Julien Dormoy

Olga Kouchnarenko

Arnaud Lanoix
email: arnaud.lanoix@univ-nantes.fr

Structural Refinement of Components Keeps Temporal Properties over Reconfigurations

Dynamic reconfigurations increase the availability and the reliability of component-based systems by allowing their architecture to evolve at runtime. Recently, a linear temporal pattern logic, called FTPL, has been defined to express desired-architectural, event and temporal-properties over dynamic reconfigurations of component systems. This paper is dedicated to the preservation of the FTPL properties when refining components and introducing new reconfigurations. To this end, we use architectural reconfiguration models giving the semantics of component-based systems with reconfigurations, on which we define a new refinement relation. This relation combines: (i) a structural refinement which respects the component encapsulation within the architectures at two levels of refinement, and (ii) a behavioural refinement which links dynamic reconfigurations of a refined component-based system with their abstract counterparts that were possible before the refinement. The main advantage of the new refinement is that this relation preserves the FTPL properties. The main contributions are illustrated on the example of an HTTP server architecture.

Introduction

The refinement-based design and development simplifies complex system specification and implementation [START_REF] Kesten | Temporal verification of simulation and refinement[END_REF][START_REF] Abrial | Rodin: an open toolset for modelling and reasoning in Event-B[END_REF]. For component-based systems, it is important in practice to associate a design by refinement with a design by a composition of their components [START_REF] De Alfaro | Engineering Theories of Software-intensive Systems[END_REF][START_REF] Mikhajlov | Developing components in the presence of re-entrance[END_REF].

In this paper we propose a refinement of component-based systems with reconfigurations which preserves event and temporal properties. Our main goal is to respect component encapsulation, i.e. the refinement of a component must not cause any changes outside of this component. Moreover, we want the refinement to respect the availability of reconfigurations from an abstract level to a refined one: new reconfigurations handling new components introduced by the refinement must not take control forever, and no new deadlock is allowed. The present paper's contributions are based on our previous works [START_REF] Dormoy | Using temporal logic for dynamic reconfigurations of components[END_REF][START_REF] Lanoix | Combining proof and model-checking to validate reconfigurable architectures[END_REF][START_REF] Dormoy | Runtime verification of temporal patterns for dynamic reconfigurations of components[END_REF] where the semantics of component-based architectures with dynamic reconfigurations has been given in terms of labelled transition systems [START_REF] Kesten | Temporal verification of simulation and refinement[END_REF]. The first contribution of this paper is a definition of a structural refinement (2) which links two architectures at two development levels: in a refined architecture every refined component must have the same interfaces of the same types as before. This way other components do not see the difference between the refined components and their abstract versions, and thus there is no need to adapt them. The second contribution is the definition of a reconfiguration refinement relation (3) linking dynamic reconfigurations of a refined component-based system with their abstract counterparts that were possible before the refinement. c0 Moreover, we want the refinement to preserve temporal properties. To express temporal properties over architectural reconfigurations of componentbased systems a temporal pattern logic, called FTPL, has been defined [START_REF] Dormoy | Using temporal logic for dynamic reconfigurations of components[END_REF] (4). FTPL allows expressing architectural invariants, both event and temporal properties involving different kinds of temporal patterns which have been shown useful in practice. The third contribution of this paper consists in proving that the refinement relation-a special kind of simulationpreserves (5) the FTPL properties: any property verified at a given refinement level is ensured, "for free", at the following refinement levels, provided that the refinement relation holds.

The remainder of the paper is organised as follows. We briefly recall in Sect. 2 the architectural (re-)configuration model and the FTPL syntax and semantics. We then define in Sect. 3 the structural refinement between two architectural configurations, before integrating it into the reconfiguration model refinement. Section 4 shows that the refinement relation preserves FTPL properties. Finally, Section 5 concludes and gives some perspectives.

Architectural Reconfiguration Model

This section briefly recalls the architectural reconfiguration model given in [START_REF] Dormoy | Using temporal logic for dynamic reconfigurations of components[END_REF][START_REF] Lanoix | Combining proof and model-checking to validate reconfigurable architectures[END_REF], and the temporal pattern logic for dynamic reconfigurations, called FTPL in [START_REF] Dormoy | Using temporal logic for dynamic reconfigurations of components[END_REF].

