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Abstract: The paper presents the compliance errors compensation technique for industrial robots, which are used in 

milling manufacturing cells.  under external loading, which is based on the non-linear stiffness model. In 

contrast to previous works, it takes into account the interaction between the milling tool and the workpiece 

that depends on the end-effector position, process parameters and cutting conditions (spindle rotation, feed 

rate, geometry of the tool, etc.). Within the developed technique, the compensation errors caused by external 

loading is based on the non-linear stiffness model and reduces to a proper adjusting of a target trajectory 

that is modified in the off-line mode. The advantages and practical significance of the proposed technique 

are illustrated by an example that deals with milling with Kuka robot.   

 

1 INTRODUCTION 

Currently, robots become more and more popular 
for a variety of technological processes, including 
high-speed precision machining. For this process, 
the robot is subjected by external loading which 
caused by the machining force. This force is gener-
ated by the interaction between the tool mounted on 
the robot end-effector and the workpiece during the 
material removal (Dépincé, 2006). It is a contact 
force and it is distributed along the affected area of 
the tool cutting part. To evaluate the influence and to 
analyze the robot behavior while machining, the cut-
ting force should be defined either experimentally or 
using accurate mathematical model. 

To evaluate the force caused by interaction be-
tween the tool and the workpiece, two approaches 
can be used. The static approach allows computing 
the average cutting force without any consideration 
of dynamic aspect in machining system. This force 
serves as an external loading of the robot. This ap-
proach is widely used in analysis of conventional 
machining processes using CNC machines (Altintas, 

2000), where the stiffness is high. In contrast, robots 
have relatively low structural stiffness. For this rea-
son, in the case of robotic-based machining, an addi-
tional source of dynamic displacements of the end-
effector with respect to the desired trajectory in-
duced by robot compliance may arise. Such behavior 
leads to the variable contact between the machining 
tool and the workpiece. Thus, the generated contact 
force depends on the current position of the robot 
end-effector on the trajectory. Consequently,  the 
cutting force cannot be evaluated correctly using the 
static approach. In this case, the dynamic approach, 
which will be used in the paper, is required. It is 
based on computing of the force at each instant of 
machining process that defines loading of the robot 
for the next instant of processing. As a result, the 
dynamic aspect of robot motion under such variable 
cutting force can be examined for whole process.  

Usually, in the robot-based machining this force 
causes essential deflections that decrease the quality 
of the final product. The problem of the robot error 
compensation can be solved in two ways that differ 
in degree of modification of the robot control soft-
ware:  



 

(a) by modification of the manipulator model, 
which better suits to the real manipulator and is used 
by the robot controller (in simple case, it can be lim-
ited by tuning of the nominal manipulator model, but 
may also involve essential model enhancement by 
introducing additional parameters, if it is allowed by 
a robot manufacturer);  

(b) by modification of the robot control program  
that defines the prescribed trajectory in Cartesian 
space (here, using relevant error model, the input 
trajectory is generated in such way that under the 
loading the output trajectory coincides with the de-
sired one, while input trajectory differs from the tar-
get one).  

Moreover, with regard to the robot-based ma-
chining, there is a solution that does not require 
force/torque measurements or computations (Dé-
pincé, 2006), where the target trajectory for the ro-
bot controller is modified by applying the "mirror" 
technique. An evident advantage of this technique is 
its applicability to the compensation of all types of 
the robot errors, including geometrical and compli-
ance ones. However, this approach requires carrying 
out additional preliminary experiments which are 
quite expensive. So, it is suitable for the large-scale 
production only. Another compensation methodolo-
gy has been proposed by Eastwood and Webb 
(Eastwood, 2010) that was used for gravitational de-
flection compensation for hybrid parallel kinematic 
machines.  

This paper focuses on the modification of control 
program that is considered to be more realistic in 
practice. This approach requires also accurate stiff-
ness model of the manipulator. From point of view 
of stiffness analysis, the external and forces directly 
influence on the manipulator equilibrium configura-
tion and, accordingly, may modify the stiffness 
properties. So, they must be undoubtedly taken into 
account while developing the stiffness model. How-
ever, in most of the related works the Cartesian 
stiffness matrix has been computed for the nominal 
configuration (Chen, 2000; Alici, 2005). Such ap-
proach is suitable for the case of small deflections 
only. For the opposite case, the most important re-
sults have been obtained in (Kövecses, 2007; 
Tyapin, 2009; Pashkevich, 2011), which deal with 
the stiffness analysis of manipulators under the end-
point loading.  

