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Abstract:  We study theoretically, numerically and experimentally the
nonlinear propagation of partially incoherent optical waves in single mode
optical fibers. We revisit the traditional treatment of the wave turbulence
theory to provide a statistical Kinetic description of the integrable scalar
NLS equation. In spite of the formal reversibility and of the integrability
of the NLS equation, the weakly nonlinear dynamics reveals the existence
of an irreversible evolution toward a statistically stationary state. The
evolution of the power spectrum of the field is characterized by the rapid
growth of spectral tails that exhibit damped oscillations, until the whole
spectrum ultimately reaches a steady state. The kinetic approach allows
us to derive an analytical expression of the damped oscillations, which is
found in agreement with the numerical simulations of both the NLS and
kinetic equations. We report the experimental observation of this peculiar
relaxation process of the integrable NLS equation.

© 2011 Optical Society of America
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1. Introduction

As far as the influence of dissipative effects such as stimulated Raman scattering can be ignored,
light propagation in single-mode optical fibers is well described by the one-dimensional (1D)
scalar nonlinear Schrodinger (NLS) equation (see Eq. (1) below) [1]. This equation is integrable
and has a class of special solutions called bright and dark solitons, which are sustained in the
anomalous (focusing) and normal (defocusing) dispersion regimes respectively. During the past
fifty years, the question of the interaction among solitons has been extensively studied by using
the method of the inverse scattering transform [2, 3]. Recently the formation of schock-waves
in the defocusing and nonlinear regime of the soliton dynamics has been studied [4, 5]. The
evolution of a dense gas of uncorrelated NLS solitons has been also examined in Ref. [6]. In
particular a general method to derive kinetic equations describing the evolution of the spectral
distribution function of solitons has been proposed [6]. This method seems promising for fu-
ture investigations of nonlinear propagation of incoherent optical waves in single mode optical
fibers.

These questions are of practical importance for the fiber propagation of light beams delivered
by highly multimode lasers or intense ASE light sources. The evolution of the optical power
spectrum of incoherent waves has been analyzed in the framework of coherence theory for
zero group velocity dispersion [7]. Taking into account second-order dispersion of the fiber, the
statistical properties of optical wave systems ruled by NLS-like equations have been mainly
examined by making use of the wave turbulence (WT) theory [8-15].

WT theory is based on a perturbation expansion procedure in which linear dispersive effects
are supposed to dominate nonlinear effects. In this way a large separation of the linear and
nonlinear length scales takes place, so that the statistics of the field can be assumed to be
approximately Gaussian. This allows one to achieve the closure of the infinite hierarchy of
moment’s equations, thus leading to a WT Kinetic description of the evolution of the power
spectrum of the field (i.e. the second-order moment of the gaussian field) [9, 10]. It is now
well established that WT theory provides a detailed description of the process of thermalization
and condensation of optical waves that occur in nonintegrable wave systems ruled by 2D or
3D NLS equations [11,13]. WT theory has been also considered in purely 1D wave systems
in various circumstances [16-19]. In particular, it has been shown to properly describe the
asymmetric evolution of the spectrum of an incoherent light wave propagating near by the zero
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dispersion wavelength of an optical fiber [14]. In this specific case, the integrability of the 1D
NLS equation is broken by the third-order dispersion term and the spectral asymmetry arises
from a phenomenon of anomalous thermalization originating in degenerate resonances of the
wave system [15].

Non-integrability of the model equation is usually considered as a prerequisite for the ap-
plicability of WT theory, because it implies a process of irreversible diffusion in phase space
that is consistent with the formal irreversibility of the kinetic equation. On the other hand, the
dynamics of integrable systems is essentially periodic in time, reflecting the underlying regular
phase-space of nested-tori [11, 20]. In this respect, applying the WT theory to the integrable
1D scalar NLS equation, all collision terms in the Kinetic equation vanish identically at any
order [8]. Accordingly, the WT theory predicts that the spectrum of an incoherent light wave
propagating in a single-mode optical fiber does not evolve during the propagation.