Component-based architectures

In general, the system configuration is the specific definition of the elements that define or prescribe what a system is composed of. The architectural elements we consider (components, interfaces and parameters) are the core entities of a componentbased system, and relations over them express various links between these basic architectural elements. In this section we sum up formal definitions given in [START_REF] Dormoy | Using temporal logic for dynamic reconfigurations of components[END_REF][START_REF] Lanoix | Combining proof and model-checking to validate reconfigurable architectures[END_REF]. To this end, we consider a graph-based representation in Fig. 2, inspired by the model for Fractal in [START_REF] Léger | Reliable dynamic reconfigurations in a reflective component model[END_REF].

In our model, a configuration c is a tuple Elem, Rel where Elem is a set of architectural elements, and Rel ⊆ Elem × Elem is a relation over architectural elements. The architectural elements of Elem are the core entities of a component-based system:

-Components is a non-empty set of the core entities, i.e. components; -RequiredInterf aces and P rovidedInterf aces are defined to be subsets of Interf aces; -P arameters is a set of component parameters; -IT ypes is the set of the types associated with interfaces; -P T ype is a set of data types associated with parameters. Each data type is a set of data values. For the sake of readability, we identify data type names with the corresponding data domains.

The architectural relation Rel then expresses various links between the previously mentioned architectural elements.

-Interf aceT ype is a total function that associates a type with each interface; -Supplier is a total function to determine the component of a provided or of a required interface; P rovider is a total surjective function which gives the component having at least a provided interface of interest, whereas Requirer is only a total function; -Contingency is a total function which indicates for each required interface whether it is mandatory or optional; -Def iner is a total function which gives the component of a considered parameter; -P arent is a partial function linking sub-components to the corresponding composite component. Composite components have no parameter, and a sub-component must not be a composite including its parent component; -Binding is a partial function to connect a provided interface with a required one: a provided interface can be linked to only one required interface, whereas a required interface can be the target of one or more provided interfaces. Moreover, two linked interfaces do not belong to the same component, but their corresponding components are sub-components of the same composite component. The considered interfaces must have the same interface type. Also, they have not been involved in a delegation yet;

-Delegate describes delegation links. It is a partial bijection which associates a provided (resp. required) interface of a sub-component with a provided (resp. required) interface of its parent. Both interfaces must have the same type, and they have not been involved in a binding yet; -State is a total function which associates a value from {started, stopped} with each instantiated component: a component can be started only if all its mandatory required interfaces are bound or delegated; -Last, V alue is a total function which gives the current value of a considered parameter.

Example 1. To illustrate our model, let us consider an example of an HTTP server from [START_REF] David | FPath and FScript: Language support for navigation and reliable reconfiguration of Fractal architectures[END_REF][START_REF] Léger | Reliable dynamic reconfigurations in a reflective component model[END_REF]. The architecture of this server is depicted in Fig. We now introduce a set CP of configuration propositions which are constraints on the architectural elements and the relations between them. These constraints are specified using first order (FO) logic formulas over constants { , ⊥}, variables in V to reason on elements of Elem, functions and relations from Rel, predicates S P = {∈, =, . . .}, connectors ∧, ∨, ¬, ⇒, and quantifiers ∃, ∀ [START_REF] Hamilton | Logic for mathematicians[END_REF]. Then the interpretation of functions, relations, and predicates over Elem is done according to basic definitions in [START_REF] Hamilton | Logic for mathematicians[END_REF] and the model definition in [START_REF] Dormoy | Using temporal logic for dynamic reconfigurations of components[END_REF].

The configuration properties are expressed at different specification levels. At the component model level, the constraints are common to all the component architectures. Furthermore, some constraints must be expressed to restrict a family of component architectures (a profile level), or to restrict a specific component architecture (an application level).

Example 2. Let CacheConnected be a configuration property defined by ∃ cache, getCache ∈ Interf aces.

  P rovider(cache) = CacheHandler ∧ Requirer(getCache) = RequestHandler ∧ Binding(cache) = getCache  
This property expresses that the CacheHandler component is connected to the RequestHandler component through their respective interfaces.

