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The study of the polarization dynamics of two counterpropagating beams in optical fibers has recently been the
subject of a growing renewed interest, from both the theoretical and experimental points of view. This system
exhibits a phenomenon of polarization attraction, which can be used to achieve a complete polarization of an
initially unpolarized signal beam, almost without any loss of energy. Along the sameway, an arbitrary polarization
state of the signal beam can be controlled and converted into any other desired state of polarization, by adjusting
the polarization state of the counterpropagating pump beam. These properties have been demonstrated in various
different types of optical fibers, i.e., isotropic fibers, spun fibers, and telecommunication optical fibers. This article
is aimed at providing a rather complete understanding of this phenomenon of polarization attraction on the
basis of newmathematical techniques recently developed for the study of Hamiltonian singularities. In particular,
we show the essential role that play the peculiar topological properties of singular tori in the process of polariza-
tion attraction. We provide here a pedagogical introduction to this geometric approach of Hamiltonian singula-
rities and give a unified description of the polarization attraction phenomenon in various types of optical fiber
systems. © 2012 Optical Society of America

OCIS codes: 190.4370, 060.4370, 190.0190.

1. INTRODUCTION

Achieving the repolarization of an optical field without loss is

a fundamental physical phenomenon that can find a large vari-

ety of applications in telecommunication optical systems. In

2000, Heebner et al. proposed a “universal polarizer” perform-

ing polarization of unpolarized light with 100% efficiency, in

contrast with conventional polarizers that unavoidably waste

50% of unpolarized light [1]. By using a photorefractive two-

beam coupling, it was shown in Ref. [1] that unpolarized light

can be converted to a polarized state with essentially a unit

efficiency. This phenomenon has been termed “lossless polar-

ization attraction,” in the sense that all input polarization con-

figurations are transformed into a particular polarization

state, without any loss of energy. This kind of polarization at-

traction has been also identified in different nonlinear systems

[2] and, in particular, in an optical fiber system pumped by two

counterpropagating beams [3]. This latter phenomenon has

been the subject of a growing interest these last years, from

both the theoretical [4–12] and experimental [3,13–16] points

of view. It finds its origin in pioneering studies of polarization

dynamics of optical beams that counterpropagate in optical

fibers and whose nonlinear interaction is mediated by the Kerr

effect [17–27].

The recent works on polarization attraction in optical fibers

reveal that the signal wave can be attracted toward a particu-

lar state of polarization (SOP) via a suitable choice of the

injected SOP of the counterpropagating pump beam. An effi-

cient polarization attraction has been shown to occur in dif-

ferent types of optical fibers, such as isotropic fibers (IFs)

[3,5,6,13], highly birefringent spun fibers (HBSF) [8,11], as

well as randomly birefringent fibers (RBFs) used in optical

telecommunication systems [9,11,14]. It is important to note

that these phenomena of polarization attraction exhibit differ-

ent properties that depend on the characteristics of the con-

sidered optical fiber. More precisely, when one considers

IFs and RBFs, polarization attraction can take place either

on a specific SOP, or on an ensemble of distinct SOPs

[6,11]. On the other hand, in HBSFs, the attraction process

has been recently shown to also occur on a specific line of

polarization states that lie on the surface of the Poincaré

sphere [11]. This remarkable and unexpected result is illu-

strated in Fig. 1. We considered here 64 different input states

of polarization of the signal uniformly distributed over the

Poincaré sphere (green points), while the SOP of the counter-

propagating pump is kept fixed at the fiber output (yellow

point). We see that all SOPs of the signal are attracted toward

a specific line of polarization states at the fiber output

(red points).

So far, most of the theoretical works aimed at describing

this process of polarization attraction have focused on the de-

rivation of the equations governing the evolution of the coun-

terpropagating beams in different types of optical fibers, as

well as on intensive numerical simulations of their spatiotem-

poral dynamics. However, little has been done in order to

provide a theoretical description of the phenomenon of polar-

ization attraction. Our aim in this article is to make a step

in this direction by introducing a new set of tools that find

their origin in recently developed mathematical techniques, in

particular for the study of Hamiltonian singularities [28,29].

We have successfully used this mathematical approach in

Refs. [5,6] to study polarization attraction in IFs. We have

recently extended this work to the polarization control in

HBSFs and RBFs, the latter ones being used in optical
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telecommunication systems [11]. In this article we provide a

unified geometrical description of these phenomena of polar-

ization attraction. In particular, we show the essential role

that the peculiar topological properties of singular tori play

in the process of polarization attraction. This role is similar

to the one played by the separatrix in purely one-dimensional

systems [30]. We remark that the existence of these singular

structures had been essentially ignored in the physics litera-

ture until their recent introduction in the domain of atomic

and molecular systems [29,31,32]. The aim of the present ar-

ticle is to render these new mathematical tools accessible to a

broad audience in the context of nonlinear optics. In this

respect, this paper can also be viewed as a pedagogical intro-

duction to this geometric approach of Hamiltonian singulari-

ties, which may subsequently h2elp the interested reader to

enter into a more specialized literature of Hamiltonian

dynamics [28,29,33].

The paper is organized as follows. In Sec. 2, we study the

Hamiltonian structure of the stationary states of the spatio-

temporal equations of wave propagation in nonlinear optics.

In particular, we show that the corresponding Hamiltonian

dynamics is integrable for the three different examples of

optical fibers considered in this article. Section 3 is devoted

to the derivation of the properties of the different singular

tori, which allow a geometrical description of the station-

ary states. We show that the existence and the position of

these singularities crucially depend on the characteristics

of the optical fiber. In Sec. 4, we present the phenomenon

of polarization attraction and the key role played by the

singular tori. Some conclusions and discussions are pre-

sented in Sec. 5. Finally, considering the example of IFs,

we show in the Appendix how a stationary soliton solution

can be explicitly determined on the surface of a singular

torus.

2. INTEGRABLE HAMILTONIAN ON THE
SPHERE

The aim of this section is to introduce the specific Hamiltonian

structure required to describe the stationary solutions of

the phenomenon of polarization attraction in optical fibers.

Before entering into the details, we underline that this math-

ematical approach is based on the following observation.

