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We analyze the role of soliton solutions and Hamiltonian singularities in the dynamics of counterpropagating

waves in a medium of finite spatial extension. The soliton solution can become unstable due to the finite extension

of the system. We show that the spatiotemporal dynamics then relaxes toward a Hamiltonian singular state of a

nature different than that of the soliton state. This phenomenon can be explained through a geometrical analysis

of the singularities of the stationary Hamiltonian system.
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I. INTRODUCTION

Nonlinear partial differential equations (PDE) which are

completely integrable can be solved by means of the inverse

scattering transform [1]. This method can be applied to a large

variety of nonlinear equations, which have found applications

in many different fields of physics and, in particular, in

the context of nonlinear optics (see Ref. [2] for a recent

overview). Among the solutions obtained by this approach,

soliton solutions are known to play a key role because of their

peculiar properties of stability.

The inverse scattering transform was originally developed

for nonlinear systems of infinite extension, while the case of

systems with finite spatial extension has only been addressed

recently. The question of the stability of solitons in systems

of finite length was recently analyzed by Kozlov and Wabnitz

in Ref. [3]. Considering the example of a counterpropagating

nonlinear wave interaction, they showed that the stationary

soliton solution obtained in an infinitely extended medium

becomes unstable when considered in a medium of finite

extension. The soliton solutions of this system are the so-

called polarization-domain wall solitons [4,5]. The model of

Ref. [3] refers to the important practical situation in which two

counterpropagating optical beams are injected in a continuous

way from both ends of an optical fiber of length L. The

numerical simulations reported in Ref. [3] reveal that even

for a fiber length much larger than the characteristic width �

of the soliton, the soliton solution exhibits an instability and

relaxes, after a complex transient, toward a stationary state of

a nature different than that of the initial soliton solution. Note

that this type of relaxation process has also been the subject of

several experimental studies in optical fibers and is now called

“polarization attraction” [4,6,7], due to its role in the dynamics

of polarizations of the optical beams.

From a different perspective, we recently showed that the

stationary states selected by the spatiotemporal dynamics

can be associated with Hamiltonian singular solutions of

the stationary system. These stationary solutions belong to

a two-dimensional object of the associated phase space, the

so-called singular torus, which plays the role of an attractor

for the nonlinear system [8,9]. The natural important problem

is to analyze the relation between the stability properties of the
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soliton solution and the structure of the singular Hamiltonian

solutions of the corresponding stationary system.

In this paper, we consider two models of the same general

class. One of them has a single isolated singular torus, while

the other one, analyzed in Ref. [3], is shown to have a

one-parameter family of singular tori. We first show that

the soliton solution belongs to the ensemble of singular

Hamiltonian solutions of the associated stationary system.

The analysis reveals that when the singular torus of the

Hamiltonian system is isolated then the space-time dynamics

is asymptotically attracted toward the soliton solution, which

is thus stable. Conversely, the soliton becomes unstable in

the presence of a continuous family of Hamiltonian singular

tori and the dynamics relaxes toward another stationary state

of this family. These examples indicate that the geometrical

analysis of the singularities of the stationary Hamiltonian

system appears to be the appropriate theoretical framework

to study nonlinear wave systems in a medium of finite spatial

extension. In particular, the fact that the selected stationary

states can strongly differ from the soliton solution can be

explained through the analysis of the topological properties

of the corresponding singular tori.

Besides its fundamental interest, the process of polarization

attraction discussed here has applications as a polarizer

performing polarization of light with almost 100% efficiency,

in contrast with standard polarizers that unavoidably waste

50% of unpolarized light (also see Ref. [10]). This aspect is

presently attracting great interest because of the possibility

of achieving a repolarization of optical transmission lines in

telecommunication systems [7,11].

We consider the one-dimensional counterpropagating con-

figuration of the four-wave interaction. Different models

describing a variety of situations have been introduced in

the literature. Using the Stokes formalism, the equations

governing the polarization dynamics of the counterpropagating

beams can be written in the following general form:

∂ �S
∂t

+ ∂ �S
∂z

= �S × (I �J ) + FS(�S, �J ),

(1)
∂ �J
∂t

− ∂ �J
∂z

= �J × (I �S) + FJ (�S, �J ).

The Stokes vectors �S = (Sx,Sy,Sz) and �J = (Jx,Jy,Jz) de-

scribe, respectively, the polarization states of the forward
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and backward beams on the Poincaré sphere. The matrix

I is diagonal and ‘×’ denotes the vector product, while

the functions FS and FJ are polynomials of the Stokes

vectors (�S, �J ), which account for the nonlinear self-interaction

terms of the waves. The radii of the forward and backward

spheres, S0 and J0, are related to the signal and pump powers.

We normalized the variables with respect to the nonlinear

interaction time τ0 = 1/(γ S0) and length �0 = vτ0, where

γ is the nonlinear coefficient and v the group velocity of

the waves. The variables can be recovered in standard units

through t → tτ0, z → z�0, and (�S, �J ) → (�S, �J )S0. In the limit

where the two functions FS,J (�S, �J ) vanish, the PDE system (1)

is integrable in an infinite medium [2,12].