Reconfigurations: from a Component Architecture to Another

To make the component-based architecture evolve dynamically, we introduce reconfigurations which are combinations of primitive operations such as instantiation/destruction of components; addition/removal of components; binding/unbinding of component interfaces; starting/stopping components; setting parameter values of components. The normal running of different components also changes the architecture by modifying parameter values or stopping components. Let R run = R ∪ {run} be a set of evolution operations, where R is a finite set of reconfiguration operations, and run is an action to represent running operations. Given a component architecture and R run , the possible evolutions of the component architecture are defined as a transition system over R run .

Definition 1. The operational semantics of component systems with reconfigurations is defined by the labelled transition system S = C, C 0 , R run , →, l where Given the model S = C, C 0 , R run , →, l , an evolution path (or a path for short)

C = {c, c 1 , c 2 , . . .} is a set of configurations, C 0 ∈ C is a set of initial configu- rations, R run is a finite set of evolution operations, → ⊆ C × R run × C
σ of S is a (possibly infinite) sequence of configurations c 0 , c 1 , c 2 , . . . such that ∀i ≥ 0.(∃ ope i ∈ R run .(c i opei → c i+1 ∈→)).
We write σ(i) to denote the i-th configuration of a path σ. The notation σ i denotes the suffix path σ(i), σ(i + 1), . . ., and σ j i denotes the segment path σ(i), σ(i + 1), σ(i + 2), ..., σ(j -1), σ(j). The segment path is infinite in length when the last state of the segment is repeated infinitely. Let Σ denotes the set of paths, and Σ f (⊆ Σ) the set of finite paths. Let us first give the FTPL syntax. Basically, constraints on the architectural elements and the relations between them are specified as configuration propositions in Sect. 2.1.

In addition, the language contains events from reconfiguration operations, trace properties and, finally, temporal properties. Let P rop F T P L denote the set of FTPL formulae.

Let cp ∈ CP be a configuration property, and c a configuration. We say that c satisfies cp, written c |= cp, when l(c) ⇒ cp. We also say that cp is valid on c. Otherwise, we write c |= cp when c does not satisfy cp. For example, for the CacheConnected configuration property from Example 2 and the path from Fig. 4, we have c 2 |= CacheConnected whereas c 1 |= CacheConnected.

Definition 2 (FTPL semantics). Let σ ∈ Σ. The FTPL semantics Σ × P rop F T P L → B is defined by induction on the form of the formulae as follows:

For the events:

σ(i) |= ope normal if i > 0 ∧ σ(i -1) = σ(i) ∧ σ(i -1) ope → σ(i) ∈→ σ(i) |= ope exceptional if i > 0 ∧ σ(i -1) = σ(i) ∧ σ(i -1) ope → σ(i) ∈→ σ(i) |= ope terminates if σ(i) |= ope normal ∨ σ(i) |= ope exceptional For the trace properties: σ |= always cp if ∀i.(i 0 ⇒ σ(i) |= cp) σ |= eventually cp if ∃i.(i 0 ∧ σ(i) |= cp) σ |= trace1 ∧ trace2 if σ |= trace1 ∧ σ |= trace2 σ |= trace1 ∨ trace2 if σ |= trace1 ∨ σ |= trace2 For the temporal properties: σ |= after event temp if ∀i.(i 0 ∧ σ(i) |= event ⇒ σi |= temp) σ |= before event trace if ∀i.(i > 0 ∧ σ(i) |= event ⇒ σ i-1 0 |= trace) σ |= trace until event if ∃i.(i > 0 ∧ σ(i) |= event ∧ σ i-1 0 |= trace)
An architectural reconfiguration model S = C, C 0 , R run , →, l satisfies a property φ ∈ P rop

F T P L , denoted S |= φ, if ∀σ.(σ ∈ Σ(S)∧σ(0) ∈ C 0 ⇒ σ |= φ).
Example 4. The FTPL framework allows handling architectural invariants from [START_REF] David | FPath and FScript: Language support for navigation and reliable reconfiguration of Fractal architectures[END_REF][START_REF] Léger | Reliable dynamic reconfigurations in a reflective component model[END_REF]. The following property expresses an architectural constraint saying that at least there is always one file server component connected to Request-Dispatcher. after AddCacheHandler normal always CacheConnected

Refinement of Architectural Reconfiguration Models

This section defines a new notion of a structural configuration refinement between two architectural configurations, and then gives the reconfiguration model refinement as defined in the style of Milner-Park's simulation.