This conclusion is in contradiction with our experiments and numerical simulations reported
in 2006 [21], in which evidence is provided that a significant evolution of the power spectrum
of the optical field does occur during its propagation in single-mode optical fibers [21]. In
particular, the width of the power spectrum has been shown to change in a non-monotonic way
with the propagation distance [21]. It is important to underline that such spectral evolution
cannot be simply ascribed to the fact that a real-world optical fiber experiment necessarily
includes some small effects that break the integrability of the NLS equation, or that the split-step
numerical scheme does not preserve the integrability of the equation [22]. The experimental
and numerical results reported in [21] reveal that there exists an inadequate understanding of
incoherent light propagation in single mode fibers. This issue was recently addressed by Soh et
al., who proposed to modify the traditional approach of the WT theory [23]. Using numerical
simulations, they analyzed the behavior of the kinetic equation in the early stage of propagation
of the optical field in the single mode fiber. An interesting agreement has been obtained between
the numerical integration of their kinetic equation and the numerical simulations of the 1D NLS
equation.

In this paper, we study theoretically, numerically and experimentally the nonlinear evolution
of incoherent light waves whose propagation is governed by the integrable 1D scalar NLS
equation. Starting from the treatment proposed by Soh et al. [23], we revisit the traditional
WT approach of the 1D scalar NLS equation by considering that the fourth-order moment of
the field is not necessarily a stationary quantity. A kinetic equation governing the evolution
of the second-order moment of the field is obtained. Contrary to the conventional WT kinetic
equation, the collision term does not vanish, but relaxes rapidly to zero. In spite of such a fast
relaxation, the spectrum of the field may exhibit significant changes depending on the initial
conditions. Considering Gaussian-shaped initial conditions, the evolution of the spectrum is
characterized by a rapid growth of the spectral tails, their subsequent damped oscillations, and
their ultimate relaxation toward the stationary state. The kinetic approach allows us to derive an
analytical expression of evolution of the spectrum, whose damped oscillations have been found
in agreement with the numerical simulations of both the NLS and kinetic equations. We report
for the first time the experimental observation of the rapid growth of frequency components
located in the tails of the spectrum.

2. Theoretical Treatment

The starting point of our analysis is the dimensionless integrable 1D scalar NLS equation;

10,y (zt) = =0 2y (zt) + ly(z) P y(zt) €)

zrepresents the distance of propagation in the optical fiber while t measures the time in a refer-
ence frame moving with the incoherent wave y(z t). The time variable t has been normalized to
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T =1/Aw, where A is related to the width of the power spectrum of the incoherent light field
launched inside the optical fiber. In this paper, we will particularly consider initial conditions
corresponding to gaussian power spectra: N (z = 0) = nyexp(—w?/Aw?). For this particular
shape, Aw represents the half-width at 1/e of the power spectrum. The space variable z has
been normalized with respect to the linear dispersion length Lp = 2/(B2Aw?), where f3; is the
second-order dispersion coefficient of the optical fiber. With these conventions, the amplitude
of the field w(z 1) is expressed in units of 1/,/Lp .y where y is the nonlinear Kerr coefficient
of the fiber. The function y and the variables zand t can be rephrased in physical units through
the transformations z— zLp, t =ty =t/Aw and v — y/\/yLp. 6 = sign(Pz) represents
the sign of the second-order dispersion coefficient (o = 41 for the defocusing case (normal
dispersion) and o = —1 for the focusing case (anomalous dispersion)). The linear dispersion
relation simply reads k(w) = o . For incoherent waves considered in this paper, results that
will be determined from WT theory are not sensitive to the sign of o. For the sake of clarity,
let us mention that numerical simulations of Eq. (1) presented in this paper have been made
only in the normal dispersion regime (o = +1) corresponding to the experiments presented in
Sec. 3. The influence of the sign of o on mean spectra numerically calculated from integration
of Eq. (1) is briefly discussed at the end of Sec. 2.

The nonlinear length Ly is defined in the usual way as Ly, = 1/(yPy), where Ry represents
the power carried by the incoherent wave. The NLS equation [Eq. (1)] conserves the power
N = [|y(zt)[?dt and the total energy H = H|_ + Hy. that has a linear (kinetic) contribution
HL = [k(®)y(z ©)dw and a nonlinear contribution Hy, = 3 [ |y/(zt)|*dt.

