reconfiguration path of the HTTP server

4 Preservation of FTPL Properties through Refinement

In many formalisms supporting a design by refinement, systems properties are
preserved from abstract models to their refined models [14,1,15]. In this section
we show that FTPL properties are also preserved through our architectural
reconfiguration models refinement. This idea is depicted by Fig. 1.

Let SA and SR be two reconfiguration models such that SR refines SA. These
systems being defined over different sets of architectural elements and reconfig-
urations, we have to give a new validity definition to be able to deal with an
abstract system at a refined level. Actually, we make use of the fc function to
link reconfiguration actions, and of the gluing predicate gp to define the validity
of a FTPL property by preservation, as follows.



12 J. Dormoy, O. Kouchnarenko, A. Lanoix

Definition 5 (FTPL semantics by preservation). Let SR =
〈CR, C0R,RrunR ,→R, lR〉 and SA = 〈CA, C0A,RrunA ,→A, lA〉 be two recon-
figuration models such that SR vρ SA, gp their gluing predicate and ρ their
refinement relation. Let σR be a path of SR, φA a FTPL property over SA. We
define the validity of φA on σR by preservation, written σR |=p φA, by induction
on the form of φA:

σR(i) |=p cpA if (σA(j) |= cpA ∧ σR(i) ρ σA(j))⇒ (lR(σR(i)) ∧ gp⇒ cpA)

σR(i) |=p opeA normal if i > 0 ∧ σR(i− 1) 6= σR(i) ∧ σR(i− 1)
fc−1(opeA)−−−−−−−−−→R σR(i)

σR(i) |=p opeA exceptional if i > 0 ∧ σR(i− 1) = σR(i) ∧ σR(i− 1)
fc−1(opeA)−−−−−−−−−→R σR(i)

σR |=p always cpA if ∀i.(i ≥ 0⇒ σR(i) |=p cpA)
σR |=p eventually cpA if ∃i.(i ≥ 0 ∧ σR(i) |=p cpA)
σR |=p after eA tppA if ∀i.(i ≥ 0 ∧ σR(i) |=p eA ⇒ σiR |=p tppA)

σR |=p before eA trpA if ∀i.(i > 0 ∧ σR(i) |=p eA ⇒ σi−1
0 R

|=p trpA)

σR |=p trpA until eA if ∃i.(i > 0 ∧ σR(i) |=p eA ∧ σi−1
0 R

|=p trpA)

We note SR |=p φA when ∀σR.(σR ∈ Σ(SR) ∧ σR(0) ∈ C0 ⇒ σR(0) |=p φA).
Now, we prove that FTPL properties are preserved by the reconfiguration

refinement defined in Sect. 3.

Theorem 1 (Preservation of a FTPL property on a path). Let SA and
SR be two reconfiguration models such that SR vρ SA, gp their gluing predicate.
Let φ be a FTPL property. Let σA ∈ Σ(SA) and σR ∈ Σ(SR) be two paths.
Then we have ∀i, j.(0 ≤ i ≤ j ∧ (σR(j) ρ σA(i)) ∧ σA |= φ⇒ σR |=p φ).

Proof (Part of Theo. 1). Let σR ∈ Σ(SR) be a path refining a path σA ∈
Σ(SA) (the proof of Proposition 1 ensures that this path exists). Besides,
opeR, ope

′
R, . . . ∈ RrunR label the transitions of SR, and τ labels each transi-

tion introduced during refinement. The proof is done by structural induction on
the form of φ; only two cases are given here because of lack of room6.

1. Let us prove that opeA normal is preserved by refinement. By hypothesis,
σA(i) |= opeA normal, and so, by Def. 2 we have (i). As by hypothesis
σR(j) ρ σA(i), by construction there is a path σA such that σR(0) refines
σA(0) and where opeA = fc(opeR). Consequently, by Proposition 1 we
have (ii). Moreover, it implies that there are two configurations σR(j) and
σR(l) such that σR(l) ρ σ(i− 1) and σR(j) ρ σA(i). There are two cases:
(a) If σR(l)

opeR→ R σR(j) then l = j−1, and immediately we can deduce (iii).
Then by Def. 5, σR |=p opeA normal, and we are done.

