
HAL Id: hal-00699997
https://hal.science/hal-00699997v1

Submitted on 22 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relaxing B Sharing Restrictions within CSP||B
Arnaud Lanoix, Olga Kouchnarenko, Samuel Colin, Vincent Poirriez

To cite this version:
Arnaud Lanoix, Olga Kouchnarenko, Samuel Colin, Vincent Poirriez. Relaxing B Sharing Restrictions
within CSP||B. International Conference on Software Composition 2012, May 2012, Prague, Czech
Republic. pp.35-50. �hal-00699997�

https://hal.science/hal-00699997v1
https://hal.archives-ouvertes.fr

Relaxing B Sharing Restrictions within CSP‖B?

Arnaud Lanoix1, Olga Kouchnarenko2, Samuel Colin3, and Vincent Poirriez4

1 LINA CNRS and Nantes University, Nantes, France
arnaud.lanoix@univ-nantes.fr

2 FEMTO-ST CNRS and University of Franche-Comté, Besançon, France
olga.kouchnarenko@univ-fcomte.fr

3 SafeRiver, France
scolin@hivernal.org

4 LAMIH CNRS and University Lille Nord de France, Valenciennes, France
vincent.poirriez@univ-valenciennes.fr

Abstract. This paper addresses the issue of state sharing in CSP‖B
specifications: B machines controlled by various CSP parts are supposed
not to refer to, share or modify the same state space. However, some
kinds of B state sharing can be allowed without creating inconsistencies
in CSP‖B specifications. To achieve this, we present a B-based solution
for allowing architectures with B state sharing in the CSP‖B components.
We show that the inconsistencies in state sharing can be identified by
translating the CSP controllers into B specifications and then using a
more refined consistency checking process. We also hint at possible ex-
tensions towards other CSP‖B architectural patterns with various types
of sub-components sharing.
Keywords: CSP‖B, sharing, architecture, consistency, rely-guarantee

1 Introduction

In this work we address the question of how to safely reuse already-developed B
component models in which there is a common and shared part when developing
a CSP‖B model. The problem of sharing is known to be difficult in the framework
of the B method whereas it is naturally supported by the CSP formalism.

The present work is motivated by an example which arose during the process
of assembling already formally specified and proved components. In the context
of the TACOS project, we modelled a multi-agent system of a convoy [1] while a
complex B model of a location component was also independently designed [2].
Integrating the latter into the former appears to be problematic because the
resulting assembly risks breaking the consistency of the whole vehicle compo-
nent, as state sharing is involved. Machine sharing, like in the location compo-
nent, is not valid at the CSP‖B level. In fact, such an architecture goes against
the general (and well-known) “one controller≡one machine” CSP‖B constraint.
? Work supported by the ANR-06-SETI-017 project: “TACOS: Trustworthy Assem-
bling of Components: frOm requirements to Specification” (http://tacos.loria.
fr).

Moreover, although more recent results allow several controllers to share a B
machine, like in [3], they do not permit to deal with our case study.

Several relevant architectures involve B state sharing which can happen be-
cause of sharing a B machine by other B machines. This is the reason why we
focused primarily on using notions coming from the B setting such as its modu-
larity links. In a nutshell, our approach is about characterising the links between
controllers and machines as seeing or importing links in the B sense. It then
becomes possible to consider the whole CSP part of the system as a single B
machine and to use the B constraints upon this “transformed” system to decide
whether the shared B machines of the system can have their invariants broken
or not.

Unlike [3,4], the novelty of our approach is thus bringing B sharing to the
B level. Indeed, in [4], Evans et.al used CSP controllers ”augmented” with a B
part to perform automatic consistency and non-discrimination checks of CSP‖B
models. In that work, determining which parts of a CSP‖B analysis can be
handled within the B method has been left aside as a future work direction. The
approach advocated in the present paper deals mostly with the B part, hence
it can be viewed as complementary. Those works and ours could thus be used
together to bring state sharing at every level of the CSP‖B formalism. More
precisely, we show how to use the B modularity constraints to allow CSP‖B
models with multiple controllers for a B machine or with a single controller for
multiple, and possibly shared, B machines. We then propose a refined consistency
checking of CSP‖B based on such architectural patterns.
Layout of the paper. Before introducing a platoon example and a part of its
modelling in Section 3, we present the necessary formalisms, concepts and tools
in Sect. 2. Our main contributions are in Sect. 4 and 5. We propose 1) a method—
based on the B modularity—for detecting inconsistent CSP‖B architectures, and
2) a refinement of CSP‖B consistency check requirements based on architectural
patterns. In addition, we propose extensions for addressing the verification of
more complex cases. Finally, conclusions and assessments are drawn in Sect. 6,
combined with related work on state sharing in CSP‖B and B.

2 Concepts and Tools for CSP‖B Components

The B machines specifying components are open modules which interact by
the authorised operation invocations. CSP describes processes, i.e. objects or
entities which exist independently, but may communicate with each other. When
combining CSP and B to develop distributed and concurrent systems, CSP is
used to describe execution orders for invoking the B machines operations and
communications between the CSP processes.