Thus, to compensate errors caused by the ma-
chining process, it is required to have an accurate 
stiffness model and precise cutting force model. In 
contrast to the previous works, the compliance error 
compensation technique presented in this work is 
based on the non-linear stiffness model of the ma-
nipulator (Pashkevich, 2011) and dynamic model of 
technological process that generates the cutting 
force.  

2 PROBLEM STATEMENT 

For the compliance errors, the compensation 
technique must rely on two components. The first of 
them describes distribution of the stiffness properties 
throughout the workspace and is defined by the 
stiffness matrix as a function of the joint coordi-
nates. The second component describes the forc-
es/torques acting on the end-effector while the ma-
nipulator is performing its machining task (manipu-
lator loading).  

The stiffness matrix required for the compliance 
errors compensation highly depends on the robot 
configuration and essentially varies throughout the 
workspace. From general point of view, full-scale 
compensation of the compliance errors requires es-
sential revision of the manipulator model embedded 
in the robot controller. In fact, instead of conven-
tional geometrical model that provides inverse/direct 
coordinate transformations from the joint to Carte-
sian spaces and vice versa, here it is necessary to 
employ the so-called kinetostatic model (Su, 2006). 
It is essentially more complicated than the geometri-
cal model and requires rather intensive computations 
that are presented in Section 3..  

The dynamic behavior of the robot under the 
loading F  caused by technological process can be 
described as 

 
C C C  M δt C δt K δt F  (1) 

where CM  is 6 6  mass matrix that represents the 
global behavior of the robot in terms of natural fre-
quencies, 

CC  is 6 6  damping matrix, 
CK  is 6 6  

Cartesian stiffness matrix of the robot under the ex-
ternal loading F , ,δt δt  and δt  are dynamic dis-
placement, velocity and acceleration of the tool end-
point in a current moment respectively (Briot, 2011).  

In general, the cutting force Fc has a nonlinear 
nature and depends on many factors such as cutting 
conditions, properties of workpiece material and tool 
cutting part, etc (Ritou, 2006). But, for given 
tool/workpiece combination, the force Fc could be 
approximated as a function of an uncut chip thick-
ness h, which represents the desired thickness to cut 
at each instant of machining.  

Hence, to reduce errors caused by cutting forces 
in the robotic-based machining it is required to ob-
tain an accurate elasto-static model of robot and 
elasto-dynamic model of machining process. These 
problems are addressed in the following sections 
taking into account some particularities of the con-
sidered application (robotic-based milling). 

 
 
 



 

3 MANIPULATOR MODEL  

3.1 Elasto-static model 

Elasto-static model of a serial robot is usually de-
fined by its Cartesian stiffness matrix, which should 
be computed in the neighborhood of loaded configu-
ration. Let us propose numerical technique for com-
puting static equilibrium configuration for a general 
type of serial manipulator. Such manipulator may be 
approximated as a set of rigid links and virtual 
joints, which take into account elasto-static proper-
ties (Figure 1). Since the link weight of serial robots 
is not negligible, it is reasonable to decompose it 
into two parts (based on the link mass centre) and 
apply them to the both ends of the link. All this load-
ings will be aggregated in a vector  1... nG G G , 
where 

iG  is the loading applied to the i-th node-
point. Besides, it is assumed that the external load-
ing F  (caused by the interaction of the tool and the 
workpiece) is applied to the robot end-effector. 

...
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Figure 1 VJM model of industrial robot with end-

point and auxiliary loading  

Following the principle of virtual work, the work 
of external forces ,G F  is equal to the work of in-
ternal forces τ  caused by displacement of the vir-
tual springs δθ  

  T T T

θ

1

δ δ δ
n

j j

j

     G t F t τ θ  (2) 

where the virtual displacements δ jt  can be com-
puted from the linearized geometrical model derived 
from 

( )

θδ δ , 1..j

j j n t J θ , which includes the Jaco-
bian matrices  ( )

θ ,j

j  J g q θ θ  with respect to 
the virtual joint coordinates. 

