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ABSTRACT
Dynamic reconfiguration is the action of modifying a soft-
ware system at runtime. Several works have been using ar-
chitectural specification as the basis for dynamic reconfi-
guration. Indeed ADLs (architecture description languages)
let architects describe the elements that could be reconfig-
ured as well as the set of constraints to which the system
must conform during reconfiguration. In this work, we in-
vestigate the ADL literature in order to illustrate how recon-
figuration is supported in four well-known ADLs: π-ADL,
ACME, C2SADL and Dynamic Wright. From this review,
we conclude that none of these ADLs: (i) addresses the issue
of consistently reconfiguring both instances and types; (ii)
takes into account the behaviour of architectural elements
during reconfiguration; and (iii) provides support for as-
sessing reconfiguration, e.g., verifying the transition against
properties.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

Keywords
dynamic reconfiguration, software architecture, architecture
description language, ADL, π-ADL, ACME, C2SADL, Dy-
namic Wright

1. INTRODUCTION

CAL’2012 6ème Conférence francophone sur les architectures logicielles,

Montpellier, France

The disciplined software engineering relies on software ar-
chitectures to describe systems [3]. For modeling a software
architecture, the academy proposed the architecture descrip-
tion language (ADL) and their toolsets [10, 18, 29]. Also,
the industry has used ADLs to develop systems. Industry
examples are (i) π-ADL has been used to architect and refine
federated knowledge management systems in Engineering
Ingegneria Informatica - Italy [22]; (ii) and AADL (Archi-
tecture Analysis & Design Language) is a standard language
for the Society of Automotive Engineers [30]. According to
the state-of-the-art [3, 18, 19, 29], the following concepts are
relevant to describe software architectures: components and
connectors (respectively computational and communication
elements), architectural constraints, non functional proper-
ties, and behaviour.

Software systems evolve over their life time [5, 21, 26]. Dy-
namic reconfiguration is when the evolution is performed at
runtime with no service disruption. The dynamic reconfigu-
ration can be handled by architectural concepts in an ADL.
However among many existing ADLs, only few allow model-
ing dynamic reconfiguration. π-ADL [23], ACME/Plastik [4,
13], C2SADL [16, 27], DAOP-ADL [28], Darwin [15], Dy-
namic Wright [1, 2], Rapide [32], Weaves [25], and xADL [8]
are typical examples. Nevertheless, there is no current con-
sensus about how ADLs should address reconfiguration, e.g.,
what language constructs should be provided.

In this work, the goal is twofold: (i) to investigate the ADLs
support for handling dynamic reconfiguration in the litera-
ture; and, (ii) to illustrate how four well-known ADLs sup-
port dynamic reconfiguration: π-ADL, ACME, C2 SADL
and Dynamic Wright. We chose these four languages be-
cause they rely on different paradigms: the higher order
typed π-calculus [23], first order predicate logic [11], compo-
nent- and event-based [31, 16], and, graph grammars and
communicating sequential processes (CSP) [2, 1], respec-
tively. They also complement each other as π-ADL models



(a) TCP/IP Stack (b) TCP/IP Configuration

Figure 1: simplified version of the TCP/IP stack
system.

the behavior of architectures, ACME focuses on the struc-
ture, C2SADL make the attention for components and their
concurrent events, and Dynamic Wright supports the defi-
nition of structure and behavior.

This work is structured as follows. Section 2 motivates this
work thanks to the example of a TCP/IP stack system.
Three scenarios illustrate three facets of dynamic recon-
figuration. Section 3 presents the basics concepts of soft-
ware architecture and dynamic reconfiguration. Section 4
details the related works about dynamic reconfiguration at
the architecture level. Section 5 compares the four above-
mentioned ADLs in the light of our example of Section 2.
Section 6 concludes the paper with open issues that we note
in the ADL support for dynamic reconfiguration.

2. MOTIVATION
Dynamic reconfiguration aims at modifying the software sys-
tems at runtime with no service disruption. Critical systems
usually want to benefit of a dynamic reconfiguration because
any service disruption may have substantial consequences.
Examples of critical systems are stock market quotation sys-
tems, telecommunications systems, safety systems, and air
traffic control systems. However, there is no current con-
sensus about how the software architecture should address
dynamic reconfiguration at architecture level. Does regular
syntax for dynamic architectures allow the same reconfig-
urations as specific language constructs? Should the state
of components and connectors be taken into account at the
architecture level?

To support this work, we rely on a simplified version of the
TCP/IP stack (Fig. 1(a)). Each of the four layers (Ap-
plication, Transport, Internet, and Link) is modeled as a
component (Fig. 1(b)).