2.1 B Machines

B is a formal software development method used to model and reason about sys-
tems [5]. The B method has proved its strength in industry with the development

of complex real-life applications such as the Roissy VAL [6]. The principle behind
building a B model is the expression of system properties which are always true
after each evolution step of the model, the evolution being specified by the B
operations. The verification of a model correctness is thus akin to verifying the
preservation of these properties, no matter which step of evolution the system
takes.

The B method is based on first-order logic, set theory and relations. A
strength of the B method is its stepwise refinement feature: each refinement
makes a model more deterministic and also more precise by introducing pro-
gramming language-like features, until the code of the operations can actually
be implemented in a programming language.

Let us assume here that the initialisation is a special kind of operation. In
this setting, a B architecture is consistent if the following conditions hold [5,7]:

– Each machine has its invariant preserved by its operations, i.e. the model is
consistent.

– Each refinement or implementation can replace the B machine it refines.

Both items above are semi-local: the proof obligations correspond to a local
reasoning, but the machines can use operations of included or seen machines.
It must then be verified that these operations are correctly used: this is done
implicitly when operation invocations are expanded into their respective bodies.
This ensures that the proof obligation contains a sub-goal for checking that the
invoked operation is indeed called within its precondition.

Support tools such as B4free (http://www.b4free.com) or AtelierB (http:
//www.atelierb.eu) automatically generate Proof Obligations (POs) to ensure
the consistency [5]. Some of them are “obvious” POs which are automatically
discharged whereas the normal POs have to be proved interactively if it was not
done fully automatically.

Modularity in B The B project architecture can be handled through some spe-
cific clauses SEES, INCLUDES and USES that allow a machine to list its seen
machines, included machines or used machines, respectively. The IMPORTS
clause corresponds to INCLUDES for an implementation model. A B architec-
ture must respect somemodularity constraints. For instance, one machine cannot
end up being included or imported twice by two different inclusion paths, as this
could break the invariant. In [8] the modularity constraints in [5] have been
proved to be not strong enough, because intermediate SEES links could hide the
fact that a machine could be modified through refinement. In [7], a modularity
constraint to ensure no invariant breakage and no interference by a machine with
a seen machine through another indirect path, is given:

Theorem 1. (uses; can_alter) ∩ ((imports; s+) ∪ (sees; s∗)) = ∅

with sees being the set of couples (M1,M2) where the implementation of M1

”sees” the machine M2, imports a similar set where the implementation of M1

”imports” M2, s the set where M1 directly ”sees” M2, uses = sees ∪ imports

and can_alter = (uses∗; imports). The ; operator corresponds to the B relation
composition, ∗ to the B reflexive transitive closure, and + to the transitive clo-
sure. No double importation and no violation of the constraint of Theo. 1 ensure
no invariant breakage and no interference by a machine with a seen machine
through another indirect path.

When taking into account all implicit hypotheses about B modularity [7], the
formula can actually be simplified into the following shape: can_alter∩sees = ∅.
We pointed out this modularity constraint because of the role it plays in our
contribution in Sect. 4.

2.2 Communicating Sequential Processes (CSP)

CSP allows the description of entities, called processes, which exist indepen-
dently but may communicate with each other. Thanks to dedicated operators
it is possible to describe a set of processes as a single process, making CSP an
ideal formalism for building a hierarchical composition of components. CSP is
supported by the FDR2 model checker (http://www.fsel.com). This tool is
based on the generation of all the possible states of a model and the verification
of these states against a desired property.

The denotational semantics of CSP is based on the observation of process
behaviours. Three kinds of behaviours [9] are observed and well suited to express
the properties:

– traces, i.e. finite sequences of events, for safety properties;
– stable failures, i.e. traces augmented with a set of unperformable events at

the end thereof, for liveness properties and deadlock-freedom;
– failures/divergences, i.e. stable failures augmented with traces ending in an

infinite loop of internal events, for livelock-freedom.

Each kind of behaviours gives rise to a notion of process refinement defining a
particular semantical framework [9].

2.3 CSP‖B Components

In this section, we sum up the works by Schneider and Treharne on CSP‖B. The
reader interested in theoretical results is referred to [3,10] and the abundant
CSP‖B literature referenced therein; for case studies, see for example [11,12].

Specifying CSP controllers In CSP‖B architecture (as depicted Fig. 1), the
B part is specified as a B machine without any restriction, while the controller
is a CSP process, called a CSP controller, defined by the following subset of the
CSP grammar:

P ::= c ? x ! v → P | ope ! v ? x → P
| b & P | P � P | if b then P else P | S(p)

The process c ? x ! v → P can accept input x and output v along a commu-
nication channel c. Having accepted x, it behaves as P.

Machine channels are introduced in CSP controllers to provide the means for
controllers to synchronise with the B machine: for each B operation x ← ope(v),
there can be a channel ope ! v ? x in the controller corresponding to the opera-
tion call: the output value v from the CSP description corresponds to the input
parameter of the B operation, and the input value x corresponds to the output
of the operation. A controlled B machine can only communicate on the machine
channels of its controller.