So, expression (2) can be rewritten as 

    T ( ) T ( ) T

θ θ θ

1

δ δ δ
n

j n

j

j

       G J θ F J θ τ θ  (3) 

which has to be satisfied for any variation of δθ . It 
means that the terms regrouping the variables δθ  
have the coefficients equal to zero. Hence the force 
balance equations can be written as  

 
( )T ( )T

θ θ θ

1

n
j n

j

j

   τ J G J F  (4) 

These equations can be re-written in block-
matrix form as 

 (G)T (F)T

θ θ θ   τ J G J F  (5) 

where (F) ( )

θ θ

nJ J , (G) (1) ( )

θ θ θ

T
T T... n   J J J , 

T
T T

1 ... n
   G G G . Finally, taking into account the 

virtual spring reaction 
θ θ τ K θ , where 

 
1 nθ θ θ,...,diagK K K , the desired static equilib-

rium equations can be presented as 

 (G)T (F)T

θ θ θ    J G J F K θ  (6) 

To obtain a relation between the external loading 
F  and internal coordinates of the kinematic chain θ  
corresponding to the static equilibrium, equations (6) 
should be solved either for different given values of 
F  or for different given values of t . Let us solve 
the static equilibrium equations with respect to the 
manipulator configuration θ  and the external load-
ing F  for given end-effector position  t g θ  and 
the function of auxiliary-loadings  G θ  

    (G)T (F)T

θ θ θ ; ;    K θ J G J F t g θ G G θ  (7) 

where the unknown variables are  ,θ F .  
Since usually this system has no analytical solu-

tion, iterative numerical technique can be applied. 
So, the kinematic equations may be linearized in the 
neighborhood of the current configuration 

iθ  

      (F)

θ1 1 ;i i i i i    t g θ J θ θ θ  (8) 

where the subscript 'i' indicates the iteration number 
and the changes in Jacobians (G) (F)

θ θ,J J  and the auxil-
iary loadings G  are assumed to be negligible from 
iteration to iteration. Correspondingly, the static 
equilibrium equations in the neighborhood of 

iθ  
may be rewritten as 

 (G)T (F)T

θ 1θ 1 θi i     J G J F K θ . (9) 

Thus, combining (8), (9) and analytical expres-
sion for 1 (G)T (F)T

θ θ θ( )   θ K J G J F , the unknown 
variables F  and θ can be computed using  follow-
ing iterative scheme  
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 (10) 

The proposed algorithm allows us to compute the 
static equilibrium configuration for the serial robot 
under external loadings applied to any point of the 
manipulator and the loading from the technological 
process. 



 

3.2 Stiffness matrix 

In order to obtain the Cartesian stiffness matrix, let 
us linearize the force-deflection relation in the 
neighborhood of the equilibrium. Following this ap-
proach, two equilibriums that correspond to the ma-
nipulator state variables ( , , )F θ t  and 
( δ , δ , δ )  F F θ θ t t  should be considered simul-
taneously. Here, notations δF , δt  define small in-
crements of the external loading and relevant dis-
placement of the end-point. Finally, the static equi-
librium equations may be written as  

   (G)T (F)T

θ θ θ;     t g θ K θ J G J F  (11) 

and 

 

 

     

   

T
(G) (G)

θ θ θ

T
(F) (F)

θ θ

δ δ

δ δ δ

δ δ

  

     

   

t t g θ θ

K θ θ J J G G

J J F F

 (12) 

where 
θ, , , ,t F G K θ  are assumed to be known.  