Numerical simulations have revealed that, under rather gen-

eral conditions, the spatiotemporal dynamics of the counter-

propagating optical beams relaxes, after a complex transient,

toward a stationary state. The theoretical approach discussed

in this article provides a geometrical study of these stationary

states. It reveals that they lie in the neighborhood of a singular

torus of the corresponding phase-space representation. We

shall see that it is the peculiar topological property inherent

to the singular torus that enables a complete control of the

polarization process.

The Hamiltonian formalism in a flat phase space (such as

R
2) is well known and has been widely employed in nonlinear

optics in a large variety of systems. However, here the phase-

space representation of the dynamics of polarization is the

Poincaré sphere, which refers to the nonstandard phase space

S2 × S2, i.e., a given point in this phase space corresponds to

two vectors, ~S and ~J on the signal and pump Poincaré spheres.

We have thus to adapt the conventional Hamiltonian formal-

ism used in a flat phase space so as to use it with a spherical

geometry.

The equations governing the polarization dynamics of the

counterpropagating beams can be written in the following

general form [8,9,27]:

(

∂~S
∂t
� ∂~S

∂ξ
� ~S × �I s

~S� � ~S × �I i
~J�

∂~J
∂t −

∂~J
∂ξ � ~J × �I s

~J� � ~J × �I i
~S�

; �1�

where ξ is the spatial coordinate along the fiber. The Stokes

vectors ~S � �Sx; Sy; Sz� and ~J � �Jx; Jy; Jz� describe, respec-
tively, the polarization states of the forward and backward

beams on the Poincaré sphere and “×” denotes the vector pro-

duct. The matrices I s and I i are diagonal and their coeffi-

cients depend on the type of fibers considered [8,9]. The

radii of the forward and backward spheres, S0 and J0, are

the signal and pump powers, which are conserved quantities

of the spatiotemporal dynamics. For convenience, we normal-

ized the problem with respect to the characteristic nonlinear

time τ0 � 1∕�γJ0� and length Λ0 � vτ0, where γ is the non-

linear Kerr coefficient and v the group-velocity of light in

the optical fiber.

The introduction of the cylindrical coordinates

8

>

>

<

>

>

:

Sx �
���������������

S2
0 − I2f

q

cos φf

Sy �
���������������

S2
0 − I2f

q

sin φf

Sz � If

and

8

>

>

<

>

>

:

Jx �
���������������

J2
0 − I2b

q

cos φb

Jy �
���������������

J2
0 − I2b

q

sin φb

Jz � −Ib

allows us to define the standard Hamiltonian structure that

makes use of the conventional Poisson brackets defined by

fg1; g2g �
X

i�f ;b

∂g1
∂φi

∂g2
∂Ii

−
∂g1
∂Ii

∂g2
∂φi

:

Fig. 1. (Color online) Polarization attraction toward a continuous
line of polarization states in HSBFs. The attraction effect is demon-
strated by integrating numerically the spatiotemporal Eq. (1) on
the Poincaré sphere for φ � π∕4. The green and red dots denote re-
spectively the initial (~S�0�) and final (~S�L�) SOPs of the signal. The
yellow dot represents the SOP of the pump, which is kept fixed at
the fiber output: ~J�L� � �0; 1; 0� for a fiber length L � 5. The blue line
is calculated analytically in Sec. 4. Note that the dashed part corre-
sponds to unstable solutions that cannot be reached by the spatiotem-
poral dynamics.
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With this definition we have the following relations, fIb; If g �
fφb;φf g � 0 and fφf ; Ibg � δbf . In these coordinates the dy-

namics can be described by the usual Hamiltonian structure

with a function H�Ib;φb; If ;φf � and the well-known Hamilton

equations where ξ plays here the role of time of the classical

dynamical system:

∂ξIb;f � fIb;f ; Hg � − ∂H
∂φb;f

∂ξφb;f � fφb;f ; Hg � ∂H
∂Ib;f

. �2�

However, these cylindrical coordinates are not globally de-

fined, in the sense that when the polarization is circular, i.e.,

when I2f (respectively I
2
b) is equal to S2

0 (respectively J
2
0), then

the angle φf (respectively φb) is not defined. It turns out that

the Stokes variables on the Poincaré sphere are globally de-

fined variables. The Poisson brackets can be expressed in the

Stokes coordinates in the following form:

fSx; Syg �
∂Sx

∂φf

∂Sy

∂If
−
∂Sx

∂If
∂Sy

∂φf

� Sz

…

fJx; Jyg �
∂Jx

∂φb

∂Jy

∂Ib
−
∂Jx

∂Ib
∂Jy

∂φb

� −Jz;

and we obtain by a circular permutation of the indices, the

relations fSi; Sjg � εijkSk and fJi; J jg � −εijkJk, εijk being

the completely antisymmetric tensor, i.e., it changes sign un-

der the exchange of any pair of indices. Note that the minus

sign in the ~J- equation is due to the counterpropagation of the

two waves. These expressions of the Poisson brackets

on the sphere in the Stokes coordinates are valid for any

point of the sphere, which is not the case for the cylindrical

coordinates.

The corresponding expression of the Hamiltonian also

needs to be determined in the Stokes coordinates. We recall

that, for a given Hamiltonian H�~S; ~J�, the dynamics of any

functional (polynomial) G�~S; ~J� is given by ∂ξG � fG;Hg.
Accordingly, the stationary system associated to Eq. (1) has

the form

dSi

dξ
� fSi; Hg and

dJi

dξ
� fJi; Hg: (3)

A constant of motion K is independent of the time coordinate

ξ and is therefore characterized by the fact that it Poisson

commutes with the Hamiltonian, i.e., fK;Hg � 0. From

Eq. (3) and the above definition of the Poisson brackets

on the sphere, it is straightforward to check that the

Hamiltonian

H � −~S:I i
~J −

1

2
�~S:I s

~S � ~J:Is
~J� (4)

describes the stationary system of Eq. (1). We will now apply

this formalism to three different models: the IF, the RBF, and

the HBSF models.

Isotropic fiber. The diagonal matrices read I s �
diag�−1;−1; 0� and I i � diag�−2;−2; 0�. The stationary system
is given by

8

<

:

∂ξSx � SzSy � 2SzJy

∂ξSy � −SzSx − 2SzJx

∂ξSz � 2JxSy − 2SxJy

and

8

<

:

∂ξJx � −JzJy − 2JzSy

∂ξJy � JzJx � 2JzSx

∂ξJz � 2JxSy − 2SxJy

.