Remark 1. CSP‖B components must respect the “one controller≡one machine”
constraint (as shown in Fig. 1): controlled B machines are not allowed to share
states, i.e. they cannot see or import the same machines. Then, the CSP‖B
model necessarily respects the B modularity constraints (Theo 1, Sect. 2.1).

The behaviour of a guarded process b & P depends on the evaluation of the
boolean condition b: if it is true, it behaves as P, otherwise it is unable to perform
any events. In some works (e.g. [10]), the notion of blocking assertion is defined
by using a guarded process on the inputs of a channel to restrict these inputs:
c ? x & E(x) → P.

x<--ope(v)

Q

MQ

c?x!v

P

MP

Fig. 1. CSP‖B compo-
nents

The external choice P1 � P2 is initially prepared
to behave either as P1 or as P2, with the choice made
on the occurrence of the first event. The conditional
choice if b then P1 else P2 behaves as P1 or P2 de-
pending on b. Finally, S(p) expresses a recursive call.
Finally, in addition to the expression of simple pro-
cesses, CSP provides parallel composition operators
to combine them.

Verifying CSP‖B components The main problem
with combined specifications is their consistency: CSP and B parts should not
be contradictory. Let us assume a CSP‖B compound (P‖MP). The verification
process to ensure the consistency of (P‖MP) consists in verifying the following
conditions [10]:

1. Check the consistency of MP with B4Free or Atelier-B for instance,
2. Check the deadlock-freedom (in the stable-failures model) and divergence-

freedom of P with FDR2,
3. Check the divergence-freedom of (P‖MP) (see below),
4. By way of [10, Theorem 5.9] and the fact that P is deadlock-free, the

deadlock-freedom of (P‖MP) in the stable failures model is deduced.

The given results are also generalised in [10] to a collection of B machine-CSP
process couples. The whole CSP‖B architecture must also respect the sharing
constraint recalled Remark 1.

Ensuring the divergence-freedom of CSP‖B components Originally, the
technique for ensuring the divergence-freedom of a controlled machine (P‖MP)

involved the stating of a Control Loop Invariant (CLI) and its verification [13,14].
Fortunately, the above technique has evolved into a more general and less cum-
bersome one. Evans & Treharne [11] have defined a fixed-point rule for deducing
the non-divergence of a controlled machine (P‖MP).

To sum up, the fixed-point rule procedure is based on the satisfaction by
the controller P of a uniform property −−−→every(p)(S)(T), where p is an event
predicate and S, T are states (e.g. predicates expressed in the B set theory):
P sat −−−→every(p)(S)(T). See [11,3] for more details, with a PVS implementation.

That fixed-point rule relates the use of a CLI for verifying the divergence-
freedom of a controller to uniform properties for CSP controllers. The use of
uniform properties for CSP controllers lifts the need for preprocessing as done
earlier with the explicit construction of a CLI, and it generalises the parallel
composition of CSP controllers.

In [3], the authors deduced the divergence-freedom of P‖Q by verifying the
non-interference, i.e. a property which expresses that P does not interfere with
the traces of Q, denoted as non_interference(p, P,Q). Then, they deduced:

Property 1.

If

non_interference(p, P,Q)
∧ non_interference(p,Q, P)
∧ P sat −−−→every(p)(S)(T)
∧ Q sat −−−→every(p)(S)(T)

 then P‖Q sat −−−→every(p)(S)(T)

3 Motivating Case Study

This section presents an example which arose during the process of assembling
already formally specified and proved components. In [1] a convoy, the so-called
platoon, of autonomous vehicles (depicted in Fig. 2) was fully specified and vali-
dated in the framework of the CSP‖B methodology. The behaviour of this system
is described in extenso in [15]. In the context of this paper we are more con-
cerned with the part of the model limited to a single vehicle. Figure 3 illustrates
a single vehicle, one element of the platoon. Its formal study can be found in [1].

speedi
xpos i

speedn
xposn

speed1
xpos1

speedi-1
xpos i-1

Acceleration
ActuatorCommunications

Speed
Sensor

Location
Sensors

Fig. 2. A platoon of autonomous vehicles as a multi-agent system

In figures the conventions are as follows: the rounded boxes depict CSP con-
trollers, whereas the others show B machines, with the plain arrows between
CSP processes or between a CSP controller and a B machine being read-write
links, and dotted arrows being read-only links.

DrivingSystem

CtrlDrivingSystem
(mode)enginesInfo

engineAccel

comIn
com

Ou
thciSpeed hciAccel

Vehicle

CtrlVehicle

setPerceptions()
getInfluences()

locate()
get_speed()
transmitAccel()

Fig. 3. Abstract CSP‖B vehicle

This first CSP‖B speci-
fication was refined in [16].
The resulting more detailed
specification was proved to
refine – in the traces/fail-
ures model of CSP – the
previous specification. In [16]
the refined specification in-
volves several controllers (in-
stead of the only CtrlVehicle
controller) equipped with B

machines. It also contains an abstract model of a location component answering
the locate () B method by determining the geographic position of the physical
vehicle.