After linearization of the function ( )g θ  in the 
neighborhood of the loaded equilibrium, the system 
(11), (12) is reduced to equations 

 

(F)

θ

(G) (G) (F) (F)

θ θ θ θ θ

δ δ

δ δ δ δ δ



    

t J θ

K θ J G J G J F J F
 (13) 

which defines the desired linear relations between 
δt  and δF . In this system, small variations of Jaco-
bians may be expressed via the second order deriva-
tives (F) (F)

θ θθδ δ J H θ , (G) (G)

θ θθδ δ J H θ , where 
(G) 2

θθ 1

2T

jj j

n


  H g G θ , (F

θθ

2) 2 T  H g F θ . 
Also, the auxiliary loading G  may be computed via 
the first order derivatives as δ δ   G G θ θ  

Further, let us introduce additional notation 
(F) (G) (G)T

θθ θθ θθ θ    H H H J G θ , which allows us 
to present system (13) in  the form 

 
(F)

θ
(F)T

θ θ θθ

δ δ

δ

    
          

0 Jt F

0 θJ K H
 (14) 

So, the desired Cartesian stiffness matrices CK  can 
be computed as  

  
1

(F) 1 (F)T

C θ θ θθ θ( )


 K J K H J  (15) 

Below, this expression will be used for compu-
ting of the elasto-static deflections of the robotic 
manipulator. 

 
 
 

3.3 Mass matrix 

To evaluate dynamic behaviour of the robot under 
the loading, in addition to the Cartesian stiffness ma-
trix 

CK  it is required to define the mass matrix 
CM . 

Comprehensive analysis and definition of this matrix 
have been proposed in (Briot, 2011). Here, let us 
summarise the main results that will be used further 
in the error compensation technique. 

Similar to the stiffness matrix, here physical 
properties defined by the mass matrix 

CM  are con-
stant in the joint coordinates 

θ constM  and are 
defined by the mass matrices 

θiM  of all n  links of 
the robot 

θ θ1 θn( ,..., )diagM M M . Assuming that 
link may be approximated by a beam with a constant 
cross-section, the mass matrix 

θiM  can be computed 
as  

 
θ 1 2 3 4 5 6( , , , , , )i diag a a a a a aM  (16) 

where 
1 / 3ia m , 

2 33 /140ia m , 
3 33 /140ia m , 

4 / 3p

i i ia I L , 
5 8 /15y

i i ia I L , 
6 8 /15z

i i ia I L , 

im  is physical mass of i-th link, 
i  is density of i-th 

link, 
iL  is link length, p

iI  is the polar moment, 
,y z

i iI I  are the second moments of the area. Since the 
mass matrix 

θM  is defined in the joint coordinates it 
can be recomputed into the Cartesian coordinates 
associated with the tool end-point using the Jacobian 
matrix 

θJ  (which depend on the robot configuration 
q  and computed with respect to virtual joint coordi-
nates θ ) using following expression 

 
θC θ θ

TM J M J  (17) 

Thus, using expressions (16) and (17) it is possi-
ble to compute the mass matrix 

CM  for a given ro-
bot configuration q . 

4 MACHINING PROCESS 

Let us obtain the model of the cutting force 
which depends on the relative position of the tool 
with respect to the workpiece at each instant of ma-
chining. As follows from previous works (Brissaud, 
2008), for the known chip thickness h, the cutting 
force Fc can be expresses as  

  
 

2

0 , 0
1

s s

c

s

p

h h r h h
F h k a h

h h


 


 (18) 

where pa  is a depth of cut, 0 1r k k   depends 
on the parameters k∞, k0 that define the so called 
stiffness of the cutting process for large and small 
chip thickness h respectively (Figure 2) and hs is a 
specific chip thickness, which depends on the cur-
rent state of the tool cutting edge. The parameters k0, 



 

hs, r are evaluated experimentally for a given com-
bination of tool/working material. To take into ac-
count the possible loss of contact between the tool 
and the workpiece, expression (18) should be sup-
plement by the case of 0h   as  
 

hs

~k∞~k0

Fc

h

Range of h in case 

of conventional 

CNC machining

 

Figure 2 Fractional cutting force model Fc(h) 

 

   0, if 0cF h h   (19) 

For the multi-edge tool the machining surface is 
formed by means of several edges simultaneously. 
The number of working edges varies during machin-
ing and depends on the width of cut. For this reason, 
the total force Fc of such interaction is a superposi-
tion of forces Fc,i generated by each tool edge i, 
which are currently in the contact with the 
workpiece. Besides, the contact force Fc,i can be de-
composed by its radial Fr,i and tangential Ft,i com-
ponents (Figure 3). In accordance with Merchant’s 
model (Merchant, 1945), the t-component of cutting 
force Ft,i can be computed with the equation (18). 
The r-component Fr,i is related with Ft,i by following 
expression (Laporte 2009) 

 
, ,r i r t iF k F  (20) 

where the ratio factor kr depends on the given 
tool/workpiece characteristics. 