Up to an additive constant, the Hamiltonian thus takes the

form

H � 2�SyJy � SxJx� −
1

2
�S2

z � J2
z�; (5)

and we also remark that K � Sz − Jz is a constant of motion

since fH;Kg � 0.

Randomly birefringent fiber. The diagonal matrices read

I s � 0 and I i � diag�−1; 1;−1� [9]. The stationary system can

be written as

8

<

:

∂ξSx � −SyJz − SzJy

∂ξSy � −JxSz � SxJz

∂ξSz � JySx � SyJx

and

8

<

:

∂ξJx � SyJz � JySz

∂ξJy � JzSx − SzJx

∂ξJz � −JySx − JxSy

.

The Hamiltonian becomes

H � SxJx − SyJy � SzJz; (6)

and it Poisson commutes with the three constants of motion

K1 � Sx � Jx, K2 � Sy − Jy, and K3 � Sz � Jz.

Highly birefringent spun fiber. The diagonal matrices read

I s � diag�0; 0; β� and I i � αdiag�1;−1;−2�, where α � cos2 φ,

β � 2 sin2 φ − cos2 φ, and φ is the ellipticity of the fiber [8]. The

stationary system reads

8

<

:

∂ξSx � α�SzJy − 2SyJz� � βSySz

∂ξSy � α�SzJx � 2SxJz� − βSxSz

∂ξSz � −α�JySx � SyJx�

and

8

<

:

∂ξJx � α�2SzJy − SyJz� − βJyJz

∂ξJy � −α�2SzJx � SxJz� � βJxJz

∂ξJz � α�JySx � JxSy�;

leading to the Hamiltonian

H � α�SyJy − SxJx � 2SzJz� −
β

2
�S2

z � J2
z� (7)

that Poisson commutes with K � Sz � Jz.

These three models are Liouville-integrable [34], i.e., they

possess at least as many invariants as the dimension of the

phase space divided by two. In our study the phase space
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is S2 × S2, which is described locally by �If ;φf ; Ib;φb�, and
each model discussed here above has at least two invariants,

H and K . One of the important consequences of the integrabil-

ity is the fact that the dynamics curls around a torus in the

phase space. This means that there exists a set of action-angle

coordinates �J;ψ ; K; χ� such that the two actions are constant

on the corresponding torus and the dynamics is described

only by the two angles �ψ ; χ�. In these coordinates, the two

actions are associated to the two radii of a torus and the

two angles to the angles needed to describe a trajectory on

the surface of the torus. This torus can be either regular or

singular, as illustrated in Fig. 2. The regular torus generically

leads to an oscillating behavior of the dynamics, while the sin-

gular torus describes more specific trajectories that exhibit

a “monotonous” behavior. In this respect a singular torus

can be regarded as a two-dimensional generalization of the

well-known separatrix in purely one-dimensional systems.

The singular tori play a key role in the phenomenon of

polarization attraction and the next section is devoted to their

characterization.

3. CONSTRUCTION OF THE SINGULAR
TORI

In order to study the Hamiltonian systems established in the

previous section, we introduce here the singular reduction

technique. Its objective is to reduce the number of dimensions

of the system by using the constant of motion K , which gives

information on the nature of the singularities of the system. As

we will see, this analysis provides all the material required to

understand the polarization attraction phenomenon in the dif-

ferent types of optical fiber systems. A simple introduction to

the reduction theory is presented below. We refer the reader

to more specialized mathematical books for a more rigorous

mathematical presentation of the theory [28].

In simple terms, the reduction theory can be viewed as a

change of variables that exploits the constant of the motion

K to reduce the dimensionality of the problem. The lower di-

mensional phase space obtained by the reduction theory will

be called reduced phase space. We reported in Fig. 3 a sche-

matic representation of the original phase space S2 × S2 and of

the reduced phase space. The new variables of the reduced

phase space need to be defined globally and in a way as simple

as possible. This explains why we first reduce the dimension

of the system with respect to the constant K , which has a sim-

pler form than H. The new coordinates have, by definition, a

dynamic that belongs to a given K -invariant subspace, which

means that they should Poisson commute with K . These co-

ordinates called invariant polynomials are denoted by

�x0; x1; x2; x3�. Note that, in general, such coordinates are

not constants for theH dynamics, but only for theK dynamics

defined by

dSi

dz
� fSi; Kg and

dJi

dz
� fJi; Kg; (8)

which is just another way to express the fact that they Poisson

commute with K . The dynamical system defined by Eq. (8) is

different from the physical system of interest. We may just

consider it as a procedure to visualize the influence of the con-

stant of motion K on the dynamics.

Isotropic fiber. Let us begin to illustrate the reduction tech-

nique with the example of the IF system. Equation (8) and

the constant of motion K � Sz − Jz lead to the differential

system

8

>

<

>

:

_Sy � Sx

_Sx � −Sy

_Sz � 0

;

8

>

<

>

:

_Jy � Jx

_Jx � −Jy

_Jz � 0

: (9)

Fig. 2. (Color online) Examples of tori of an integrable Hamiltonian
phase space of dimension four. A system can freely oscillate around a
regular (standard) torus (a), but its evolution can also be blocked by
the presence of a pinched point in a singly (b) or doubly (c) pinched
torus. The singular pinched tori can be viewed as a two-dimensional
generalization of the concept of separatrix, well-known for systems
with 1 degree of freedom. A bitorus and a curled torus are represented
in (d) and (e). They can be constructed by gluing two regular tori
along a circle, with an additional twist in the case of a curled torus.

Fig. 3. (Color online) Schematic illustration of the reduction pro-
cess, which maps the main phase space, i.e., the two Poincaré
spheres, S2 × S2, toward the reduced phase space, which has the form
of a deformed sphere with two conical singularities. The reduced
phase space is defined by Eq. (10) for the IF and Eq. (13) for the
RBF and HBSF.