Considering a random wave characterized by a stationary statistics, the second-order moment
of the field is

((z,0) ¥ (2,0)) = Ny (2) (0 - o) @
and the fourth-order moment reads:

((z, 1) F(z,02) F (2, 08) F' (2, 0)) = 35 (2) §(01 + 0p — 03— 04) ©)

where {/(z, w) is the Fourier transform of y/(z t) defined as y(z o) = \/% [T w(zt) e @dt.
Following the standard Hasselman derivation of kinetic equations for a random wave with sta-
tionary statistics, the sixth-order moment can be factored in products of second-order moments
and we obtain one equation for the second-order moment and one equation for the fourth-order
moment that read respectively [24]:

8”“’1 ///dwz 4Im le()}é(a)l—i—wg—wg—wzl), 4)
9334 .
120 st =L )
with — A(2) = N (2N (2)N0, (D) + N (DN (DNey (2) = Ny (2N, (2N () —

Na, (Z)Nw, (2)Nw, (2) and Ak = k(1) + K(wz) — k(w3z) — K(wa).
The usual way to proceed from this point in WT theory consists in integrating Eq. (5). The
exact solution of Eq. (5) reads:

332 =33 (ZZO)eiAkz+i;/Ode' N (2)e 1 MKZ-2), ©)

In problems usually treated in the framework of WT theor 9/ (for instance optical wave thermal-
ization or condensation), the dominant contributions to J;, (z) arises from the phase-matched

terms (Ak = 0). For Ak # 0, the contribution of the fast oscnlatlng function €' is considered
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as being non essential for propagation distances larger than 1/Ak. With these assumptions, one
obtains the following standard WT kinetic equation [10, 12, 24]

anglz(Z) :%///dwz"‘ﬂ/(zw(wﬂrwz*ws—co4)6(Ak) @)

Note that the statistics of the incoherent light wave at z = 0 has been sup-
posed gaussian so that the fourth-order moment Jfﬁ (z=0) can be factorized
into a product of second-order moments ((W(0,m1) (0, @) W*(0,m3) (0, 4)) =
N, (0) Ny, (0) [6 (1 — @3).8 (w2 — w4) + 6(w1 — w4).8(wp — @3)]). The fourth-order moment
is therefore a real quantity having a vanishing contribution when Eq. (6) is substituted into
Eq. (4).

As underlined by Zakharov in Ref. [8], the collision term found in the right-hand side of
Eq. (7) is identically equal to zero because the term .4"(z) vanishes as a result of the integration
over the Dirac delta functions. In opposition with two- or three-dimensional geometry, the
phase-matching conditions found in 1D scalar NLS equation only permit trivial interactions
among frequency components (i.e. w3 = w12 and ws = @y 1). This results in a collision term
that is identically equal to zero. Therefore the only possible way to describe an evolution of
Nw, in a one-dimensional geometry from WT theory consists in taking into account non-phase
matched interactions among frequency components (i.e. Ak £ 0).

In Ref. [23], Soh et al. have proposed a theoretical treatment of nonlinear propagation of an
incoherent light wave inside an optical fiber. Although full details of their calculation are not
explicitly given in Ref. [23], the way through which Soh et al. establish their kinetic equation
(Eq. (5) of Ref. [23]) can be easily understood from our previous considerations. Equation (6)
is simply substituted into Eq. (4) yielding the following kinetic equation with a collision term
including a cosine oscillating function (see also Eq. (5) of Ref. [23]):

INg, (2) %/Ozdzl///dwz_llﬁ/(z’) Ccos(AK(Z —2)) 8(w1+ w2 — w3 —a4)  (8)

0z

Taking into account non-phase matched interactions among frequency components, the treat-
ment proposed by Soh et al. in Ref. [23] therefore gives a kinetic equation including a collision
term that does not vanish in a straightforward way, contrary to the collision term usually ob-
tained from a standard treatment of WT theory [10, 12, 24].

Before undertaking our own analytical treatment of WT equations, let us examine some pre-
liminary results from numerical simulations of Eq. (1). Our numerical simulations of Eq. (1)
are made by using periodic boundary conditions and a standard pseudo-spectral step-adaptative
numerical scheme. In all the simulations of the NLS equation [Eq. (1)] presented in this pa-
per, the random phases ¢ (@) of the Fourier components of the field taken as initial condition
(v(z=0,0) = |y(z=0,)|€?(®)) are uniformly distributed between 0 and 27 [21]. More-
over the power spectra are computed from an average procedure made over an ensemble of 100
numerical integrations of Eq. (1).