It should be mentioned that in robotic machining 
it is more suitable to operate with forces expressed 
in the robot tool frame {x,y,z}. Then, the corre-
sponding components Fx, Fy (Figure 3) of the cutting 
force Fc can be expressed as follows 
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where nz is the number of currently working cutting 
edges, φi is the angular position of the i-th cutting 
edge (the cutting force in z direction Fz is negligible 
here). So, the vector of external loading of the robot 

due to the machining process can be composed in 
the frame {x,y,z} using the defined components Fx, 
Fy as F=[Fx,Fy,0,0,0,0]

T
. 
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Figure 3 Forces of tool/workpiece interaction 
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Figure 4 Meshing of the workpiece area 

 
It should be stressed that the cutting force com-

ponents Fr,i, Ft,i mentioned in equation (18),(20) are 
computed for the given chip thickness hi, which 
should be also evaluated. Let us define model for hi 
using mechanical approach. Then the chip thickness 
hi removed by i-th tooth depends on the angular po-
sition φi of this tooth and it can be evaluated using to 
the geometrical distance between the position of the 
given tooth i and the current machining profile 
(Figure 3). It should be mentioned, that the main is-
sue here is to follow the current relative position be-
tween the i-th tooth and the working material or to 
define whether the i-th tooth is involved in cutting 
for given instant of process. Because of the robot 
dynamic behavior and the regenerative mechanism 
of surface formation (Tlusty, 1981) this problem 
cannot be solved directly using kinematic relations. 



 

In this case it is reasonable to introduce a special 
rectangular grid, which decomposes the workpiece 
area into segments and allows tracking the 
tool/workpiece interaction and the formation of the 
machining profile (Figure 4). 

Here, Steps Δsx, Δsy between grid nodes are con-
stant and depend on the tool geometry, cutting con-
dition and time discretization Δτ. Each node j 
( 1, wj N , Nw is the number of nodes) of the grid 
can be marked as “1” or “0”: “1” corresponds to 
nodes situated in the workpiece area with material 
(rose nodes in Figure 5), “0” corresponds to nodes 
situated in workpiece area that was cut away (white 
nodes in Figure 5). 

In order to define the number of currently cut 
nodes by the i-th tooth, the previous instant of ma-
chining process should be considered. Let us define 
Ai as an amount of working material that is currently 
cut away by the i-th tooth (Figure 5). So, if node j 
marked as “1” is located inside the marked sector 
(green nodes in Figure 5), it changes to “0” and Ai is 
increasing by 

x ys sD D . Analyzing all potential nodes 
and computing Ai, the chip thickness hi, removed at 
given instant of the process by the i-th tooth, can be 
estimated by ,i i ih A R  D  1, zi N . The angle 
Δφi determines the current angular position of the i-
th tooth regarding to its position at the instant τ-Δτ 
and referred to the position of TCP at τ-Δτ. 
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Figure 5 Evaluating the tool/workpiece intersection Ai 

and computing the corresponding chip thickness hi 

 
Described mechanism of chip formation and the 

machining force model (18) allow computing the 
dynamic behavior of the robotic machining process 
where models of robot inertia and stiffness are dis-
cussed in the section 3 of the paper. The detailed al-
gorithm that is used in numerical analysis is present-
ed in Figure 6, where the analysis of the robot dy-
namics is performed in the tool frame with respect to 
the dynamic displacement of the tool δtdyn fixed on 

the robot end-effector around its position on the tra-
jectory.. 
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Figure 6 Algorithm for numerical simulation of 

robotic machining process dynamics 

5 COMPLIANCE ERROR 

COMPENSATION TECHNIQUE 

In industrial robotic controllers, the manipulator mo-
tions are usually generated using the inverse kine-
matic model that allows us to compute the input sig-
nals for actuators 

0ρ  corresponding to the desired 
end-effector location 

0t , which is assigned assum-
ing that the compliance errors are negligible. How-
ever, if the external loading F  is essential, the ki-
nematic control becomes non-applicable because of 
changes in the end-effector location. It can be com-
puted from the non-linear compliance model as 

  1

F 0|f t F t  (22) 

where the subscripts 'F' and '0' refer to the loaded 

and unloaded modes respectively, and ' | ' separates 

arguments and parameters of the function  f . 