562 J. Opt. Soc. Am. B / Vol. 29, No. 4 / April 2012 Assémat et al.



These equations simply describe circles in the main phase

space: they correspond to a simultaneous rotation of ~S and ~J

around the z axis with the same angular velocity. The idea of

the reduction theory is to get rid of this trivial circular dy-

namic by projecting it to a point in the reduced phase space,

as illustrated in Fig. 3 and Fig. 5. In order to determine the

coordinates of the reduced phase space, we have to consider

variables that are invariant under Eq. (9), i.e., such that they

Poisson commute with K . It can be shown that the reduced

phase space can be expressed in terms of four coordinates

�x0; x1; x2; x3� with a relation between them, which leads,

as expected, to a three-dimensional space. K being the Hamil-

tonian of the system (9), it can be chosen as one of the invar-

iant polynomials, x0. The other three can be found by

analyzing Eq. (9). It is straightforward to check that a possible

set of invariant polynomials is

8

>

>

<

>

>

:

x0 � K � Sz − Jz

x1 � Sz � Jz

x2 � ~S:~J
x3 � SxJy − SyJx

:

The new coordinates obey the relation

x23 �
�

x2 �
1

4
�x20 − x21�2

�

2

−

�

S2
0 −

1

4
�x0 � x1�2

��

J2
0 −

1

4
�x0 − x1�2

�

� 0; (10)

with the constraint −S0 − J0 ≤ x1 ≤ S0 � J0, which simply ori-

ginates in the definitions of the Stokes coordinates. It can be

shown that the variables �x0; x1; x2; x3� constitute a basis

for the set of polynomial functions commuting with K [29].

In particular, since fH;Kg � 0, one can write the Hamilto-

nian as

H � 2x2 �
1

4
x20 −

3

4
x21: (11)

For each fixed K , Eq. (10) defines a surface in the space

�x1; x2; x3�, which is called the reduced phase space. It is de-

picted in red in Figs. 4 and 5. For each value of �H;K�, Eq. (11)
defines a second surface, called Hamiltonian surface, and is

represented in blue in Fig. 4. The intersection of these two

surfaces gives the trajectories of the system. To recover

the dynamics in the main phase space from the dynamics

in the reduced phase space, we have to make the Cartesian

product of the reduced dynamics by the circle that comes

from Eq. (9). For example, if the dynamics follow a circle

in the reduced phase space, a Cartesian product with a second

circle leads to a regular torus [see Fig. 2(a)]. The fact that each

point of the reduced phase space corresponds to a circle in the

main phase space holds true as long as the derivative on the

reduced phase space is continuous, i.e., as long as the surface

is smooth. This is illustrated in Fig. 4. The surface is plotted

with K � 0 and S0 � J0, thus Sz � Jz. The two nonsmooth

points are of coordinates �x1 � �2; x2 � 1; x3 � 0�. This en-

tails Sz � Jz � S0 or Sz � Jz � −S0. If we report this result

in Eq. (9), we see that the motion is no longer circular but

stationary, i.e., it refers to a point. This clearly illustrates

the following important aspect: when a point of the reduced

phase space is not smooth, then this point does not corre-

spond to a circle in the main phase space S2 × S2, but to a

stationary point.

Let us illustrate this fact with the concrete example of

the IF, in which, for simplicity, we consider the case

S0 � J0 � 1. The surfaces of Eq. (10) and Eq. (11) are repre-

sented in Fig. 4 for �H � −1; K � 0�. The intersection contains

two nonsmooth points �x1 � �2; x2 � 1; x3 � 0�; thus, the

Fig. 4. (Color online) IF model: Intersection of the reduced phase
space (red) and of the Hamiltonian surface (blue) with
S0 � J0 � 1, K � 0, and H � −1. We observe that the reduced phase
space for K � 0 has two points with noncontinuous derivative. The
intersection with the Hamiltonian surface H � cst contains both
points, which as a consequence is a singular torus (see the text).

Fig. 5. (Color online) IF model: Illustration of the relation between
the points of the reduced phase space and the points of the singular
torus. The dashed line depicts the intersection with the Hamiltonian
surface.
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corresponding set in the original phase space is a singular

doubly pinched torus (see Fig. 5). One can plot these two sur-

faces for different values of �H;K�, and verify that there is no

other isolated singularity. These results are summarized in

the so-called energy-momentum diagram of Fig. 6. Such a

diagram is the ensemble of all the possible values of H and

K for some given fixed values of the radii S0 and J0 of the

Stokes spheres. It provides a global view of the stationary

states of the system. Following the previous geometric analy-

sis, and according to the Liouville–Arnold theorem, any point

of this set will be associated either to a regular or to a singu-

lar torus.

The equation of the boundary of this diagram can be ob-

tained from the property that, at the boundary, the intersec-

tion of the reduced phase space and of the Hamiltonian

surface reduces to a point. The computation goes as follows.

First, one notices that the symmetry of the two surfaces im-

plies that such an intersection occurs when x3 � x1 � 0. We

then express from Eq. (10) the polynomial x23�x1� and we com-

pute its roots:

x1 � �

�����������������������������������������������������

2S4
0 − S2

0K
2 − K2x2 − 2x22

S2
0 − x2

s

:

Finally, using Eq. (11) and the fact that x1 � 0 we get

H � 2S2
0 −

3

4
K2 and H � −2S2

0 �
1

4
K2:

Note that for the IF model this diagram presents only one

isolated singularity. This interesting property has a direct in-

fluence of the polarization attraction phenomenon, as ex-

plained in the next section.

Randomly birefringent fiber. We now analyze the example

of RBFs by following the same procedure as that outlined

here above for IFs. In the case of RBFs, we need to choose

a constant of motion among the three available ones in order

to carry out the reduction process. Note that this arbitrary

choice has no consequence on the properties of the energy-

momentum diagram. The choice K3 � Sz � Jz and Eq. (8),

leads to

8

>

<

>

:

_Sx � −Sy

_Sy � Sx

_Sz � 0

;

8

>

<

>

:

_Jx � Jy

_Jy � −Jx

_Jz � 0

; (12)

and the following polynomials are constant under this

dynamic:

8

>

>

<

>

>

:

x0 � K3 � Sz � Jz

x1 � Sz − Jz

x2 � SyJy − SxJx

x3 � SxJy � SyJx:

These invariant polynomials fulfill the relation:

x23 � x22 �
�

S2
0 −

1

4
�x0 � x1�2

��

J2
0 −

1

4
�x0 − x1�2

�

� 0. (13)

The Hamiltonian can be rewritten in the form:

H � 1

4
�x20 − x21� − x2: (14)

Here again, we consider S0 � J0, which leads to a unique

value of �H;K3� � �−S2
0; 0� for which the intersection is not

smooth. Furthermore, if we report this value in Eqs. (13)

and (14), both give the relation x2 � S2
0 − x21∕4, i.e., the inter-

section is a segment, as can be seen in Fig. 8. The two edges of

the segment are nonsmooth points of the reduced phase space

and correspond therefore to points in the main phase space,

while the others are regular and are thus associated to circles

in the main phase space. By collecting the different results, we

finally obtain a singular torus, which is topologically equiva-

lent to a sphere. Indeed, the two edges of the intersection pro-

duce the two poles of the sphere and the other points of the

segment correspond to the different parallel circles of the

sphere (see Fig. 8). This sphere plays the same role as the sin-

gular torus for the IF case.