Structural Configuration Refinement

In this section we introduce a structural refinement of a component-based architecture. This refinement aims to respect component encapsulation, i.e. the refinement of a component does not cause any changes outside of this component. In fact, the refined component must have the same interfaces of the same types as before. This way other components do not see the difference between the component and its refined version, and thus there is no need to adapt them.

Example 6. Let us illustrate our goal on the example of the HTTP server. We consider the configuration c A given Fig. Let c A = Elem A , Rel A and c R = Elem R , Rel R be two architectural configurations at two-an abstract and a refined-levels of refinement. To distinguish architectural elements at the abstract level and at the refined level, the elements are renamed to have Elem A ∩ Elem R = ∅. To define the structural refinement, we have to link together an abstract and a refined configuration, i.e. express how all the architectural elements and relations are associated with their refined versions: a gluing predicate gp must be defined as the conjunction of equalities between the abstract and the refined elements and relations.

In addition to this gluing predicate gp, component-based structural constraints are necessary to ensure that the proposed refinement respects the component semantics, i.e. which changes are allowed or prescribed during the refinement process. These architectural constraints, named AC, are defined as the conjunction of the propositions given in Table 1, with the following meanings: -In the system parts not concerned by the refinement, all the core entities and all the relations between them remain unchanged through refinement (constraints (G), (H), (I) and (J)); -The new elements introduced during the refinement process must satisfy the following constraints:

• In the refined architecture the new components must be subcomponents of components existing before refinement (constraint (K)); • The new interfaces are associated with the new components (constraint (C)); • The new parameters are associated with the new components (constraint (E)); -Finally, for the architectural elements existing before and impacted by the refinement, the constraints are as follows:

• All the interfaces of the components existing before and detailed during the refinement must be delegated interfaces, these components being composites after refinement (constraints (A), (B) and (L)); • All the parameters of the components existing before and detailed during the refinement must be associated with the new subcomponents (constraints (D) and (F)).

∀i A ∈ Interf aces A , ∃i R ∈ Interf aces R .      gp ⇒ (i A = i R)∧ Contingency A (i A) = Contingency R (p R)∧ ∀t A ∈ IT ypes A . Interf aceT ype A (i A) = t A ⇒ ∃t R ∈ IT ypes R .(Interf aceT ype R (i R) = t R ∧ gp ⇒ (t A = t R))      (A) ∀i A ∈ Interf aces A , ∀c A ∈ Components A .   Supplier A (i A) = c A ⇒ ∃i R ∈ Interf ace R , ∃c R ∈ Components R . (Supplier R (i R) = c R ∧ gp ⇒ (i A = i R ∧ c A = c R))   (B) ∀i R ∈ Interf ace R , ∀i A ∈ Interf ace A .     ¬(gp ⇒ (i A = i R)) ⇒ ∃c R ∈ Components R . Supplier R (i R) = c R ∧ ∀c A ∈ Components A .¬(gp ⇒ (c A = c R))     (C) ∀p A ∈ P arameters A , ∀t A ∈ P T ypes A .      P arameterT ype A (p A) = t A ⇒ ∃p R ∈ P arameters R , ∃t R ∈ P T ypes R .   P arameterT ype R (p R) = t R ∧ V alue A (p A) = V alue R (p R) ∧gp ⇒ (p A = p R ∧ t A = t R)        (D) ∀p R ∈ P arameters R , ∀p A ∈ P arameters A .   ¬(gp ⇒ (p A = p R)) ⇒ ∃c R ∈ Components R . ∀c A ∈ Components A . Def iner R (p R) = c R ∧ ¬(gp ⇒ (c A = c R))   (E) ∀p A ∈ P arameters A , ∀c A ∈ Components A .     Def iner A (p A) = c A ⇒ ∃p R ∈ P arameters R , ∃c R ∈ Components R . Def iner(p R) = c R ∨ (Def iner R (p R), c R) ∈ P arent + R ∧gp ⇒ (p A = p R ∧ c A = c R)     (F) ∀ri A ∈ IRequired A , ∀pi A ∈ IP rovided A .   Binding A (ri A) = pi A ⇒ ∃ri R ∈ IRequired R , ∃pi R ∈ IP rovided R . Binding R (ri R) = pi R ∧ gp ⇒ (ri A = ri R ∧ pi A = pi R)   (G) ∀i A , i A ∈ Interf ace A .   Delegate A (i A) = i A ⇒ ∃i R , i R ∈ Interf ace R . Delegate R (i R) = i R ∧ gp ⇒ (i A = i R ∧ i A = i R)   (H) ∀c A , c A ∈ Components A , ∃c R , c R ∈ Components R . gp ⇒ (c A = c R ∧ c A = c R) ∧ P arent A (c A) = c A ⇒ P arent R (c R) = c R (I) ∀c A ∈ Components A . ∃c R ∈ Components R . gp ⇒ (c A = c R) ∧ State A (p A) = State R (p R) (J) ∀c A , c A ∈ Components A , ∀c R ∈ Components R .   (c A , c A) ∈ P arent A ∧ (gp ∧ c A = c R)∧ ∃c R ∈ Components R . gp ⇒ (c A = c R) ∧ P arent R (c R) = c R   (K) ∀c A , c A ∈ Components A , ∀c R ∈ Components R .        (c A , c A) ∈ P arent A ∧ gp ⇒ (c A = c R)∧ ∃c R ∈ Components R . P arent R (c R) = c R ∧ ∀i A ∈ Interf ace A , ∀i R ∈ Interf ace R . gp ⇒ (i A = i R) ∧ Supplier R (i R) = c R ∧ ∃i R ∈ Interf ace R .(i R = Delegate(i R))        (L)
c R c A , if l R (c R) ∧ gp ∧ AC ⇒ l A (c A).