Some details concerning this function are given in 

our previous publication (Pashkevich, 2011).  
To compensate this undeterred end-effector dis-

placement from 0t  to Ft , the target point should be 
modified in such a way that, under the loading F , 



 

the end-platform is located in the desired point 
0t . 

This requirement can be expressed using the stiff-
ness model  in the following way 

  (F)

0 0|fF t t  (23) 

where (F)

0t  denotes the modified target location. 
Hence, the problem is reduced to the solution of the 
nonlinear equation (23) for (F)

0t , while F  and 
0t  are 

assumed to be given. It is worth mentioning that this 
equation completely differs from the equation 

0( | )fF t t , where the unknown variable is t . It 
means that here the compliance model does not al-
low us to compute the modified target point (F)

0t  
straightforwardly, while the linear compensation 
technique directly operates with Cartesian compli-
ance matrix (Gong, 2000).  

To solve equation (23) for (F)

0t , similar numerical 
technique can be applied. It yields the following it-
erative scheme 

  (F) (F) 1 (F)

0 0 0 0( | )· f   t t t F t  (24) 

where the prime corresponds to the next iteration, 
(0,1)   is the scalar parameter ensuring the con-

vergence. More detailed presentation of the devel-
oped iterative routines is given in Figure 7. 
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Figure 7 Procedure for compensation of compliance 

errors  

Hence, using the proposed computational tech-
niques, it is possible to compensate a main part 
compliance errors by proper adjusting the reference 
trajectory that is used as an input for robotic control-
ler. In this case, the control is based on the inverse 
kinetostatic model (instead of kinematic one) that 
takes into account both the manipulator geometry 
and elastic properties of its links and joints. Imple-
mentation of developed compliance error compensa-
tion technique presented in Figure 8. 
 

(a) Off-line: modification of the target trajectory

(b) On-line: machining using revised trajectory 
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Figure 8 Implementation of compliance error compensation technique 

 



6 EXPERIMENTAL 

VERIFICATION 

The developed compliance error compensation 
technique has been verified experimentally for ro-
botic milling with  the KUKA KR270 robot along a 
simple trajectory in aluminum workpiece. It is as-
sumed that at the beginning of the technological 
process the robot is in the configuration q  (see Ta-
ble 1 Figure 9). The parameters of the stiffness mod-
el for the considered robot have been identified in 
(Dumas, 2011) and are presented in Table 1. Link 
masses required for the mass matrix of the robot are 
presented also in Table 1. 

Table 1 Initial data for robotic-based milling 

Joint coordinates, [deg] 

q1 q2 q3 q4 q5 q6 

90 -50 120 180 25 180 

Joint compliances, [rad/N m]*10-6 

k1 k2 k3 k4 k5 k6 

0.26 0.15 0.26 1.79 1.52 2.13 

Link masses, [kg] 

m1 m2 m3 m4 m5 m6 

336.8 259.4 85.2 54.5 36.3 18.2 
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Figure 9 Starting pose of the KUKA KR270 robot to 

perform the operation of milling 

For the milling, the cutter with the external di-
ameter D=20 mm and four teeth (Nz=4) distributed 
uniformly over the tool is used. For the given com-
bination of the tool and the workpiece material the 
following parameters correspond to the cutting force 
model defined in (18): k0=

65 10  N/m, 
hs=

51.8 10  m, r=0.1, kr=0.3. 
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Figure 10 Starting relative position of the tool with 

respect to the workpiece  
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Figure 11 Variation of machining force components Fx 

(a) and Fy (b) for whole milling process 

Taking into account that the workpiece has a 
straight borders let us assume that at the instant t=0 
one of the teeth of the tool is in contact with the 
workpiece material as it is shown in the Figure 10. It 
is also assumed that the machining process is per-
forming with the constant feed rate vf=4 m/min (ap-
plied in x-direction of the robot tool frame) and the 
constant spindle rotation Ω=8000 rpm along the 
straight line of 80 mm. Experimental verification 