(b) If σR(l)
τ→R σR(l + 1), then by Clause (4.2) of Def. 4 we have σR(l +

1) ρ σA(i − 1), and we can continue with the following configuration of
σR. According to Clauses (4.3) and (4.4) of Def. 4, the reconfigurations
labelled by τ cannot take control forever, and the refinement does not
introduce deadlocks. So, there is a configuration σ(l + n) such that
σR(l + n) ρ σA(i − 1) and σR(l + n)

opeR→ σR(j). We set l + n = j − 1
and consequently we have (iv). Then, by Def. 5, σR |=p opeA normal.

6 The whole proof can be found in [16].



Structural Refinement of Component-based Systems 13

i > 0 ∧ σA(i− 1) 6= σA(i) ∧ (σA(i− 1)
fc(opeR)→ A σA(i)) ∈ →A (i)

∀j.(j ≥ 0⇒ ∃k.(k ≥ 0 ∧ σR(j) ρ σA(k))) (ii)

j > 0 ∧ σR(j − 1) 6= σR(j) ∧ (σR(j − 1)
r→R σR(j)) ∈ →R (iii)

j > 0 ∧ σR(j − 1) 6= σR(j) ∧ (σR(j − 1)
r→R σR(j)) ∈ →R (iv)

2. Let us prove that trp until e is preserved by refinement, with the recurrence
hypotheses that trp and e are preserved by refinement. By hypothesis, we
have σA |= tpp until e. So, by Def. 2 we have (v). As by hypothesis
σR(j) ρ σA(i), by construction there is a path σA such that σR(0) refines
σA(0) and where opeA = fc(opeR). Consequently, by Proposition 1 we
have (vi). Moreover, by construction, there is a finite part σj−10 R of σR whose
configurations refine the configurations of a corresponding finite part σi−10 A

of σA, ensuring (vii). By recurrence hypotheses, trp and e are preserved by
refinement. So, we have (viii). Then, by Def. 5, σR |=p trp until e.

∃i.(i > 0 ∧ σA(i) |= e⇒ σ
i−1
0 A

|= trp) (v)
∀j.(j ≥ 0⇒ ∃k.(k ≥ 0 ∧ σR(j) ρ σA(k))) (vi)

∀k.(0 ≤ k < j ⇒ ∃k′.(0 ≤ k′ < i ∧ σj−1
0 R

(k) ρ σ
i−1
0 A

(k
′
))) (vii)

∃j.(j > 0 ∧ σR(j) |=p e⇒ σ
j−1
0 R

|=p trp) (viii)

ut

We are ready to generalise Theorem 1 from paths to reconfiguration models.

Theorem 2 (Preservation of a FTPL property by refinement). Let
SA = 〈CA, C0A,RrunA ,→A, lA〉 and SR = 〈CR, C0R,RrunR ,→R, lR〉 be two recon-
figuration models such that SR vρ SA. Let φ be a FTPL property. If SA |= φ
then SR |=p φ.

Proof. Immediate. If SR vρ SA then ∀σR.(σR ∈ Σ(SR) ∧ σR(0) ∈ C0R ⇒
∃σA.(σA ∈ Σ(SA)∧σA(0) ∈ C0A ∧σR(0) ρ σA(0))). Moreover, if SA |= φ then by
definition ∀σA.(σA ∈ Σ(SA) ⇒ σA |= φ). The reconfiguration relations of both
SR and SA being functionnal, there is no abstract path different from σA which
could be refined by σR. We then can apply Theorem 1. ut
Example 8. For our running example of the HTTP server, let us consider again
the path refinement in Fig. 6. In this refinement, the RequestHandler compo-
nent is refined as depicted in Fig. 5. Let us consider again the temporal property
from Example 5:

σ |= after AddCacheHandler normal always CacheConnected

It is easy to see that this property is valid on the abstract path depicted in
Fig. 6. Moreover, as presented in this figure, the ρ refinement relation holds
between the configurations of the illustrated part of the refined path and the
corresponding part of the abstract path. Consequently, this property is also
valid by preservation on the refined path depicted in Fig. 6.



14 J. Dormoy, O. Kouchnarenko, A. Lanoix

5 Conclusion

In this paper, we have enriched a theoretical framework for dynamic reconfigu-
rations of component architectures with a new notion of a structural refinement
of architectures, which respects the component encapsulation. Then we have
integrated this structural refinement into a behavioural refinement relation for
dynamic reconfigurations defined in the style of Milner-Park’s simulation [12] be-
tween reconfiguration models. Afterwards, we have shown that this refinement
relation preserves the FTPL properties—architectural invariants, event proper-
ties and temporal properties involving different kinds of temporal patterns shown
useful in practice. The preservation means that any FTPL property expressed
and established for an abstract system is also established for the refined coun-
terparts, provided that the refinement relation holds. This way we ensure the
system’s consistency at different refinement levels, and we free the specifier from
expressing and verifying properties at these levels with new details, components,
reconfigurations.