Reconfiguration Models Refinement

As an architecture may dynamically evolve through reconfigurations, it concerns refined architectures, where new non primitive reconfigurations may be introduced to handle the new components. For example, in the refined system presented Fig. 5, a possible new reconfiguration RemoveLogger consists in removing the Logger component which does not exist at the abstract level.

We consider the new reconfigurations introduced during the refinement process as being non observable: they are called τ -reconfiguration. In addition, we define a one-to-one function f c to link the refined reconfiguration actions with the abstract ones as follows:

f c : R run R \ {τ } → R run A such that ∀r R .(r R ∈ R run R \ {τ } ⇒ ∃r A .(r A ∈ R run A ∧ f c(r R) = r A).
Following [START_REF] Bellegarde | Ready-simulation is not ready to express a modular refinement relation[END_REF], the refinement relation ρ is defined in the style of Milner-Park [START_REF] Milner | Communication and Concurrency[END_REF] as a τ -simulation having the following properties5 :

1. The new reconfiguration actions renamed by τ should not take control forever: the τ -livelocks are forbidden. 2. Moreover, the new reconfiguration actions should not introduce deadlocks.

Definition 4 (Refinement relation). Let S

A = C A , C 0 A , R run A , → A , l A and S R = C R , C 0 R , R run R , → R , l R
be two reconfiguration models, r ∈ R runR and σ R a path of S R . We define the relation ρ ⊆ C R × C A as the greatest binary relation satisfying the following conditions: structural refinement (c R c A), strict transition refinement (4.1), stuttering transition refinement (4.2), non τdivergence (4.3), non introduction of deadlocks (4.4).

∀c A ∈ C A , ∀c R , c R ∈ C R .(c R ρ c A ∧ c R r → c R ⇒ ∃c A .(c A f c(r) → c A ∧ c R ρ c A)) (4.1)
∀c A ∈ C A , ∀c R , c R ∈ C R .(c R ρ c A ∧ c R τ → c R ⇒ c R ρ c A) (4.2) ∀k.(k ≥ 0 ⇒ ∃k .(k > k ∧ σ R (k -1) r → σ R (k) ∈ → R)) (4.3) ∀c A ∈ C A , ∀c R ∈ C R .(c R ρ c A ∧ c R → ⇒ c A →) (4.4)
We say that S R refines S A , written

S R ρ S A , if ∀c R .(c R ∈ C 0 R ⇒ ∃c A .(c A ∈ C 0 A ∧ c R ρ c A)).
As a consequence of Definition 4, we give an important property of this relation allowing to ensure the existence of an abstract path for any refined path.