Generally speaking numerical simulations of Eq. (1) show that the power spectrum of the
incoherent wave launched at z= 0 transiently changes from nonlinear propagation. It reaches a
statistical steady state after a transient stage whose duration and amplitude critically depend on
the shape of the power spectrum taken as initial condition. The most significant evolutions are
observed when the tails of the power spectrum decay more sharply than an exponential function
(i.e. for power spectra such as n,(z=0) = ngexp(—|®/Aw|*) with o > 1). This is illustrated
in Fig. 1 that shows power spectra (black lines) computed from numerical simulations of Eq. (1)
with the following gaussian power spectrum (dashed black lines) taken as initial condition:

n% =ny(z=0) = ny exp {— (Aa;)Z} = ny exp(—?). 9)
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With the definition Eq. (9), the half-width Aw at 1/e of the power spectrum is unity and with our
normalization, the parameter ny becomes a measure of the ratio between the linear dispersive
length Lp and the nonlinear length Ly : no = 2v/mLp/(LnL). As shown in Fig. 1, numerical
simulations of Eq. (1) evidence an irreversible evolution of the power spectrum of the inco-
herent light field. It reaches a statistical steady state after a short propagation distance that is
typically of the order of 0.1 in our dimensionless variables (i. e. z~ 0.1Lp ~ 0.2/(BA®?) in
physical units). The central part of the spectrum does not change much from nonlinear prop-
agation whereas the the wings of the spectrum are significantly modified. Their shape does
not remain gaussian but it becomes exponential. Let us emphasize that the power carried by
frequency components lying in the wings of the spectrum increases by several orders of mag-
nitude. Note that this phenomenon has already been illustrated in Ref. [23].

-10 -5 0 5 10-10 -5 0 5 10
0] (0]

Fig. 1. Numerical simulations. The gaussian power spectrum ne(z = 0) of the incoherent
light wave chosen as initial condition is plotted in dashed black line. The averaged spectrum
Nw(z=1) plotted in black line is obtained from the integration of Eq. (1) over an ensemble
of 1000 realizations. The spectrum ny (z= 1) plotted in red line is obtained from the numer-
ical integration of Eqgs. (4) and (5). The spectrum ng(z= 1) plotted in blue line is obtained
from the numerical integration of Eq. (12). Simulations plotted in (a) correspond to a linear
(kinetic) regime in which € = Hy/HL is equal to 0.05 (ng = 0.1, o = +1). Simulations
plotted in (b) correspond to a regime that is slightly more nonlinear: € = Hy./HL = 0.5
(np=1,0=+1).

In addition to the simulations of NLS equation [Eq. (1)], we have made numerical simulations
of Egs. (4) and (5). Figure 1 shows that Egs. (4) and (5) describe the changes occurring in the
wings of the power spectrum in a quantitative way over a great number of decades whatever
the value of ny (see spectra plotted in red lines in Fig. 1). As previously mentioned, ng is
proportional to the ratio between linear and nonlinear lengths. Changes in ny are therefore
associated with changes in the ratio € between the Hy. and Hy. (€ = Hni /HL). Figure 1(a) shows
that numerical simulations of Egs. (4) and (5) are in quantitative agreement with simulations of
Eq. (1) over more than 20 decades in the linear (kinetic) regime in which € = Hy. /HL ~ 0.05.
As shown in Fig. 1(b), this quantitative agreement is preserved over ~ 15 decades even in the
nonlinear regime in which e = Hy /HL ~ 0.5. Whatever the interaction regime explored in our
numerical simulations (i.e. from € ~ 0.01 to € ~ 1), the central part of the spectrum that carries
the essential of the power of the incoherent wave is not significantly modified from nonlinear
propagation.

In the theoretical analysis made in the present paper, we use the previous result and we
suppose that the power spectrum n,(z = 0) of the incoherent field only slightly changes with
propagation distance z. With this assumption, the term _4/(Z) in the integral of Eq. (6) is ap-
proximated by its value .4 (z=0) at z= 0 and it is extracted from the integral. Substituting

#146476 - $15.00 USD  Received 26 Apr 2011; revised 14 Jul 2011; accepted 24 Jul 2011; published 26 Aug 2011
(C) 2011 OSA 29 August 2011/ Vol. 19, No. 18/ OPTICS EXPRESS 17857



Eqg. (6) into Eq. (4), we obtain the following kinetic equation

anglz( _nz///dwz 4N (2 _O)W(S(wﬁwz W3 — ). (10)

If z>> 1/AKk, the function sini2kz) Eqg. (10) tends to the Dirac delta function 6(Ak) =
O (k(m)+k(m) —k(ws) —k(ws)) and the collision term found in the kinetic equation [Eq. (7)]
vanishes. However as long as z ~ 1/Ak, non-phase-matched interactions among spectral com-
ponents cannot be neglected. The collision integral found in Eq. (10) is not identically equal
to zero and changes in the power spectrum n,,, can be observed despite the integrability of the
wave system.