Let us now construct the energy-momentum diagram

by using the same symmetry as for the case of IFs,

x3 � x1 � 0. Straightforward computations lead to the dia-

gram of Fig. 7, whose boundary is determined by the equation

H � K2
3

2
− S2

0 and H � S2
0:

A distinguished feature of this diagram is the fact that the

singular torus is on the border of the domain. This property

will be shown to influence the phenomenon of polarization

attraction.

Highly birefringent spun fiber. In this case, the Hamilto-

nian depends on a real parameter φ, which gives rise to a

family of reduction procedures. The constant of motion K �
Sz � Jz is the same as that used for RBFs. Accordingly,

one can use the same invariant polynomials for this system,

which thus leads to the same reduced phase space. The

Hamiltonian now reads

H � α

�

x2 �
x20 − x21

2

�

−
β

4
�x20 � x21�: (15)
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Fig. 6. (Color online) IF model: Energy-momentum diagram for
S0 � J0 � 1. The gray region corresponds to regular tori in the phase
space and the red dot to a doubly pinched torus.
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Let us consider again the case S0 � J0. The intersection of

the reduced phase space and the Hamiltonian surface is re-

ported in Fig. 9. It exhibits an eight-shaped intersection, which

corresponds in the main phase space to a bitorus [see

Fig. 2(d)], which is the union of two tori glued along a circle.

Indeed, if we rotate this eight-shaped intersection around the

circle of Eq. (12) in a three-dimensional space, we obtain a

bitorus. The upper torus of the bitorus is drawn by the upper

loop of the eight, and the same goes for the lower part of

the eight.

We now discuss the energy-momentum diagram. In con-

trast with the examples of the IF and the RBF, whose

energy-momentum diagrams were characterized by an iso-

lated singularity, here the diagram is characterized by a con-

tinuous line of singular bitori. In other terms, we have an

infinite number of values of �H;K� that produce a bitorus.

These values draw a line in the �H;K� plane and it is possible

to derive the equation of this line explicitly. Here again the

symmetries of the problem lead to x3 � x1 � 0. We first com-

pute the roots of the polynomial x23�x1�:

x1 � �
���������������������������������������������������������

K2 � 4S2
0 � 4

�����������������������

S2
0K

2 � x22

q

r

.

Then we use x1 � 0 and Eq. (15) to eliminate x2 and after a

few steps of simple calculations we obtain

8

>

>

>

<

>

>

>

:

H � ε

������������������������������������������������

α2
�

K2

4
� S2

0

�

2

− S2
0K

2�
s

� αK2

2
−

βK2

4

H � −2αS2
0 − S2

0β −
βK2

2
� jK j

������������������������������������������������

4αβS2
0 � S2

0β
2 � 3S2

0α
2

q

;

�16�

where ε � �1. The first equation of (16) provides the red line

(ε � −1) and the upper (ε � �1) blue line of Fig. 10, while the

second relation provides the lower blue lines. The main line of

singularities in the energy-momentum (red line in Fig. 10)

diagram can be simplified into

H � cos2 φ�K2 − S2
0� −

sin2 φ

2
K2: (17)

Fig. 8. (Color online) RBF model: The Hamiltonian surface (blue
surface) and the reduced phase space (red surface) intersect along
a segment (red line) that draws a sphere in the main phase space.

Fig. 9. (Color online) HBSF model: Intersection of the reduced
phase space defined by Eq. (13) and the Hamiltonian of Eq. (15) with
φ � π∕4, K � 0, and H � −0.5.
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Fig. 7. (Color online) RBF model: Energy-momentum diagram for
S0 � J0 � 1. The gray region corresponds to regular tori in the phase
space and the red dot to a sphere.
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4. POLARIZATION ATTRACTION

In this section we study the polarization attraction phenomen-

on in the light of the singular reduction theory exposed above

for the three examples of fiber systems.

Isotropic fiber. This case has been the subject of a detailed

study in [6] and [10], respectively, for the phenomenon of po-

larization attraction and the issue of the soliton stability. We

thus refer the reader to these two articles for more details.

Here, we illustrate how the previously introduced mathema-

tical tools can be applied to analyze the process of polariza-

tion attraction. First, we consider the following change of

variables :

8

>

>

<

>

>

:

Sx �
���������������

S2
0 − I2f

q

cos φf

Sy �
���������������

S2
0 − I2f

q

sin φf

Sz � If

;

8

>

>

<

>

>

:

Jx �
���������������

J2
0 − I2b

q

cos φb

Jy �
���������������

J2
0 − I2b

q

sin φb

Jz � −Ib

to rewrite the Hamiltonian in the following form

H � 2

�������������������������������������

�S2
0 − I2f ��S2

0 − I2b�
q

cos�φf − φb� −
I2f � I2b

2
: (18)

Next, we denote by Jz�z � L� � e the ellipticity of the pump

wave injected into the fiber at z � L. We assume that the spa-

tiotemporal system relaxes toward the only singularity of the

energy-momentum diagram (see Fig. 6), thus K � Sz − Jz � 0

and H � −S2
0. This implies that the signal is attracted toward

the same ellipticity as the pump wave Sz�L� � e. Finally, we

use H � −S2
0 to calculate the orientation of the polarization

ellipse to which the signal is attracted, i.e., the angle φf �L�
in the plane Sz � e:

�S2
0 − e2��2 cos�φf − φb� � 1� � 0.

We have to consider two different cases. If the polarization of

the pump is circular (e � J0), then the signal is attracted to-

ward the same circular polarization state. On the other hand, if

the polarization of the pump is elliptic, then the orientation of

the polarization ellipse of the signal is related to that of the

pump by

φf � φb �
2π

3
: (19)

This result was confirmed by the numerical simulations of the

spatiotemporal Eqs. (1) in Ref. [6].