To check the structural refinement, we plan to pursue further and to extend
our previous work on the verification of the architectural consistency through
reconfigurations [6]. The structural refinement constraints in Table 1 could be
formalised and validated in a similar manner. Another solution would be to
exploit the architectural description language (ADL) describing component ar-
chitectures in XML. It becomes possible then to use XML tools for checking the
structural refinement between two component architectures.

To conclude, this work on property preservation is used as a hypothesis for
our running work on the runtime FTPL verification [7]. We have reviewed FTPL
from a runtime point of view [7] by introducing a new four-valued logic, called
RV-FTPL, characterising the “potential” (un)satisfiability of the architectural
and temporal constraints: potential true and potential false values are chosen
whenever an observed behaviour has not yet lead to a violation or satisfiability
of the property under consideration. We intend to accompany this work with
a runtime checking of a “potential” reconfiguration model refinement using the
proposals in [17,18].

References

1. Kesten, Y., Manna, Z., Pnueli, A.: Temporal verification of simulation and
refinement. In: A Decade of Concurrency, Reflections and Perspectives, REX
School/Symposium. Volume 803 of LNCS., Springer (1994) 273–346

2. Abrial, J.R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.:
Rodin: an open toolset for modelling and reasoning in Event-B. STTT 12(6)
(2010) 447–466

3. de Alfaro, L., Henzinger, T.: Interface-based design. In: Engineering Theories
of Software-intensive Systems. NATO Science Series: Mathematics, Physics, and
Chemistry 195, Springer (2005) 83–104

4. Mikhajlov, L., Sekerinski, E., Laibinis, L.: Developing components in the presence
of re-entrance. In: Wold Congress on Formal Methods. FM’99, London, UK,
Springer-Verlag (1999) 1301–1320



Structural Refinement of Component-based Systems 15

5. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using temporal logic for dynamic
reconfigurations of components. In: FACS 2010, 7th Int. Ws. on Formal Aspects
of Component Software. Volume 6921 of LNCS., Springer (2012) 200–217

6. Lanoix, A., Dormoy, J., Kouchnarenko, O.: Combining proof and model-checking
to validate reconfigurable architectures. In: FESCA 2011. ENTCS (2011)

7. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Runtime verification of temporal
patterns for dynamic reconfigurations of components. In: FACS 2011. Volume *
of LNCS., Springer (2011) ***–*** To appear.

8. Léger, M., Ledoux, T., Coupaye, T.: Reliable dynamic reconfigurations in a re-
flective component model. In: CBSE 2010. Volume 6092 of LNCS. (2010) 74–92

9. David, P.C., Ledoux, T., Léger, M., Coupaye, T.: FPath and FScript: Language
support for navigation and reliable reconfiguration of Fractal architectures. An-
nales des Télécommunications 64(1-2) (2009) 45–63

10. Hamilton, A.G.: Logic for mathematicians. Cambridge University Press, Cam-
bridge (1978)

11. Bellegarde, F., Julliand, J., Kouchnarenko, O.: Ready-simulation is not ready
to express a modular refinement relation. In: Fondamental Aspects of Software
Engineering 2000, FASE’2000. Volume 1783 of LNCS. (2000) 266–283

12. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)
13. Butler, M.J.: Stepwise refinement of communicating systems. Sci. Comput. Pro-

gram. 27(2) (1996) 139–173
14. Pnueli, A.: System specification and refinement in temporal logic. In: Proceedings

of the 12th Conference on Foundations of Software Technology and Theoretical
Computer Science, London, UK, Springer-Verlag (1992) 1–38

15. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3) (1994) 872–923

16. Dormoy, J.: Contributions à la spécification et à la vérification des reconfigurations
dynamiques dans les systèmes à composants. PhD thesis, Université de Franche-
Comté, France (December 2011)

17. Elmas, T., Tasiran, S.: Vyrdmc: Driving runtime refinement checking with model
checkers. ENTCS 144 (May 2006) 41–56

18. Tasiran, S., Qadeer, S.: Runtime refinement checking of concurrent data structures.
ENTCS 113 (January 2005) 163–179