In the framework of the TACOS project, more concrete B specifications of
the location component have been independently proposed in [2]: an enhanced
realistic pure B model of the vehicle (with focus on the location problem) was
derived from the requirements specified using the KAOS method [17].

Fig. 4. Enhanced CSP‖B vehicle

One of the introduced safety re-
quirements is that location sensors
would be an assembly of several
so-called raw positioning components
based on different technologies (GPS,
Wifi, GSM, Visual sensors,. . .). Each
raw positioning sensor provides a
chronologically ordered set of loca-
tions. The sets of all components must
be merged. In addition, to (in)validate
the provided data, an actual speed
and acceleration can be used. It allows
keeping only the possible, i.e. consis-
tent, locations, and removing the in-
consistent ones.

Figure 4 displays a simplified
CSP‖B vehicle model enhanced with
the Location component5. In this
model, Actuator_accel and Sensor_speed are separate B machines. This is the
result of differentiating acceleration values as they are passed to the engine and

5 A detailed version of this paper with an appendix depicting a bigger and more
complete version of the case study is available at http://tacos.loria.fr/drupal/
?q=node/83.

acceleration values as they have been effectively applied by the engine. We want to
emphasise the fact that in Fig. 4, some of the CSP controllers share B machines.
For example, CtrlVehicleR and CtrlRaw_location share a view on Raw_location.
Consequently, the consistency of the whole CSP‖B vehicle component risks to
be broken because of state sharing. The question we are interested in is: “Is it
possible to relax CSP‖B restrictions on the architecture of the B part so that we
can indeed realise the needed integration?”

4 B-based State Sharing within CSP‖B

As recalled in Remark 1 (and in Fig. 1), a CSP‖B architecture disallowed any
sharing of B machines. This way, there is no risk for the invariant of the nonex-
istent shared machine to be broken, nor for any machine or controller to suffer
from interferences from an adjacent controller-machine pair. However, Figure 5
shows several relevant architectures involving B state sharing. Machine sharing
can happen because of sharing by other B machines as in (a), (b) and (d) or
because of sharing by several controllers as in (c).

Our goal, as exhibited in Sect. 3, is to relax restrictions on the architecture
of the B part of a CSP‖B model. In this section, we show that it is possible to
express the way the controlled B machines are used by the CSP part in terms of
B modularity links, and to include them in the B modularity checking, to allow
B state sharing in CSP‖B.

More precisely, we are concerned with architectures (a) and (b), with some
considerations about (d): the novelty of our approach is thus bringing B sharing
to the B level. This is the reason why we focused primarily on using notions com-
ing from the B setting such as its modularity links. In a nutshell, our approach
is about characterising the links between controllers and machines as seeing or
importing links in the B sense. It then becomes possible to consider the whole
CSP part of the system as a single B machine and to use the B constraints upon
this transformed system to decide whether the shared B machines of the system
can have their invariants broken or not.

Q

MQ

P

MP

MS

(a)

Q

MQ MP

MS

(b)

Q P

MS

(c)

Q

MQ

P

MP

MS

(d)

read-write link
read only link

Fig. 5. Several architectures depicting the sharing of B machines

4.1 B Modular Characterisation of CSP Control

We want to characterise in B terms, themachine channels, i.e. the CSP-controlled
operations. In [5] Abrial indicates that an operation can be callable, callable in
inquiry or not callable. In the first case, such as for an importation link, the
called operation can modify the state of the imported machine. In the second
case, it cannot: it is the case for a seen machine, whose such inquiry operations
allow an external machine to observe the state of the seen machine. The third
case corresponds to more specific modularity links, such as the USES link.

In modular B terms, the CSP control of a B machine can be viewed as a kind
of INCLUDES or IMPORTS links: the operations triggered by the CSP part of
the system can modify the variables of the controlled machines. A first guideline
would thus be that we would consider CSP‖B “links” as IMPORTS links. We
nonetheless can do a finer analysis: it may be the case that a CSP controller
never modifies the state of its controlled machine but merely passes around the
result of calculations, for instance. We could thus characterise CSP‖B links with
the following definition:

Definition 1. If all the operations of a B machine triggered by its CSP con-
troller are inquiry operations in the B sense, then we say that the CSP controller
SEES its controlled B machine. Otherwise, we will say that the CSP controller
IMPORTS its controlled B machine.

Detecting whether an operation is an inquiry operation is rather straightforward:
it is defined as being an operation not changing the variables of its component
[18, Annex E]. Finding if an operation is an inquiry operation can thus be done
at the syntactic level, by detecting whether the variables of the machines appear
in the left members of the modifying substitutions of the considered operation.

This way we can characterise the CSP controls of the B part in terms of the
modularity of B. Then, we want to express the CSP part of a CSP‖B system as
a B entity, to check the B modularity constraints on the whole CSP‖B system.