Proposition 1. Let S A and S R be two reconfiguration models such that S R ρ

S A . Then, ∀c R .(c R ∈ C R ⇒ ∃c A .(c A ∈ C A ∧ c R ρ c A)).
Proof (Sketch). Suppose that c R can be reached by a path σ R such that σ R (0) ∈ C 0 R and σ R (i) = c R . By Clause (4.3) of Def. 4 σ R contains a finite number of τreconfiguration actions, and σ R is of the form σ R (0

) τ → . . . τ → σ R (n 1) r1 → σ R (n 1 + 1) τ → . . . rn → σ R (i -n m) τ → . . . σ R (i). Moreover, there is a configuration c A ∈ C 0 A such that σ R (0) ρ c A .
We can then build a path from c A = σ A (0) such that the configurations of σ A are linked by transitions labelled by reconfigurations

f c(r 1) . . . f c(r n) : σ A = c 0 A f c(r1) → c 1 A f c(r2) → . . . f c(rn) → c n A (= σ A (j)
). This way the configuration σ A (j) is reached, and by Clauses (4.1) and (4.2) of Def. 4 we have σ R (i) ρ σ A (j).

Example 7. The reconfiguration path of the HTTP server from Fig. 4 can be refined as depicted in Fig. 6, where the abstract configuration c 4 are refined by the configurations r 5 and r 6 : the new reconfigurations renamed by τ concern the new component Logger introduced during the refinement: it is possible to add or to remove the Logger component. In many formalisms supporting a design by refinement, systems properties are preserved from abstract models to their refined models [START_REF] Pnueli | System specification and refinement in temporal logic[END_REF][START_REF] Kesten | Temporal verification of simulation and refinement[END_REF][START_REF] Lamport | The temporal logic of actions[END_REF]. In this section we show that FTPL properties are also preserved through our architectural reconfiguration models refinement. This idea is depicted by Fig. 1.

Let S A and S R be two reconfiguration models such that S R refines S A . These systems being defined over different sets of architectural elements and reconfigurations, we have to give a new validity definition to be able to deal with an abstract system at a refined level. Actually, we make use of the f c function to link reconfiguration actions, and of the gluing predicate gp to define the validity of a FTPL property by preservation, as follows.

i > 0 ∧ σ A (i -1) = σ A (i) ∧ (σ A (i -1) f c(ope R) → A σ A (i)) ∈ → A (i) ∀j.(j ≥ 0 ⇒ ∃k.(k ≥ 0 ∧ σ R (j) ρ σ A (k))) (ii) j > 0 ∧ σ R (j -1) = σ R (j) ∧ (σ R (j -1) r → R σ R (j)) ∈ → R (iii) j > 0 ∧ σ R (j -1) = σ R (j) ∧ (σ R (j -1) r → R σ R (j)) ∈ → R (iv)
2. Let us prove that trp until e is preserved by refinement, with the recurrence hypotheses that trp and e are preserved by refinement. By hypothesis, we have σ A |= tpp until e. So, by Def. 2 we have (v). As by hypothesis σ R (j) ρ σ A (i), by construction there is a path σ A such that σ R (0) refines σ A (0) and where ope A = f c(ope R). Consequently, by Proposition 1 we have (vi). Moreover, by construction, there is a finite part σ j-1 0 R of σ R whose configurations refine the configurations of a corresponding finite part σ i-1 0 A of σ A , ensuring (vii). By recurrence hypotheses, trp and e are preserved by refinement. So, we have (viii). Then, by Def. 5, σ R |= p trp until e.

∃i.(i

> 0 ∧ σ A (i) |= e ⇒ σ i-1 0 A |= trp) (v) ∀j.(j ≥ 0 ⇒ ∃k.(k ≥ 0 ∧ σ R (j) ρ σ A (k))) (vi) ∀k.(0 ≤ k < j ⇒ ∃k .(0 ≤ k < i ∧ σ j-1 0 R (k) ρ σ i-1 0 A (k))) (vii) ∃j.(j > 0 ∧ σ R (j) |=p e ⇒ σ j-1 0 R |=p trp) (viii)
We are ready to generalise Theorem 1 from paths to reconfiguration models.

Theorem 2 (Preservation of a FTPL property by refinement). Let

S A = C A , C 0 A , R run A , → A , l A and S R = C R , C 0 R , R run R , → R , l R be two recon- figuration models such that S R ρ S A . Let φ be a FTPL property. If S A |= φ then S R |= p φ. Proof. Immediate. If S R ρ S A then ∀σ R .(σ R ∈ Σ(S R) ∧ σ R (0) ∈ C 0 R ⇒ ∃σ A .(σ A ∈ Σ(S A) ∧ σ A (0) ∈ C 0 A ∧ σ R (0) ρ σ A (0))). Moreover, if S A |= φ then by definition ∀σ A .(σ A ∈ Σ(S A) ⇒ σ A |= φ).
The reconfiguration relations of both S R and S A being functionnal, there is no abstract path different from σ A which could be refined by σ R . We then can apply Theorem 1.