 

and numerical simulation of the described case of 
the milling process with KUKA KR-270 robot using 
the algorithm shown in Figure 6 allows us to trace 
the evolution of machining force x,y-components for 
the whole process (Figure 11). The corresponding 
dynamic displacement of the tool around its current 
position on the trajectory is shown in Figure 12. 
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Figure 12 Evolution of the tool dynamic displacement 

δtdyn that is composed from xTCP and yTCP components 
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Figure 13 Modified trajectory fy and corresponding feed 

rate vfy in y-direction, computed based on the original 

dynamic displacement of the tool δtdyn 

In accordance with the obtained results the sys-
tem robot/machining process realize complex vibra-
tory motion. The high frequency component of this 
motion (about 700 Hz, Figure 11) is related to the 
spindle rotation and the number of tool teeth Nz. In 
certain cases such behavior can excites the dynamics 
of the robot (natural modes) but this study remains 
out the frame of the presented paper. On the contra-
ry, the low frequency component of robot/tool mo-
tion (about 7 Hz, Figure 12), especially in the y-

direction (that is perpendicular to the applied feed) 
influences directly the quality of final product. Such 
motion is related to the robot compliance and it can 
be compensated using the error compensation tech-
nique described in the paper. Hence, let us form the 
modified trajectory based on the dynamic displace-
ment of the robot end-effector in the y-direction 
(Figure 13): 

It should be stressed that the time step between 
referenced points of this modified trajectory is lim-
ited with the characteristics of the controller used in 
the robot (in the presented case this step is chosen 
0.05 sec). The corresponding feed rate vfy for the 
modified trajectory has been computed. So, this new 
data (feed fy and feed rate vfy) with the data defined 
in the beginning of this section allow us to compen-
sate the trajectory error during machining caused by 
the robot compliance. The resulted compensated tra-
jectory in the y-direction (in time domain) is pre-
sented in Figure 14. 
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Figure 14 Evolution of the dynamic displacement 

obtained after involving the error compensation technique 

into the analysis of robotic milling process 

It should be noted that the part of the trajectory 
while machining tool is engaging into the workpiece 
does not have effect on the quality of final product 
(surface). During this stage the contact area between 
the tool and the workpiece is increasing progressive-
ly. Hence, at each instant of processing the cutter 
corrects the machining profile and eliminates trajec-
tory errors produced during all previous instants. On 
the contrary, during the stage of machining with the 
fully engaged tool the trajectory in x,y-directions 
define directly the final machining profile and this 
part of trajectory is analyzed here (Figure 14). Com-
parison results presented in Figure 12 and Figure 14  
are summarized in Table 2. So after applying error 
compensation technique the static deviation in y di-
rection has been reduced from 0.058 mm to 
0.00014 mm (99.8%). Maximum defilation in the 



 

machining profile has been reduced from 0.063 mm 
to 0.0047 mm (92.6%). Low frequency remained the 
same for both cases.  

Table 2 Milling trajectory accuracy before and after 

compliance error compensation 

Performance measure 
Original  

trajectory 

Modified  

trajectory 

Low frequency,[ Hz] 6.70 6.70 

Static deviation ys, [mm] 58.1e-3 0.14e-3 

Max deviation yMAX, [mm] 63.2e-3 4.70e-3 

 
Hence, obtained results show that the developed 

compliance error compensation allows us signifi-
cantly increase the accuracy of the robotic-based 
machining. 

7 CONCLUSION 

In robotic-based machining, an interaction be-
tween the workpiece and technological tool causes 
essential deflections that significantly decrease the 
manufacturing accuracy. Relevant compliance errors 
highly depend on the manipulator configuration and 
essentially differ throughout the workspace. Their 
influence is especially important for heavy serial ro-
bots. To overcome this difficulty this paper presents 
a new technique for compensation of the compliance 
errors caused by technological process. In contrast to 
previous works, this technique is based on the non-
linear stiffness model and the reduced elasto-
dynamic model of the robotic based milling process. 

The advantages and practical significance of the 
proposed approach are illustrated by milling with of 
KUKA KR270. It is shown that after error compen-
sation technique significantly increase the accuracy 
of milling. In future the proposed technique will be 
integrated in a software toolbox.  
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