4.2 From CSP to B Modularity

It is well-known that a CSP system can be translated into B using results
in [19,20]. We might stop here and use this translation, with adding what is
needed for translating the CSP‖B links. Instead we go further by exploiting the
fact that the verifications to correctly share a B machine are lifted to the ar-
chitecture of the project. Indeed, these verifications can be done through two
B-based steps:

– Verifying that the way the variables and operations are used matches the
kind of modularity link that is used, for each machine. For instance, verifying
that the operations of a seen machine are inquiry operations.

– Verifying that the architecture respects the modularity constraints imposed
by the B method, such as the constraint in Sect. 4.1.

Because we characterised the CSP→B links by means of the IMPORTS or
SEES links depending on what operations the controllers use, we obtain the first
step by virtue of construction. We are left with the second step: the content of
the B machine does not matter for this step. This means that the content of the
CSP system translated into B does not matter either.

Property 2. Let the CSP part be represented by a single B machine, and the links
between CSP controllers and B machines be characterised either as IMPORTS
links or as SEES links. If the resulting system respects the modularity constraints
of B, then no shared machine in the B part of the system can have its invariant
broken.

Proof. (Sketch) (i) Let us assume that the translation from CSP into B is correct.
It is based on the results in [20]. (ii) The interactions between CSP and B parts
can be characterised in terms of the B modularity (see Sect. 4.1).
Consequently, if the whole system expressed in B thanks to (ii) satisfies the
modularity constraints of B given by Theo 1, Sect. 2.1 then, by (i), the CSP‖B
system also satisfies the modularity constraints, and no shared B machine has
its invariant broken. Obviously, the last point only concerns the B part. ut

This property is a direct consequence of lifting all the CSP parts of the system
into a B setting: any B architecture that respects the modularity constraints
ensures this property.

Thanks to our proposals, the process for checking that the B part of a CSP‖B
system with sharing of B machines is consistent becomes as follows:

1. Characterise the links of each controller to its controlled machine in a B
fashion (IMPORTS or SEES).

2. Represent the whole CSP system (with the CSP controllers) as a single B
machine (using csp2b for instance [19,20]) which imports or sees the various
controlled machines, depending on how the links have been characterised.

3. Check the resulting pure B architecture with usual B tools, B4free or Atelier-
B for instance.

Notice that Property2 is a sufficient but not necessary condition. If the tool
checking is successful, then the way the B machine is shared in the whole CSP‖B
system is consistent. If it fails, then the shared machines face a potential invariant
breakage. The example in the next section illustrates this step.

4.3 Application to the Vehicle System

Let us consider again Fig. 4. Let M be the B entity corresponding to the CSP
processes (or controllers): CtrlVehicleR , CtrlActuator_Accel, CtrlSensor_Speed,
CtrlRaw_location and CtrlSensor_xpos. Although there is no direct link between
CtrlVehicleR and CtrlRaw_location, they are still executed in parallel and could
cause invariant breakage in a commonly shared B machine. Let us analyse this.

Let us write the sees and imports sets depicted by Figs 6a and 6b for calcu-
lating whether the architecture respects the B modularity constraints. We kept

{
Sensor_xpos 7→ RealVehicle
Sensor_speed 7→ RealVehicle

Location 7→ Raw_location

}
(a) Initial sees set

Actuator_accel 7→ RealVehicle

CtrlActuator_accel 7→ Actuator_accel
CtrlSensor_speed 7→ Sensor_speed
CtrlSensor_xpos 7→ Sensor_xpos
CtrlRaw_location 7→ Raw_location

CtrlVehicleR 7→ Location

(b) Initial import set

Actuator_accel 7→ RealVehicle

M 7→ Actuator_accel
M 7→ Sensor_speed
M 7→ Sensor_xpos
M 7→ Raw_location
M 7→ Location

(c) Rewritten (sees ∪ imports)∗;
imports set

{
Sensor_xpos 7→ RealVehicle
Sensor_speed 7→ RealVehicle

Location 7→ Raw_location

}
(d) Rewritten sees set

Fig. 6. sees, imports and (sees ∪ imports)∗; imports sets

the names of the differentiated CSP controllers/processes with respect to Fig. 4
instead of using M. The controller→machine links are importation links because
the machines are modified, as they are used for backing up the passed value in
a log. Now after having rewritten the CSP controllers or processes into M, the
final (sees ∪ imports)∗; imports set which contains the possibly, and indirectly,
modified machines is given Fig. 6c. Note that M will never be a target, because
the whole CSP part will always be a source of inclusion/sight towards B ma-
chines. The intersection of the relations in Figs 6d and 6c is empty, hence the
architectural B criterion (Sect. 2.1 and 4.1) is satisfied.

The divergence-freedom of the controlled machines is also respected. Al-
though the code of the machines is not shown here, it is very simple as we
do not make strong assumptions about the passed values at the moment. The
various preconditions of the machines are thus merely for typing the variables.

5 Ensuring Divergence-freedom of Shared B Machines

Control loop invariant checking [14,10] or uniform property verification [3] ensure
that a controlled B machine never diverges, i.e. its operations are never called
outside their preconditions, through the triggering of its operations by the CSP
controller.