II. MODEL I

We consider here the example of Ref. [3] defined by I =
diag(1, − 1, − 2), which is denoted system I in the following.

The choice of this particular example stems from the fact that

it is known to model light propagation in a birefringent spun

fiber [13]. The corresponding soliton solution is a zero-velocity

domain wall [5]:

Ss
x = −tanh(

√
2z), J s

x = −tanh(
√

2z),

Ss
y = − 1√

3
sech(

√
2z), J s

y = − 1√
3

sech(
√

2z), (2)

Ss
z =

√
6

3
sech(

√
2z), J s

z = −
√

6

3
sech(

√
2z).

The solution (2) is a stationary solution of Eq. (1). Moving soli-

ton solutions can also exist for different powers of the beams

(S0 �= J0), but they are not relevant to the finitely extended

medium discussed here. In the following we assume S0 = J0.

The first step of our analysis consists of studying the singu-

larities of the stationary system associated with system (1)

[8]. It is straightforward to see that this system is an ordinary

differential equation (ODE) with the Hamiltonian

H = −SxJx + SyJy + 2SzJz, (3)

where the Poisson brackets are defined by {Si,Sj } = εijkSk,

{Ji,Jj } = −εijkJk , εijk being the completely antisymmetric

tensor. This ODE system is integrable since it admits an

additional constant of the motion K = Sz + Jz. We construct

the energy-momentum diagram (H,K), which indicates the

location of the singularities in the set of the possible values of

H and K . More precisely, the Liouville-Arnold theorem [14]

shows that the phase space is foliated by invariant sets, labeled

by the values H and K . In general, the invariant sets are

standard tori, but there are points of this diagram for which the

corresponding tori are singular [15]. The singular sets of this

diagram correspond to the points where the two gradients ∇H

and ∇K are collinear (we refer the reader to Refs. [8,9,16] for

an explicit construction of a similar diagram). In the present

model, the energy-momentum diagram contains a continuous

line of singularities whose corresponding set in the original

phase space is a bitorus, i.e., a singular torus consisting of

two tori glued along a circle [see Fig. 1(a)] [15]. A bitorus

can also be viewed as the Cartesian product of an eight figure

with a circle. The soliton solution (2) is a particular case of a

Hamiltonian singular solution that belongs to the torus located

FIG. 1. (Color online) Energy-momentum diagram of stationary

model I (a) and of model II (b). The green (light gray) curve in panel

(a) denotes the singular line of bitori. The unstable soliton solution (2)

is a particular point of the singular line located at (H = −1,K = 0).

The crosses on the singular line locate the positions of the stationary

states obtained by solving numerically the PDE model I for different

fiber lengths L (from L = 3 to L = 10). The energy-momentum

diagram for model II (b) has an isolated singularity located at

(K = 0,H = −1), which corresponds to a doubly pinched torus. This

singularity coincides with the position of the soliton solution (5). In

this case, the PDE space-time dynamics relaxes to the stable soliton

state.

at (K = 0, H = −1) in the energy-momentum diagram. The

trajectory of the soliton solution (2) is schematically illustrated

on the corresponding bitorus in Fig. 2(a) [red (thick gray) line].

Note that the trajectory starts and ends on the singular circle

of the bitorus.

We perform numerical simulations of the space-time

system I. We start the simulation from the soliton solution

(2) truncated in the finite interval [0,L], as well as from a

homogeneous solution (see the dashed lines in Fig. 3). The

boundary conditions at both ends of the optical fiber are kept

fixed to the corresponding values of the initial wave, i.e.,
�S(z = 0,t) = �S(z = 0,t = 0), �J (z = L,t) = �J (z = L,t = 0).

In the case of the homogeneous initial condition, the boundary

conditions are the same as those for the soliton initial condition,
�S(z = 0,t) = �Ss(z = 0), �J (z = L,t) = �J s(z = L). For these

two sets of initial conditions, the simulations reveal that,

after a complex transient, the system relaxes toward the same

stationary state. As illustrated by the continuous lines in Fig. 3,

this stationary state is completely different from the soliton

solution (2), which confirms the previous results of Ref. [3]

where the instability of the soliton in a finitely extended system

is reported.

FIG. 2. (Color online) Trajectories of the soliton solutions on

the bitorus for model I (a) and on the doubly pinched torus for

model II (b).
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FIG. 3. (Color online) Numerical integration of the PDE

model I showing the instability of the soliton solution: (a, b)

Soliton solution (2) considered as the initial condition (dashed lines)

and corresponding stationary state asymptotically selected by the

space-time dynamics (continuous lines). Panel (a) displays the �S
components, and panel (b) displays the �J components. The x, y,

and z components are represented in red (dark gray), blue (black),

and green (light gray), respectively. (c, d) Same as in panels (a) and

(b), but starting from a homogeneous solution (see the text): the

system relaxes toward the same singular stationary state as in panels

(a) and (b).