Randomly birefringent fiber. The application of the pre-

ceding mathematical tools to the polarization attraction in

the RBFs was briefly discussed in Ref. [11]. Here, we summar-

ize the main results obtained in [11] and also discuss the in-

fluence of the powers of the beams on the robustness of the

attraction process (note that, with the adopted normalization

it is equivalent to increase the beam power or the fiber length).

We first consider the case S0 � J0. Using the reduction the-

ory of Sec. 3, we know by symmetry of the directions that, on

the singular torus, we have K1 � K2 � K3 � 0. It is then

straightforward to deduce the polarization attraction rela-

tions: S1�L� � −J1�L�, S2�L� � J2�L�, and S3�L� � −J3�L�.
This theoretical prediction was also confirmed by the numer-

ical simulations of the spatiotemporal Eqs. (1) in Ref. [11].

Note that the main difference between the RBF and IF is

the fact that the singular torus lies on the boundary of the

energy-momentum diagram (see Fig. 7). This strongly influ-

ences the efficiency of the attraction process, as illustrated

by the comparison of the distance of the stationary solution

to the singular torus for IFs and RBFs. For example, the aver-

age distance ρ �
��������������������������������

�H � 1�2 � K2
p

is 10−2 in the RBF (with

L � 15), whereas it is 10−7 in the IF case (with L � 5). Further-

more, when one considers IFs, the distance ρ decreases expo-

nentially with the fiber length L [5]. Conversely, for RBFs, the

distance ρ also decreases as L increases, but in a slower way.

This is illustrated in Fig. 11. It can be interpreted by consider-

ing the fact that the singular torus lies on the boundary of the

energy-momentum diagram for RBFs, while it is located inside

the diagram for IFs. Then contrary to IFs, convergence toward

the singular torus cannot occur in an isotropic way in RBFs,

which limits the accuracy of the polarization attraction

phenomenon.

Finally note that a power difference (S0 ≠ J0) can strongly

affect the attraction process. We performed numerical simu-

lations with different values of Δ � �S0 − J0�∕S0. The numer-

ical study reveals that for Δ in the range of few percents, the

system still relaxes toward a stationary state, as illustrated in

Fig. 12. For larger values of Δ, the spatiotemporal dynamics

no longer converge toward a stationary state. Note that

there is not a clear threshold on Δ. When Δ increases we
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Fig. 10. (Color online) HBSF model: Energy-momentum diagram
with φ � π∕4. Each point of the gray region corresponds to a regular
torus in the main phase space and each point of the red line corre-
sponds to a bitorus.
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Fig. 11. (Color online) RBF model: The distance of the pump SOP to
the predicted point decreases as L increases. The distance plotted
here is the average of the distances of the 64 different signal inputs
uniformly distributed on the Poincaré sphere (green dots in Fig. 1)
with Jx�L� � Jy�L� � 0.7 and Jz�L� �

���

2
p

∕10.
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numerically observe that the solution with ~S�t � 0; z � 0�
close to ~J�t � 0; z � 0� cannot relax toward a stationary state

while all the others do. When Δ is large enough there is no

stationary state, for any initial condition.

Highly birefringent spun fiber. The application of the the-

oretical tools exposed in the preceding section to the process

of polarization attraction in HBSFs was briefly discussed in

Ref. [11]. Here, we complete our results and also suggest a

possible application of this system.

From the theoretical point of view, the case of HBSFs

is fundamentally different from IFs or RBFs. Indeed, as

explained in Sec. 3, instead of an isolated singularity, the

energy-momentum diagram of HSBF exhibits a continuous

line of singularities. The direct consequence of this property

is the fact that the signal beam is no longer attracted toward a

single SOP, but instead toward a line of polarization states that

lie on the surface of the Poincaré sphere.

Let us illustrate this result by considering the particular

values φ � π∕4 and �Jx�z � L� � 0; Jy�z � L� � 1; Jx�z �
L� � 0�. Indeed, in this particular case, one can obtain a simple

analytical expression of the line of singularities on the Poin-

caré sphere. For this purpose, we substitute in Eq. (7) the

expression Sx �
��������������������������

S2
0 − S2

y − S2
z

q

and Sz � K − Jz to get

Sy � K2 − S2
0:

Then using Jz � 0 and Sx �
��������������������������

S2
0 − S2

y − S2
z

q

, we get

Sx � �
��������������������������������������������

S2
0 − K2 − �S2

0 − K2�2
q

:

Since Jz � 0 gives Sz � K , we obtain a parametric curve on

the Poincaré sphere:
8

>

<

>

:

Sx � �
��������������������������������������������

S2
0 − K2 − �S2

0 − K2�2
q

Sy � K2 − S2
0

Sz � K

. �20�

These equations draw an eight-shaped line on the surface of

the Poincaré sphere, as reported in Fig. 15. Similar calcula-

tions can be done in the general case with an arbitrary choice

of the parameters �Jx; Jy; Jz�, and one still obtains an eight-

shaped line.

It is important to note that there are two different restric-

tions to this phenomenon of attraction. The first one is due to

the limit Jz�L� � �J0, where Eq. (7) does not depend on Sx�L�
and Sy�L�. In this limit, Eq. (7) and Eq. (17) are not compati-

ble, which means that the system no longer can relax toward

the singular line of bitori.

This aspect is illustrated in Fig. 13, where we have com-

puted the domain of existence of the attraction process in

terms of K in the special case Jx�L� � 0. In this particular ex-

ample, the equation of the border of the domain can be de-

rived analytically. We first obtain Sy as a function of Jz

and K with the same method used for Eq. (20). Then the limit

values Sy � �1 lead to the following equation:

K lim � 3

2
Jz �

������������������������������������������

4 − 3J2
z � 4

�������������

1 − J2
z

q

r

:

It is clear in Fig. 13 that the domain of K gets smaller as Jz

approaches its limit values.