Example 8. For our running example of the HTTP server, let us consider again the path refinement in Fig. 6. In this refinement, the RequestHandler component is refined as depicted in Fig. 5. Let us consider again the temporal property from Example 5: σ |= after AddCacheHandler normal always CacheConnected It is easy to see that this property is valid on the abstract path depicted in Fig. 6. Moreover, as presented in this figure, the ρ refinement relation holds between the configurations of the illustrated part of the refined path and the corresponding part of the abstract path. Consequently, this property is also valid by preservation on the refined path depicted in Fig. 6.

Conclusion

In this paper, we have enriched a theoretical framework for dynamic reconfigurations of component architectures with a new notion of a structural refinement of architectures, which respects the component encapsulation. Then we have integrated this structural refinement into a behavioural refinement relation for dynamic reconfigurations defined in the style of Milner-Park's simulation [START_REF] Milner | Communication and Concurrency[END_REF] between reconfiguration models. Afterwards, we have shown that this refinement relation preserves the FTPL properties-architectural invariants, event properties and temporal properties involving different kinds of temporal patterns shown useful in practice. The preservation means that any FTPL property expressed and established for an abstract system is also established for the refined counterparts, provided that the refinement relation holds. This way we ensure the system's consistency at different refinement levels, and we free the specifier from expressing and verifying properties at these levels with new details, components, reconfigurations.

To check the structural refinement, we plan to pursue further and to extend our previous work on the verification of the architectural consistency through reconfigurations [START_REF] Lanoix | Combining proof and model-checking to validate reconfigurable architectures[END_REF]. The structural refinement constraints in Table 1 could be formalised and validated in a similar manner. Another solution would be to exploit the architectural description language (ADL) describing component architectures in XML. It becomes possible then to use XML tools for checking the structural refinement between two component architectures.

To conclude, this work on property preservation is used as a hypothesis for our running work on the runtime FTPL verification [START_REF] Dormoy | Runtime verification of temporal patterns for dynamic reconfigurations of components[END_REF]. We have reviewed FTPL from a runtime point of view [START_REF] Dormoy | Runtime verification of temporal patterns for dynamic reconfigurations of components[END_REF] by introducing a new four-valued logic, called RV-FTPL, characterising the "potential" (un)satisfiability of the architectural and temporal constraints: potential true and potential false values are chosen whenever an observed behaviour has not yet lead to a violation or satisfiability of the property under consideration. We intend to accompany this work with a runtime checking of a "potential" reconfiguration model refinement using the proposals in [START_REF] Elmas | Vyrdmc: Driving runtime refinement checking with model checkers[END_REF][START_REF] Tasiran | Runtime refinement checking of concurrent data structures[END_REF].

2 Fig. 1 .

 21 Fig. 1. Verification and preservation through refinement

Fig. 2 .

 2 Fig. 2. Architectural elements and relations

2 .Fig. 3 .

 23 Fig. 3. HTTP Server architecture

 is the reconfiguration relation 4 , and l : C → CP is a total function to label each c ∈ C with the largest conjunction of cp ∈ CP evaluated to true on c. Let us note c ope → c when a target configuration c = Elem , Rel is reached from a configuration c = Elem, Rel by an evolution operation ope ∈ R run .

Example 3 .

 3 For the HTTP server, the reconfiguration operations are: Add-CacheHandler and RemoveCacheHandler which are respectively used to add and remove the CacheHandler component; AddFileServer and removeFileServer which are respectively used to add and remove the FileServer2 component; Memory-SizeUp and MemorySizeDown which are respectively used to increase and to decrease the MemorySize value; DurationValidityUp and DurationValidityDown to respectively increase and decrease the ValidityDuration value. A possible evolution path of the HTTP server architecture is given in Fig.4.

Fig. 4 .

 4 Fig. 4. Part of an evolution path of the HTTP server architecture

Fig. 5 .

 5 Fig. 5. A refinement of the HttpServer component

Fig. 6 .