The simulations show that the stationary state selected by

the spatiotemporal dynamics always lies in the neighborhood

of the line of singular bitori, as illustrated by the crosses

in Fig. 1(a). The stationary state is shown to converge

exponentially toward the line of singular tori as L → +∞.

However, this convergence occurs for values of K that differ

substantially from K = 0, i.e., far from the bitorus of the

soliton solution [see Fig. 1(a)]. These results show that, in

order to understand the long time behavior of the PDE system,

it is not sufficient to consider the soliton solution, but one has

to take into account the more general singular Hamiltonian

solutions.

III. MODEL II

We now consider the PDE model that describes some of the

experiments of polarization attraction reported in Refs. [4,6,7]:

∂ �S
∂t

+ ∂ �S
∂z

= �S × (I �S) + 2�S × (I �J ),

(4)
∂ �J
∂t

− ∂ �J
∂z

= �J × (I �J ) + 2 �J × (I �S),

where the diagonal matrix reads I = diag(−1,0, −1). This

system is termed model II.

The geometrical analysis of the stationary ODE system (4)

has been reported in Refs. [8,9]. Here we study the relation

between this geometrical approach and the soliton solutions.

Note that the term “soliton” is used here in its loose sense,

since the PDEs (4) are not integrable (self-interaction terms

are considered) and thus only admit solitary-wave solutions.
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FIG. 4. (Color online) Same as Fig. 3 but for model II Eq. (4):

the numerical simulations show that the soliton solution (5) is stable.

The stationary (t-independent) system (4) is an integrable ODE

with the Hamiltonian

H = 2(SxJx + SzJz) − 1
2

(

S2
y + J 2

y

)

,

which Poisson commutes with the constant of motion K =
Sy − Jy . The corresponding energy-momentum diagram is

reported in Fig. 1(b). In contrast to model I, the diagram is

now characterized by an isolated singularity associated with

a doubly pinched torus located at K = 0 and H = −1. The

stationary system (4) admits a soliton solution of the form

Ss
x =

√
3

2
sech(

√
3z), J s

x = −
√

3

2
sech(

√
3z),

Ss
y = tanh(

√
3z), J s

y = tanh(
√

3z), (5)

Ss
z = 1

2
sech(

√
3z), J s

z = 1

2
sech(

√
3z).

As shown in Fig. 1(b), the position of this soliton solution

coincides with the position of the pinched torus (K = 0,

H = −1). The soliton trajectory on the singular torus starts

and ends at the two pinch points. The solution (5) has the

same structure as the soliton solution of the integrable system

I. However, the spatiotemporal dynamics has a different

behavior. Indeed, we perform the same type of space-time

numerical simulations reported in Fig. 3 but with the PDE

model II (4). The simulations now reveal that the soliton is

stable and plays the role of an attractor for the finitely extended

spatiotemporal dynamics. This is illustrated in Fig. 4, which

shows that the dynamics asymptotically converges toward the

stable soliton solution (5).

IV. DISCUSSION

The different behaviors observed for systems I and II can

thus be explained by the structure of the energy-momentum

diagrams. In both models I and II the dynamics is characterized

by a relaxation toward a stationary state that lies in the

neighborhood of a singular torus. However, in contrast with

model II where the unique isolated singular torus coincides

with the soliton solution (5), in model I there exists a con-

tinuous family of Hamiltonian singular solutions which differ

from the soliton solution (2). Despite the apparent similarity of
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the two soliton solutions, i.e., a pair of sech-shaped functions

for the x and z components, and a tanh function for the y

component, a completely different spatiotemporal dynamics is

observed. These results indicate that the stability of a soliton

solution in a finitely extended medium can be understood

from the nature and the distribution of singular tori in the

energy-momentum diagram.

Note that although the PDEs that model the experiments

are not PDE integrable (in an infinite medium), the relaxation

toward a stationary state is of the same nature as that

discussed in the PDE integrable model I. In particular, we

have checked that the self-interaction terms of model II that

break the integrability do not change qualitatively either the

energy-momentum diagram (which still presents an isolated

doubly pinched torus) or the spatiotemporal dynamics. Based

on these numerical simulations, we conjecture that the PDE

integrability of these systems does not play any role in the

relaxation phenomenon and in the stability of the soliton

solution. Conversely, this instability can be explained through

the geometrical analysis of the singularities of the ODE

integrable stationary Hamiltonian system, which thus appears

as the appropriate theoretical framework to study nonlinear

physical systems of finite spatial extension. The mathematical

analysis of the different properties presented in this paper

is a forthcoming goal. As a first step, following the recent

results of Ref. [17], one can consider the stability of the soliton

solution of the wave propagation in a periodic grating. Indeed,

given the generality of the mathematical treatment [8,15],

the analysis developed here is expected to be transposable

to different kinds of Hamiltonian physical systems of finite

spatial extension. In this framework, another example is given

by the degenerate configuration of the resonant three-wave

interaction [18] which also presents a one-parameter family

of singular tori. However, these tori are curled and of a

different nature than the line of bitori of this paper [16].

An open question is then to study the problem of the

stability of the soliton solutions in this type of nonlinear

system.
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