The second restriction is the fact that the attraction process

of the signal beam only takes place over half of the eight-

shaped line on the Poincaré sphere, a feature that has been

established by the numerical simulations of the spatiotempor-

al Eqs. (1). This fact can also be easily explained by the nature

of the singular bitori associated to the line of polarization at-

traction. Owing to the peculiar topology inherent to bitori, the

stationary solutions can freely rotate around the bitorus, in

contrast with trajectories that evolve on an ordinary pinched

singular torus. This property allows for the existence of non-

monotonic stationary solutions, i.e., stationary solutions that

exhibit an oscillatory behavior. This is illustrated in Fig. 14,

which reports several stationary solutions chosen among

the stationary solutions that lie on the closed singular curve

on the Poincaré sphere. Figure 14 (top) reports the stable

stationary solutions, i.e., those that play the role of attractors

for the spatiotemporal dynamics, whereas Fig. 14 (bottom) re-

ports the unstable stationary solutions. Only the monotonic

stationary solutions are stable, while the oscillatory ones

are unstable. This feature corroborates the general observa-

tion pointed out originally in Refs. [4,5], that only monotonic

stationary solutions are attractors for the spatiotemporal

dynamics.

Finally, another interesting consequence of the existence of

this singular line of polarization attraction is the possibility to

Fig. 12. (Color online) RBFmodel: Numerical simulations of the spa-
tiotemporal system on the Poincaré sphere with Δ � 0.05. The green

and red dots denote respectively the initial (~S�0�) and final (~S�L�)
SOPs of the signal. The yellow dot displays the fixed pump SOP:
~J�L� � �1; 0; 0� for L � 15.
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Fig. 13. (Color online) HBSF model: The gray domain depicts the
possible values of K as a function of Jz�L� when Jx�L� � 0.
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produce an elliptic polarization state from two linearly polar-

ized states. Indeed, if both the signal and the pump beams are

injected in a purely linear SOP in an HBSF with φ � π∕4, then

the signal beam will be attracted toward a particular point on

the eight-shaped closed curve at z � L, and its ellipticity will

depend on the two angles that determine the initial linear

SOPs of the pump and signal beams. A numerical study re-

veals that the angle that characterizes the linear SOP of the

signal ~S�0� controls the position ~S�L� on the eight-shaped

curve, while the angle of ~J�L� rotates the eight-curve around

the z axis. This is illustrated in Fig. 15, where the color code

links the linear polarizations of ~S�0� to the corresponding el-

liptic polarizations of ~S�L� for a given linear polarization

of ~J�L�.

5. CONCLUSION

In summary, we have presented the mathematical techniques

recently developed in order to provide a geometric approach

for the study of Hamiltonian singularities of integrable sys-

tems. This theory sheds new light to the interpretation of

the phenomenon of polarization attraction that occurs in

counterpropagating optical beams in different types of optical

fibers. We exposed in simple terms the theory of singular re-

duction, which permits to construct the energy-momentum

diagram and characterizes the geometric properties of the un-

derlying tori of the stationary system. We showed that the en-

ergy-momentum diagram allows us to determine the essential

properties that characterize the process of polarization attrac-

tion. A brief overview of the different steps of this approach

can be summarized as follows:

• Study of the stationary system (Hamiltonian, constant

of the motion)

• Introduction of the invariant polynomials associated to

the constant of the motion

• Analysis of the intersection of the energy surface with

the reduced phase space

• Construction of the energy-momentum diagram and

determination of the nature and of the position of the

Hamiltonian singularities

We apply these tools in three different types of optical fibers.

In the example of IFs, the energy-momentum diagram is char-

acterized by one or two singularities, which leads to an effi-

cient process of polarization attraction toward a defined set of

SOPs. In RBFs, the singularities lie on the boundary of the en-

ergy-momentum diagram, which significantly reduces the ef-

ficiency of the attraction process. Finally, in HBSFs the

energy-momentum diagram is characterized by the presence

of a continuous line of singularities, which leads to a polariza-

tion attraction toward a continuous line of polarization states

on the Poincaré sphere. We have completed previous results

concerning the polarization attraction process in RBFs and

HBSFs. The theory exposed here thus provides a rather com-

plete understanding of the properties of the phenomenon of

polarization attraction in these fiber systems. Note that, under

rather general conditions, for both HBSFs and RBFs the effi-

ciency of the attraction process increases as the fiber length

and the powers of the beams increase. We also underline that

all the analysis can be extended to unequal signal-pump

powers: For HBSFs polarization attraction still occurs along

a line of polarization states on the Poincaré sphere, while for

RBFs the singular torus is shown to split into two distinct sin-

gular tori for S0 ≠ J0, whose SOP coordinates read Sx � �ρJx,

Sy � �ρJy, Sz � −ρJz, with ρ � S0∕J0. For ρ≃ 1 (within

10%), the simulations reveal an attraction toward the two

0 1 2 3 4 5
−1

0

1

S
z

S
z

0 1 2 3 4 5

−1

0

1

z

Fig. 14. (Color online) HBSF model: Monotonic (up) and nonmono-
tonic (bottom) behaviors of the stationary solutions corresponding
respectively to the stable and unstable parts of the eight-shaped line.
Only the monotonic stationary solutions are stable, whereas the sta-
tionary solutions that exhibit an oscillatory behavior are unstable.
This explains why only half of the eight-shaped closed curve plays
the role of an attractor in the spatiotemporal dynamics.

Fig. 15. (Color online) HBSF model: Two series of numerical simu-
lations with two different values of ~J�L� that show the possibility of
producing an elliptic polarization with two linear polarizations. The
plain and dashed black lines depict respectively the stable and
unstable parts of the figure eight. The two large yellow dots are
associated to the two values of the pump ~J�L�. The small dots on
the equator depict the injected polarization signal ~S�0� and the small
dots outside the equator (on eight-shaped curves) the outgoing polar-
ization of the signal after the interaction.

568 J. Opt. Soc. Am. B / Vol. 29, No. 4 / April 2012 Assémat et al.



SOPs states, while for higher values of ρ the system exhibits a

complex dynamics, including periodic behaviors that will be

the subject of future investigations. We also point out that the

rigorous mathematical proof of all these phenomena still con-

stitutes an unsolved problem. A first step in this direction has

been done in [35], where the relaxation process to a stationary

state has been proven rigorously in the purely linear regime of

the counterpropagating wave dynamics in a Bragg grating.

Work is in progress in order to generalize these results to

the nonlinear regime of the counterpropagating interaction.