Let us consider the architecture of Fig. 5(a): the MS machine is imported
by MP and seen by MQ, which are themselves imported by their respective
controllers P and Q. This architecture is sound with respect to the architectural
constraints of Sect. 4.1, hence MS will not have its invariant broken.

Let us now imagine that an operation opeq of MQ references some variable of
MS in its precondition, e.g. in the shape of xS > 0. The invariant of MQ relies
thus indirectly upon the strict positivity of xS . Let us suppose that checking the

consistency of Q‖MQ does not show any problem. Then, what happens if MP ,
because it includes or imports MS , triggers an operation that makes xs = 0?
Then the precondition of opeq becomes invalid, even though consistency checking
did not exhibit the problem. The problem depicted here is typically a problem of
non-interference, and the consistency checking approach as presented in Sect. 2
is not sufficient.

Let us notice that in [3] the authors encountered a similar problem for related
but different reasons. Their non-interference Property 1 recalled Sec. 2 is used in
a case similar to the architectural case illustrated by Fig. 5(c) because the both
controllers “import” the shared machine, hence can interfere with each another.

Fortunately, it turns out that Property 1 can be simplified in our architectural
case depicted Fig. 5(a). Indeed, we know that the shared machine is effectively
imported only by one controller, because of the B rule stating that a machine
can only be imported once. Hence we know that this shared machine will be
unaffected by all other controllers: they will only ultimately be allowed to refer
to the shared machine through SEES links, hence they can never modify the
shared machine. We thus integrate this specificity in Property 1, leading to:

Property 3. If P is a controller that ends up importing a shared machine (Fig. 5(a)),
and non_interference(p, P,Q)
∧ P sat −−−→every(p)(S)(T)
∧ Q sat −−−→every(p)(S)(T)

 then P‖Q sat −−−→every(p)(S)(T)

As the non-interference property is trivially verified for Q with P thanks to
the knowledge about the architecture of the system, we simply removed it. The
other non-interference properties must be kept: because P imports the shared
machine, it can still have an effect on the other controllers that see the shared
machine.

Proof. (Sketch) Let assume without loss of generality that the whole CSP‖B
system satisfies the modularity constraints (Sect. 4.1). As a consequence, in our
architectural case only P can write intoMS . HenceQ (or other seeing controllers)
can only use non-modifying operations of MS . As a result, Q does not interfere
with the P behaviour. This can be shown (i) by induction on the traces tr—
universally specified in every(p)(S)(T)(tr)—of invocations by P of operations of
the controlled B machinesMP andMS , and (ii) by analysis of the effect ofMS op-
erations called by Q viaMQ: as operations are non-modifying there is no interfer-
ence in this case. On the other hand, because of the non_interference(p, P,Q)
hypothesis, P does not interfere with the Q behaviour, and we are done. ut

Thanks to our proposals, the restriction on state sharing in CSP‖B can be
relaxed as follows. If a CSP‖B system with machine sharing in the B part meets
the following requirements:

– The CSP system viewed as a B entity together with the B part respects
Property 2 (as presented in the previous section)

– The controllers, at least those that involve shared machines, respect Prop-
erty 3

then the CSP‖B system is consistent for the parts sharing B machines. The rest
of the system can be verified e.g. with the techniques of [3].

Discussion about Other Architectural Patterns The solution for intro-
ducing shared B machines in a CSP‖B system also gives clues about other kinds
of architectural evolutions for a CSP‖B system. The “one machine-several con-
trollers” as in Fig. 5(c) is already handled by the consistency definition in [3].
The “one controller-several machines” case illustrated by Fig. 5(b) is conjectured
to be solved by our approach. Assuming that the controller does not contain any
parallel composition, as is the case usually for CSP controllers, then there is no
interference problem. Hence the problem here is strictly reduced to the verifica-
tion of B modular constraints. In case both controlled machines are imported by
the CSP controller, our approach does not allow to decide the (in)consistency of
the shared machine.

We are left with the case of Fig. 5(c) when modifications happen for all
links. In that case, the basic assumptions of B modularity are obviously not
met, hence apart from the full use of consistency checking techniques from [3],
one would have to use an extension of B allowing such modularity links. We can
surmise that the “invariant ownership” approach of [21] or the “rely-guarantee”
approach of [22] would fit. Given that Boulmé concludes that [21, conclusion,
third paragraph] the rely-guarantee approach is more modular, we suggest that
using Büchi’s extension of B as a replacement for classical B would bring what
is needed for such an architectural case. As this extension impacts mostly the
modularity of B and not its core (set theory and substitutions), we think the
changes needed at the level of CSP‖B would be minor.

6 Conclusion

This paper proposed a B-based solution for allowing architectures with B state
sharing in the CSP‖B components. The proposal involved the verification that
the shared B machine has not its invariant broken, and that the introduction of
sharing does not disturb the components. As the first verification is rooted to
B semantics, we proposed a verification methodology based on the fact that the
CSP parts of the system can be viewed as a single B machine. We thus were
left with characterising the links between CSP controllers and B machines as B
modularity links. We have shown that the verification could thus be reduced to
check that the B modularity constraints are satisfied.