The theoretical analysis can be pursued by simplifying the kinetic equation [Eq. (10)] from
the integration over wy. This gives:

an sin
0)1 _ ”2 //d 74 % ) ( ) (11)
with Ak = k(1) + k(s + @0s — o) — k(wz) — k(ws) = 20 (01 — w3) (01 — @4). The term
M (z=0) is given by . (z=10) =), n&, nd, +n%, 0 0%\ o — N Mo N ey
N, N0, M0 4 oy, Where N, = ng, (z=0) (i = 1,3,4). Further simplification of the kinetic

equatlon can be achieved by considering that two parts of the collision term found in Eq. (11)
balance each other. We thus obtain:

8nw sin Akz o Sin(Akz)
1 - nz//dah, n° nmnwﬁw4 o //da)g, n Ny AK )

Power spectra plotted in blue lines in Fig. 1 are computed from numerical simulations of
Eq. (12). Figure 1(a) shows that our approximation is very good in the linear regime (np =
0.1, e = Hni/HL = 0.05). In the slightly nonlinear regime (Fig. 1(b) computed for np = 1,
€ = Hni/HL = 0.5, the approximation is less effective but a quantitative agreement with the
simulation of Eq. (1) is nevertheless preserved over ~ 8 decades. The first integral found in the
right-hand side of Eq. (12) mainly contributes to change occurring in the wings of the spectrum
whereas the second integral essentially contributes to changes occurring around the center of
the spectrum (i. e. around @ ~ 0). The aim of this paper is to study the deep quantitative
changes found in the tails of the spectrum (see Fig. 1). We now restrict our theoretical analysis
to the only study of this specific point (w1 >> Aw). The problem thus reduces to

8na, sin(Akz)
1 an//dag, n? nw4nw3+w4 RV (13)

If the power spectrum is initially gaussian (n% = ng,(z = 0) = npexp(—?)), the most dom-
inant contrlbutlons from the term n2,3 n?u4 n(()»3+w4 o, I the integral of Eq. (13) are obtained
for wz ~ g ~ 3 , Wp = —%. This specific point can be easily confirmed by introducing
the variables x = w3 — @1 /3 and y = w4 — @1 /3. Using the variables x and y, the function
N, N0, Mo oy 1S SIMPlY equal to N3 exp(2(x? + y? 4 xy)) exp(—? /3), which corresponds
to a peaked functlon localized around x =y = 0. With a gaussian power spectrum taken as ini-
tial condition, the growth rate of the power carried by a spectral component at a frequency
falling in the tails of the spectrum is determined by the interaction among spectral components
at frequencies +; /3 falling in the center of the gaussian spectrum. This result is not intuitive :
the evolution of the component at a frequency @, is not driven by degenerate four-wave mixing
among the pairs of frequencies (0,0) and (—a;y,+w1). Indeed, the dominant contribution cor-

responds to degenerate four-wave mixing among the pairs of frequencies (+®1 /3, +w1/3) and
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(—m1/3,+w1). Note that this result is valid for any initial spectrum with an hypergaussian
shape (i. e. Ny (z= 0) = ngexp(—w?P) where p > 0 is an integer)

Using an approximation commonly made with integral of oscillating functions, we consider
that the term Ak found in the denominator of Eq. (13) can be taken constant (Ak = 8c®?/9)
and we extract it from the integral. We thus obtain

ONg, (Z 9 .

312( ) o a7 //dwg,4 00, 10,10, sy SN2 (1 — w3) (01 — 02)2).  (14)

Keeping in mind that n% = n,, (z= 0) = ng exp(—?), the integral of Eq. (14) can be analytically

integrated. However the expression found at this step is complicated and further simplification

ca£1 be made by approximating the expression of Ak in the sine function of Eq. (14) by Ak ~
401

0 -3+ (a4 — w3). We finally obtain

(2 M 9 —w? 87\ . (8wiz
- _7\/§n8w12 exp = 1+ 9 sin 9 (15)

Equation (15) describes the growth of frequency components found in the tails of the spectrum
(o >> Aw) with propagation distance z For the sake of clarity, we rephrase its expression in
physical units:

Iy, (2) _ YmpAw® 9 —w? 8B%A0*Z2\\ . [(8Bw?z
0z = ar 8pa? 3\ 0 e (16)

with B = f32/2.