 6 Fig. 6. A refinement of a path of the HTTP server

 [START_REF] De Alfaro | Engineering Theories of Software-intensive Systems[END_REF]. The Re-questReceiver component reads HTTP requests from the network and transmits them to the RequestHandler component. In order to keep the response time as short as possible, RequestHandler can either use a cache (with the component CacheHandler) or directly transmit the request to the RequestDispatcher component. The number of requests (load) and the percentage of similar requests (deviation) are two parameters defined for the RequestHandler component:1. The CacheHandler component is used only if the number of similar HTTP requests is high.

 Example 5. The following temporal property specifies that after calling up the AddCacheHandler reconfiguration operation, the CacheHandler component is always connected to RequestHandler. In other words, the CacheConnected configuration property from Example 2 holds on all the path after calling up AddCacheHandler:

	always ∃getServer ∈ Interf aces.	Requirer(getServer) = RequestDispatcher ∧∃i ∈ Interf aces.(Binding(i) = getServer)

 RequestAnalyzer handles requests to determine the values of the deviation and load parameters. Logger allows RequestAnalyzer to memorise requests to chose either RequestDispatcher or CacheHandler, if it is available, to answer requests. The "old" RequestHandler component becomes a composite component which encapsulates the new components. Its interfaces remain the same as the interfaces of the old component.

5, and we refine the RequestHandler by two new components: RequestAnalyzer and Logger, to obtain a new refined configuration c R .

Table 1 .

 1 Structural refinement constraints AC Definition 3 (Structural Configuration Refinement). Let c A = Elem A , Rel A and c R = Elem R , Rel R be two configurations, gp the gluing predicate and AC the architectural constraints. The configuration c R refines c A wrt. gp and AC, written

Actually, → is a reconfiguration function because of the architectural model.

These features are common to other formalisms, like action systems refinement[START_REF] Butler | Stepwise refinement of communicating systems[END_REF] or LTL refinement[START_REF] Kesten | Temporal verification of simulation and refinement[END_REF].

Definition 5 (FTPL semantics by preservation). Let S R = C R , C 0 R , R run R , → R , l R and S A = C A , C 0 A , R run A , → A , l A be two reconfiguration models such that S R ρ S A , gp their gluing predicate and ρ their refinement relation. Let σ R be a path of S R , φ A a FTPL property over S A . We define the validity of φ A on σ R by preservation, written σ R |= p φ A , by induction on the form of φ A :

. Now, we prove that FTPL properties are preserved by the reconfiguration refinement defined in Sect. 3.

Theorem 1 (Preservation of a FTPL property on a path). Let S A and S R be two reconfiguration models such that S R ρ S A , gp their gluing predicate. Let φ be a FTPL property. Let σ A ∈ Σ(S A) and σ R ∈ Σ(S R) be two paths. Then we have ∀i, j.(0

Proof (Part of Theo. 1). Let σ R ∈ Σ(S R) be a path refining a path σ A ∈ Σ(S A) (the proof of Proposition 1 ensures that this path exists). Besides, ope R , ope R , . . . ∈ R run R label the transitions of S R , and τ labels each transition introduced during refinement. The proof is done by structural induction on the form of φ; only two cases are given here because of lack of room 6 .

1. Let us prove that ope A normal is preserved by refinement. By hypothesis, σ A (i) |= ope A normal, and so, by Def. 2 we have (i). As by hypothesis σ R (j) ρ σ A (i), by construction there is a path σ A such that σ R (0) refines σ A (0) and where ope A = f c(ope R). Consequently, by Proposition 1 we have (ii). Moreover, it implies that there are two configurations σ R (j) and σ R (l) such that σ R (l) ρ σ(i -1) and σ R (j) ρ σ A (i). There are two cases:

, and immediately we can deduce (iii). Then by Def. 5, σ R |= p ope A normal, and we are done.

), then by Clause (4.2) of Def. 4 we have σ R (l + 1) ρ σ A (i -1), and we can continue with the following configuration of σ R . According to Clauses (4.3) and (4.4) of Def. 4, the reconfigurations labelled by τ cannot take control forever, and the refinement does not introduce deadlocks. So, there is a configuration σ(l + n) such that σ R (l + n) ρ σ A (i -1) and σ R (l + n) ope R → σ R (j). We set l + n = j -1 and consequently we have (iv). Then, by Def. 5, σ R |= p ope A normal.