The second verification involved problems of interference between controllers.
We adapted and simplified the solution proposed by Evans & Treharne [3] for
verifying the non-interference of controllers. We exploit the additional knowledge
given by modularity links at the B level to naturally deduce non-interference
properties from the modularity links.

Related Work Addressing Sharing in B and CSP‖B Let us now compare
this approach to similar approaches applied to CSP‖B or B alone (see Sect. 4).

On the one hand, the architecture of Fig. 5(c) was first introduced in [3],
thanks to the use of uniform properties for deciding machine consistency. The
reason was that the use of rely-guarantee properties when analysing the con-
sistency of a controlled machine allowed one controller keeping track of what
the other controller could change or not in the machine. In [4], Evans et.al used
CSP controllers ”augmented” with a B part to perform automatic consistency
and non-discrimination checks of CSP‖B models of information systems. Our
approach deals mostly with the B part, hence it can be viewed as complemen-
tary. Those works and ours could thus be used together to bring state sharing
at every level of the CSP‖B formalism.

On the other hand, several works on the B formalism proposed tightened
modularity constraints for ensuring the absence of inconsistency or extending the
formalism for allowing some useful kinds of sharing. The already mentioned in
Sect. 2.1 works in [8,7] are still situated in the single-writer paradigm. Assuming
the CSP controllers can be viewed as a single B entity, the modularity constraints
would allow the architectures (a) and (b) of Fig. 5, because of the clear separation
of the seeing (read-only) paths and the importing (read-write) paths. These
tightened modularity constraints were quickly integrated into the B commercial
tools.

A few works have attempted to deal with the multiple-writer paradigm within
the B method. Boulmé and Potet [21] proposed an approach inspired by a similar
technique of Spec#, where a developer can mark at what places a shared object
(hence, for B, a shared machine) can have its invariant broken. This allows
having a broader set of architectures for B but the drawback is a greater number
of proof obligations. This approach has no tool support we are aware of.

Büchi and Back [22] proposed changing the B modularity mechanisms to al-
low for multiple writers in a rely-guarantee fashion. B machines become equipped
with contracts, each describing several roles. Each contract corresponds to a way
of sharing the machine, with all roles corresponding to a way of invoking the op-
erations of the shared machine. In our opinion, only a combination of CSP with
Büchi’s B along with the use of uniform properties could deal with the architec-
ture of Fig. 5(d), because of multiple-writers at the B level and the danger of
interferences at the CSP controllers level.

Butler [19] proposed a way of translating CSP systems into action systems,
which was later adapted to the B method [20]. The translation keeps the seman-
tics of the CSP operators (sequence, parallel, interleaving) with the additional
following constraints: interleaving can only happen at the outermost level and
another constraint relevant to the use of so-called conjoined B machines, which
is a peculiarity of csp2b that we do not use. Finally, viewing the CSP part of a
CSP‖B system as a B entity is possible.

Finally, Event-B—an event-based variant of the classical B—does not pro-
vide sharing mechanisms, but some extensions propose sharing solutions to aug-
ment the scalability of Event-B: parallel (de-)compoition of events/machines and

their refinement [23], or modularization like in [24]. In addition, let us note that
CSP‖Event-B systems have recently been studied wrt. modularity and refine-
ment [25,26]: the deadlock-freeness is ensured under some conditions, and the
combined specification refinement guarantees the CSP trace refinement but not
the failure refinement.

Perspectives Our proposal allows the relaxation of some constraints upon B
machines in a CSP‖B system allowing more flexibility with choosing specification
architectures. From there, we conjecture that most architectural patterns can be
solved with a combination of our solution and the consistency checking rules
of [3]. We think at this point that, for addressing the multiple-writers problem
at both the level of CSP‖B and B, one would need using another extension
of B allowing such a paradigm. A version of B extended with rely-guarantee
contracts [22] seems to be a good candidate.

Longer-term perspectives include the study of CSP‖B component refine-
ments adapted to our problem. Preliminary studies of recent advances in this
domain [27] imply that the kind of refinement we seek would be different because
of a more complex evolution of the B part through the design. Other interesting
perspectives would involve the adaptation of the consistency rules of [3] from
PVS to ProB—an animator and model checker for the B method [28], or to a
library for the B method in Coq [29], as the affinity of Coq with fixed-point
reasoning could help in the verification of uniform properties.