Equation (15) shows that the power n,, of a spectral component taken in the wings of the
gaussian spectrum grows with the propagation distance z. Moreover Eq. (15) shows that ng,
will reach a steady value after damped oscillations. This phenomenon is illustrated in Fig. 2
that shows the decaying oscillations of the power of two different spectral components. As
illustrated in Fig. 2, there is a good quantitative agreement between the results obtained from
the numerical integrations of Eq. (1) and of Eq. (15). Note that simulations of Eq. (1) have been
realized over an ensemble of 100 realizations and that the curves plotted with black lines in
Fig. 2 represent an averaged result. Note also that the decaying oscillations plotted in Fig. 2 are
those leading to the steady-state spectrum plotted in Fig. 1(a).

As shown by Eq. (15), the spatial period A ~ 497”% of the decaying oscillations is inversely

proportional to wlz. Rephrasing A in physical units, the spatial period of the oscillations is:

2
APYS ~ 97 (fu—‘f) Lp. Let us recall that these oscillations have their physical origin in transient

and non-phase-matched interactions among frequency components of the incoherent light field
(see Eq. (10)). The period of the oscillations is determined by the fact that the spectral compo-
nent at ; dominantly interact with the frequency components w3 ~ @4 ~ % and @y ~ —%.
In these conditions, the dominant spatial frequency Ak is around Ak = 8c®? /9. The damping
of the oscillations is given by the gaussian function in Egs. (15) and (16). It shows that the
damping length measuring the distance needed for the wave system to reach its steady state
scales as (BanAw) L.

We now carefully compare our results with those established by Soh el al in Ref. [23]. First
of all, Egs. (8) and (9) of Ref. [23] only provide an upper bound to the change of the power of
one frequency component. Rephrasing in a simplifying way the result obtained by Soh et al. in
Ref. [23], we have indeed:

‘ 9Ny (2)

< |BNa, (z=0)sinc(Q? 2)| 17)
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Fig. 2. Numerical simulations of Eq. (1) (black line) and of Eq. (15) (blue line) showing
the decaying oscillations of the power of two spectral components taken in the wings of the
spectrum plotted in Fig. 1(a). The initial condition is the gaussian power spectrum plotted in
Fig. 1(a) (np = 0.1, o = +1). In (a), the spatial period A ~ 4% of the decaying oscillations
is close to 1.96.10~2 for a spectral component at the frequency o = 6. In (b), the period
decreases to A ~ 1.44.10~2 for a spectral component at the frequency o = 7.

where B in a parameter depending on y and R, in a way that does not need to be explicited for
our discussion. According to Soh et al., Q is a constant quantity defined as the “averaged root-
mean squared full optical bandwidth”. With the averaging procedure proposed by Soh €l al, the
upper-bound |Bsinc(§22 z)| is an oscillating and decaying function of z that is independent of
. In our detailed analysis, we have shown that spectral components at frequencies w; falling
in the wings of the spectrum relax to the statistical steady state from damped oscillations whose
properties (period and damping rate) fundamentally depend on the frequency ;.

Let us conclude Sec. 2 by a brief discussion about the influence of the sign of ¢ on the mean
spectra found from numerical integration of Eq. (1) (see Fig. 1). The results determined above
from WT theory are inherently insensitive to the sign of o in linear (kinetic) regime (¢ << 1).
In the linear regime, coherent structures such as solitons do not emerge from the propagation
of incoherent waves. Moreover the frequencies at which modulational instability can appear in
anomalous dispersion regime are localized in the vinicity of the center of the spectrum. In other
words, modulational instability does not influence the growth of the tails of the spectrum in the
linear regime. We have checked this behavior from numerical integration of Eq. (1) and mean
spectra of Fig. 1(a) do not depend of the sign of o in this linear regime (e = 0.05).

In the slightly nonlinear interaction regime in which € = 0.5 (see Fig. 1(b)), numerical sim-
ulations of Eq. (1) contrarily show that the mean spectrum n,(z= 1) depends on the sign of ©.
Numerical simulations made in the anomalous dispersion regime (o = —1) show that the mean
spectrum ng(z= 1) reached at z= 1 is broader than the one plotted in black line in Fig. 1(b)
for the normal dispersion regime (o = +1). This feature can be interpreted from the fact that
soliton-like structures and modulational instability begin to play a role in the anomalous disper-
sion regime at € = 0.5. We have shown that our analytical results obtained from kinetic theory
are still in good agreement with numerical integration of NLS equation [Eq. (1)] at € = 0.5
(see Fig. 1(b)). In other words, the range of values of € = Hy/H. over which WT theory pro-
vides results that are quantitatively correct is wider in the normal dispersion regime than in the
anomalous dispersion regime.