Besides the characterization of the phenomenon of polariza-

tion attraction, the theory exposed here can also be extended

to study the stability properties of soliton solutions in a med-

ium of finite extension. In a recent work it was shown that

soliton solutions can become unstable due to the finite exten-

sion of the medium (e.g., a finite optical fiber length) [8]. In

this way, the spatiotemporal dynamics relaxes toward a

Hamiltonian singular state whose nature is completely differ-

ent than that of the soliton state. More precisely, we showed

that when the singular torus of the Hamiltonian system is iso-

lated (as in IFs), then the space-time dynamics is asymptoti-

cally attracted toward the soliton solution, which is thus

stable. Conversely, in HBSFs the soliton becomes unstable be-

cause of the presence of a continuous family of Hamiltonian

singular tori and the space-time dynamics relaxes toward an-

other stationary state of this family [10]. Work is in progress in

order to extend this preliminary work to more general soliton

systems, such as gap-solitons and three-wave interaction

solitons.

APPENDIX A: DERIVATION OF THE
SOLITON SOLUTION

In this appendix, we derive explicitly the form of the soliton

solution for IF by assuming that this kind of solution lies on a

singular torus [4,10]. This completes our presentation of

these new Hamiltonian tools by showing their efficiency in

the computation of soliton solutions. Similar computations

could be done for HSBF and RBF. We start from Eq. (18)

and we introduce a new pair of canonically conjugate coor-

dinates �J;ψ� and �K; χ�, which are related to the old coor-

dinates by the generating function F � �Ip � Is�χ � Ipψ ,

such that

ϕs �
∂F

∂Is
� χ

ϕp � ∂F

∂Ip
� χ � ψ

K � ∂F

∂χ
� Is � Ip

J � ∂F

∂ψ
� Ip:

The Hamiltonian in these new coordinates can be written as

H � 2

����������������������������������������������������

�J2
0 − J2��S2

0 − �K − J�2�
q

cos ψ −
1

2
�J2 � �K − J�2�;

which leads to the following dynamics:

dJ

dξ
� −

∂H

∂ψ
� 2

����������������������������������������������������

�S2
0 − J2��J2

0 − �K − J�2�
q

sin ψ ;

which can be expressed as

�

dJ

dξ

�

2

� e�J − α��J − β��J − γ��J − δ�;

where e > 0 and β ≤ γ ≤ δ ≤ α, and the variable ξ plays here

the role of time. The solution of this equation can be written

in terms of a Jacobi elliptic function [36]:

J�ξ� � β� γ − β

1 − ηsn2�λξjμ�
; (A1)

where η� γ−δ
β−δ

> 0, μ� η β−α
γ−α

> 0, and λ� 1
2

������������������������������

e�γ − α��β − δ�
p

[37].

We recall that on a singular pinched torus, one of the fun-

damental periods is infinite, which entails μ � 1 since

ω � πλ∕QP�μ�, where QP is the quarter-period of the Jacobi

elliptic function. We thus set ε � 1 − μ. We first have to com-

pute J�ξ� L∕4�, where L � 2π∕ω. Here, we consider that the

length of the fiber corresponds to one period of the solution.

Then, a first-order Taylor series expansion in ε gives

J�ξ� � δ�β − γ� − β�δ − γ�e−2λξε1∕2
β − γ − �δ − γ�e−2λξε1∕2

� o�ε�. (A2)

As ε is a function of the four roots α, β, γ, and δ, this expression

of J only depends on these roots and on the fact that the sys-

tem is close to the singular torus. One should also notice that

this formula corresponds to a choice of specific boundary

conditions and the whole family of soliton solutions can be

obtained in the same way from Eq. (A1). The four roots have

the form

K

2
� 1

6
�15K2 � 12H � 12�K4 � 16S2

0K
2

� 4HK2 � 4S0
4 � 8S0

2H � 4H2�1∕2 � 48S0
2�1∕2.

(A3)

The next step of the computation consists in introducing the

circular symmetry around the singular torus to write:

K � ρ cos θ
H � ρ sin θ − S2

0;

where ρ is a small parameter and θ ∈ �0; 2π�. Performing a

Taylor expansion of J�ξ� in ρ finally gives

J�ξ� � S0 tanh�λξ� � O�ρ�. (A4)

Moreover, the first-order expansion of L � 2π∕ω has the form

L � 2
������������������

4 − k2So

p

�

2 ln 2� ln S2
0

− ln

�����������������������������������������������������������������������������������������

−
2 cos2 θ − 2� 2S2

0k
2 cos2 θ − 8S2

0 cos
2 θ

�k − 2�2�k� 2�2

s

− ln ρ

�

� O�ρ�; (A5)
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which has a leading term in ln ρ for ρ ≪ 1. This result allows

us to characterize the polarization attraction in IF [5]. Because

of the attracting properties of the singular torus, the spatio-

temporal dynamics relax toward a stationary state that con-

verges exponentially to the singular torus when the length

L of the fiber goes to infinity.

Returning back to the Cartesian coordinates, we need to

determine ψ and χ. Using the coordinates �H � −S2
0; K � 0�

of the singular torus and the Hamiltonian

H � 2�S2
0 − J2� cos ψ − J2;

we get that ψ � � 2π
3
. The equation of motion on the singular

torus K � 0 implies χ � χ�0�, which gives

Sx � S0 cos�χ�0��sech
�

���

3
p

S0ξ

�

Sy � S0 tanh�2S0ξ�

Sz � S0 sin�χ�0��sech
�

���

3
p

S0ξ

�

Jx � S0 cos

�

χ�0� � s 2π
3

�

sech

�

���

3
p

S0ξ

�

Jy � S0 tanh

�

���

3
p

S0ξ

�

Jz � S0 sin

�

χ�0� � s 2π
3

�

sech

�

���

3
p

S0ξ

�

;

�A6�

with s � �1. All these solutions are not symmetric with re-

spect to ξ. The numerical simulations reveal that the spatio-

temporal dynamics will select the symmetric solution. This

leads us to choose the corresponding value of χ�0�, i.e., χ�0� �
π
6
and s � 1. We thus recover the stable soliton solution con-

sidered in the numerical simulations in Ref. [10]:

Sx � S0

��

3
p

2
sech

�

���

3
p

S0ξ

�

Sy � S0 tanh

�

���

3
p

S0ξ

�

Sz � S0
1
2
sech

�

���

3
p

S0ξ

�

Jz � −S0

��

3
p

2
sech

�

���

3
p

S0ξ

�

Jy � S0 tanh

�

���

3
p

S0ξ

�

Jz � S0
1
2
sech

�

���

3
p

S0ξ

�

. �A7�
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