References

1. Colin, S., Lanoix, A., Kouchnarenko, O., Souquières, J.: Towards Validating a Pla-
toon of Cristal Vehicles using CSP‖B. In: 12th Int. Conf. on Algebraic Methodology
and Software Technology (AMAST 2008). Number 5140 in LNCS, Springer-Verlag
(2008) 139–144

2. Laleau, R., Semmak, F., Matoussi, A., Petit, D., Hammad, A., Tatibouet, B.:
A first attempt to combine sysml requirements diagrams and b. Innovations in
Systems and Software Engineering 6 (2010) 47–54

3. Evans, N., Treharne, H.: Interactive tool support for CSP || B consistency checking.
Formal Aspects of Computing 19(3) (2007) 277–302

4. Evans, N., Treharne, H., Laleau, R., Frappier, M.: Applying csp || b to information
systems. Software and System Modeling 7(1) (2008) 85–102

5. Abrial, J.R.: The B Book - Assigning Programs to Meanings. Cambridge University
Press (1996)

6. Badeau, F., Amelot, A.: Using B as a high level programming language in an
industrial project: Roissy VAL. In: ZB 2005: Formal Specification and Development
in Z and B, 4th International Conference of B and Z Users. Volume 3455 of LNCS.,
Springer-Verlag (2005) 334–354

7. Rouzaud, Y.: Interpreting the B-method in the refinement calculus. In: FM’99:
World Congress on Formal Methods. Volume 1709 of LNCS., Springer-Verlag
(1999) 411–430

8. Potet, M.L., Rouzaud, Y.: Composition and refinement in the B method. In: B’98
: The 2nd Int. B Conference. (1998) 46–65

9. Roscoe, A.W.: The theory and Practice of Concurrency. Prentice Hall (1997)
10. Schneider, S.A., Treharne, H.E.: CSP theorems for communicating B machines.

Formal Aspects of Computing, Special issue of IFM’04 (2005)
11. Evans, N., Treharne, H.E.: Investigating a file transfer protocol using CSP and B.

Software and Systems Modelling Journal 4 (2005) 258–276
12. Schneider, S., Cavalcanti, A., Treharne, H., Woodcock, J.: A layered behavioural

model of platelets. In: 11th IEEE Int. Conf. on Engieerging of Complex Computer
Systems, ICECCS. (2006)

13. Treharne, H., Schneider, S.: Using a process algebra to control B OPERATIONS.
In: 1st Int. Conf. on Integrated Formal Methods (IFM’99), York, Springer Verlag
(1999) 437–457

14. Schneider, S., Treharne, H.: Communicating B machines. In: Formal specification
and development in Z and B (ZB 2002). Volume 2272 of LNCS., Springer Verlag
(2002) 416–435

15. Lanoix, A.: Event-B specification of a situated multi-agent system: Study of a
platoon of vehicles. In: 2nd IFIP/IEEE International Symposium on Theoretical
Aspects of Software Engineering (TASE), IEEE Computer Society (2008) 297–304

16. Colin, S., Lanoix, A., Kouchnarenko, O., Souquières, J.: Using CSP‖B Compo-
nents: Application to a Platoon of Vehicles. In: 13th Int. ERCIM Wokshop on
Formal Methods for Industrial Critical Systems (FMICS 2008). Number 5596 in
LNCS, Springer-Verlag (2009) 103–118

17. van Lamsweerde, A.: Goal-driven requirements engineering: the KAOS approach
(2009) http://www.info.ucl.ac.be/~avl/ReqEng.html.

18. Clearsy: B language reference manual. (2007) v1.8.6.
19. Butler, M.J.: A CSP Approach To Action Systems. PhD thesis, Oxford (1992)
20. Butler, M.: CSP2B : A practical approach to combining CSP and B. In: FM’99:

Congress on Formal Methods. Volume 1709 of LNCS., Springer-Verlag (1999) 490–
508

21. Boulmé, S., Potet, M.L.: Interpreting invariant composition in the B method using
the spec# ownership relation: A way to explain and relax B restrictions. In: The
7th Int.l B Conf. Volume 4355 of LNCS., Springer (2007) 4–18

22. Büchi, M., Back, R.: Compositional symmetric sharing in B. In: FM’99: Congress
on Formal Methods. Volume 1709 of LNCS., Springer-Verlag (1999) 431–451

23. Butler, M.: Decomposition structures for Event-B. In: Integrated Formal Methods,
7th Int. Conf., IFM 2009. Volume 5423 of LNCS., Springer (2009) 20–38

24. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic, D.,
Latvala, T.: Supporting reuse in Event B development: Modularisation approach.
In: Proceedings of ABZ 2010. Volume 5977 of LNCS., Springer (2010)

25. Schneider, S., Treharne, H., Wehrheim, H.: A CSP approach to control in Event-
B. In: Integrated Formal Methods. Volume 6396 of Lecture Notes in Computer
Science. Springer (2010) 260–274

26. Schneider, S., Treharne, H., Wehrheim, H.: Bounded retransmission in Event-
B||CSP: a case study. Electronic Notes in Theoretical Computer Science 280
(2011) 69 – 80 Proceedings of the B 2011 Workshop.

27. Schneider, S., Treharne, H.: Changing system interfaces consistently: A new re-
finement strategy for CSP||B. Science of Computer Programming 76(10) (2011)
837 – 860

28. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Proc. 12th Int. Conf.
FME’2003, Italy. LNCS, Springer-Verlag (2003) 855

29. Colin, S., Mariano, G.: BiCoax, a proof tool traceable to the BBook. In: From
Research to Teaching Formal Methods - The B Method (TFM B’2009). (2009)