3. Experiments

In this section we present experimental results showing the transient changes in the spec-
trum that have been theoretically predicted and studied in Sec. 2. Our experimental setup is
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schematically shown in Fig. 3. The light source delivering a partially-coherent field is a home-
made Nd:YVO4 continuous-wave laser. The laser is linearly-polarized and its central emission
wavelength of ~ 1064 nm is far from the zero-dispersion wavelength Aq of the optical fiber
(Ao ~ 1400 nm). The laser optical power spectrum has a full-width at half maximum (FWHM)
of ~ 0.15 nm (i.e. ~ 36 GHz). Observing the time evolution of the laser power with a photo-
diode having a bandwidth much greater than the free spectral range Avegr of the laser cavity
(Avesr ~ 150 MHz), we did not notice any significant changes in the laser power on time
scales of the order of 1/Avegr. We conclude that the laser output is made of approximately 200
longitudinal modes with phases that can be considered as being uncorrelated.

Let us explain why we have chosen to use a Nd:YVO4 laser rather than a more highly mul-
timode laser like a Ytterbium-doped fiber laser [21]. As discussed in Sec. 2, the duration and
the amplitude of the transitory evolution of the light power spectrum significantly change with
the shape of the power spectrum of the incoherent light wave launched inside the optical fiber.
Our Ytterbium-doped fiber lasers have power spectra that do not decay in a sharp way. On the
other hand, our homemade Nd:YVO4 laser has a power spectrum that decay sharply enough to
observe transient changes discussed in Sec. 2.

The power of the laser light is controlled by adjusting a half-wave plate (HWP1) placed
between the Nd:YVO4 laser and a Faraday isolator. The laser light is launched inside a 1.5
km-long single-mode polarization-maintaining fiber (PMF). The polarization direction of the
input light is adjusted along one of the birefringence axes of the PMF by using another half-
wave plate (HWP2). In our experiments, the light wave remains linearly polarized all along the
PMF and the extinction ratio between the two axes is greater than 20 dB. The nonlinear Kerr
coefficient of the PMF is y =6 W~km~! and its second-order dispersion coefficient is B, = 20
ps? km~1 at 1064 nm.

Nd:YVO4 ‘ f f ‘ ?
'

Faraday

isolator 1.5 km—-long
polarization—maintaining
single—-mode fiber

Fig. 3. Shematic representation of the experimental setup. HWP: half-wave plate. OSA:
optical spectrum analyzer.

In our experiment, we want to investigate the linear (kinetic) regime in which only the wings
of the spectrum are modified from nonlinear propagation inside the PMF (¢ = HyL /HL << 1).
Up to now, only the nonlinear interaction regime has been explored in experiments (e =
Hni/HL >> 1) [21]. In the nonlinear interaction regime, the power spectrum of the incoherent
wave undergoes deep changes affecting its wings but also its central part. In other words, the
FWHM of the power spectrum significantly changes in nonlinear interaction regime (see Fig. 2
of Ref. [21]). For incoherent light waves with wavelength around 1um and with spectra spread-
ing over ~ 1 nm, the nonlinear interaction regime in a standard singlemode fiber typically refers
to optical powers around ~ 1 W [21]. The linear regime that we want to explore corresponds to
optical powers typically lower than ~ 1 mW. As illustrated in Fig. 1(a), the changes occurring
in the wings of the power spectrum in the linear interaction regime involve spectral compo-
nents carrying an optical power that is typically 10 times (equivalently 100 dB) lower than
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the power of spectral components lying in the center of the spectrum. The possibility to explore
the linear interaction regime therefore critically depends on the sensitivity and the dynamic
range of the optical spectrum analyzer (OSA) used in the measurement.

In our experiment, the output end of PMF is directly connected to the OSA (Ando AQ6317B).
With the setup arranged in this way and using the highest degree of sensibility of the OSA, we
have observed changes that can be undoubtedly associated with the effects discussed in Sec. 2
for an optical power of ~ 12 mW at the output of the PMF. At this level of optical power, our
experiment corresponds to a weakly nonlinear regime in which € = Hy./HL ~ 1. To explore
the linear interaction regime, the optical power should be decreased by at least one order of
magnitude but the detection of the slight changes occurring in the wings of the spectrum then
becomes impossible with our OSA.

Fig. 4. (a): Power spectra recorded in experiments (black lines) and obtained from nu-
merical simulations of Eq. (1). The narrow spectrum plotted in black line is the spec-
trum of the Nd:YVO4 laser launched inside the PMF. The wide spectrum plotted in
black line is the spectrum recorded at the output of the PMF. In numerical simulations,
the incoherent wave taken as initial condition has a power spectrum approximated by
N =ng(z=0)=ng exp(—(%)*) (A=0.73, ng = 4.72, 6 = +1) (b): Numerical simula-
tions of Eq. (1) (red lines) and Eq. (12) (blue line). Spectra plotted in red lines are identical
to those plotted in (a).

Figure 4 shows that the power of spectral components falling in the wings of the spectrum
has increased with propagation distance whereas the central part of the power spectrum has not
changed. Let us emphasize that the experiment only permits to explore the first stage of transient
regime corresponding to a monotonic growth of the power carried by spectral components
falling in the tails of the spectrum. In particular, we have not been able to observe damped
oscillations of the power of these frequency components by using our setup (see Fig. 2).

Figure 4(a) shows that behaviors observed in the experiment are also found in numerical
simulations of Eq. (1). In these simulations, the power spectrum of the field taken as initial
condition is approximated by an hyper-gaussian profile n, = n,(z=0) = ng exp(—(2)*%). The
value of the parameter A is adjusted to get the best fit between the hyper-gaussian profile and the
experimental profile. As shown in Fig. 4(a), the power spectrum found in numerical simulations
of Eqg. (1) is in good quantitative agreement with the power spectrum recorded in experiments.
Despite the fact that the experiment is made in a slightly nonlinear regime (¢ = Hy. /HL ~ 1), a
quantitative agreement over approximately four decades is obtained between numerical results
computed from the integration of simplified kinetic Eq. (12) (blue line in Fig. 4(b)) and numer-
ical results computed from integration of Eq. (1) (red lines in Fig. 4(b)). We have also made
additional numerical simulations in order to study the influence of the exact shape of the laser
power spectrum on the shape of the spectrum found at the output end of the PMF. As shown in
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Fig. 4(a), the power spectrum of the NdYVO4 laser is well fitted by an hyper-gaussian profile
over approximately two decades but its tails deviates from this profile. Numerical simulations
show that these deviations do not significantly influence the spectrum found at the output of the
PMF. This can be understood by recalling that the evolution of the tails of the spectrum is only
determined by the interaction among spectral components lying in the center of the spectrum
(see Sec. 2)

4. Conclusion

In this paper, we have studied the nonlinear evolution of incoherent light waves whose propaga-
tion is governed by the integrable 1D scalar NLS Eq. (1). We have revisited an approximation
usually made in WT theory for the study of problems such as optical wave thermalization or
condensation. We have considered that the fourth-order moment of the field is not necessarily
a stationary quantity. With the additional assumption that the power spectrum of the field does
not change much with propagation distance, we have derived a kinetic equation governing the
evolution of the second-order moment of the field. Contrary to the conventional WT Kinetic
equation, the collision term does not vanish, but relaxes rapidly to zero. In spite of such a fast
relaxation, the spectrum of the field may exhibit significant changes depending on the initial
conditions. Considering Gaussian-shaped initial conditions, we have shown that the evolution
of the spectrum is characterized by a rapid growth of the spectral tails, their subsequent damped
oscillations, and their ultimate relaxation toward the steady state. Using WT theory we have
derived an analytical expression of evolution of the spectrum, whose damped oscillations have
been found in agreement with the numerical simulations of both the NLS and kinetic equa-
tions. In particular, we have established a simple analytical expression for the spatial period
of the damped oscillations. Experiments made with a cw laser emitting multiple longitudinal
modes have evidenced the rapid growth of frequency components located in the tails of the
spectrum.

Various theoretical and experimental developments can be made from the present work. the
theoretical analysis presented here has been restricted to incoherent optical waves having power
spectra that are initially gaussian. Further works are needed to understand the exact role taken
by the shape of the power spectrum in the transient evolution leading to the steady state. From
the experimental point of view, additional work is also needed to design and make an experi-
ment that would permit to explore the linear Kinetic regime. In this respect, the experimental
observation of the damped oscillations found in this regime represents a striking challenge.
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