We consider the three following reconfigurations:

1. Switch the application component. Assume two alter-
natives: MPEG-Decoder and H263-Decoder. MPEG-
Decoder is used if bandwidth is high (Fig. 2(a)). Oth-
erwise H263-Decoder is selected (Fig 2(b)). Switching
between MPEG and H263 starts a new stream. There-

(a) High bandwidth (b) Low bandwidth

Figure 2: scenario 1 to illustrate changing the com-
ponent.

(a) IPv4 (b) IPv6 replaces IPv4

Figure 3: scenario 2 to illustrate insertion of com-
ponent.

fore, no state in the decoder needs be kept. We can
therefore replace one component by another.

2. Insertion of a new component type. Presume that the
Internet Protocol version 6 (IPv6) replace the version
4 (IPv4) (Fig. 3(b)). The IPv6 component has back-
ward compatibility with the IPv4 component. So it
has the ports for both IPv4 (for compatibility reason)
and for IPv6 (new feature). Therefore, the type of the
component at the internet layer is changed: it has 2
additional ports.

3. Update a component type. Assume that the algorithm
of error control of the Transport component is im-
proved. When the error control algorithm is changed,
the new behaviour needs to know the status of each
packet (acknowledged, sent, timeout, ...) as well as
the content of non-acknowledged packets (in order to
resend them). Therefore, only the behaviour part of
the component should be replaced. The state of the
component should be unchanged.

These scenarios cover a wide spectrum. They can either be
programmed at design-time or be discovered at run-time.
They feature reconfiguration at both type and instance level.



They target both the structure and the behaviour of the ar-
chitecture. We investigate the ADLs literature in order to
illustrate how reconfiguration is supported in these scenar-
ios.

In this paper, we focus on four ADLs that are representative
of the main trends. Each ADLs complement the other. The
complement at the sense for describing an initial architecture
as well as dynamic reconfiguration. We choose π-ADL be-
cause it provides both description with behaviours thanks to
its π-calculus roots. Whilst the ACME/Plastik is a declar-
ative language with focus on the architecture structure for
both descriptions. While C2SADL is used to compose archi-
tectures based on component and dynamic reconfiguration
based on architectural events. Finally, Dynamic Wright pro-
vides support for architectural description based in graph-
grammars and dynamic reconfiguration specification with a
variant of Communicating Sequential Processes (CSP).

3. UNDERLYING CONCEPTS

Software architecture concepts. Software architectures
describe systems by specifying their elements and the in-
teractions between them [3, 29]. In this work, we use the
basics concepts defined in [10, 18, 29]: a component is an
unit of computation and storage; a connector is an unit of
communication; and, a configuration is a specification of a
software architecture in terms of components, connectors,
and relationship between them.

Ports, roles, behaviours, constraints, and non-functional pro-
perties are other concepts defined in [10, 18, 29] used to de-
scribe these architectural elements. Ports and roles are used
to define the way of interaction, ports for configurations and
components, and roles for connectors. Behaviours are the
architectural element internal computation. And the last
two concepts, constraints and non-functional properties, are
used to denote the assertions, invariants, quality of service
that architectural elements are expected to meet.

Also, we consider types and instances of configurations, com-
ponents, and connectors for modelling a software architec-
tures [18, 29]. The types are abstractions like classes in
the Object-Oriented Paradigm which encapsulate both the
structure and the behaviours that can be performed on its
structure. These types will be used to build the instances
and these instances will be used to describe software archi-
tectures.

Fig. 4 illustrates in ACME the basics concepts with our ex-
ample TCP/IP stack system (Sec. 2 Fig. 1(b)) at instance
and type level. The types are defined in the Family state-
ment block (lines 1-18) while the instance level in System
(lines 20-30).

Dynamic reconfiguration concepts. A dynamic reconfig-
uration is a set of operations to modify an existing config-
uration at runtime. At the software architecture level, the
operation is defined in terms of the architectural elements
at type or instance level. Scenario 1 is an example of recon-
figuration at the instance level (MPEG and H263 share the
same type); and scenario 2 is an example of reconfiguration

1 Family TCPIP_MF {
2 . . .
3 Connector Type TCPIP_Conn2Layers {

4 ProvidedRole source;
5 RequiredRole sink;

6 };
7 Component Type TCPIP_Component {

8 Port Type DataFrom extends ProvidedPort with {};
9 Port Type DataTo extends RevidedPort with {};

10 Property Type Layer = enum{application, transport, internet,

link}
11 };

12 Component Type TCPIP_Application extends TCPIP_Component
with {

13 Port dataReceivedFromTransport: DataFrom;

14 Port requiredService: DataTo;
15 Property layer = "application";

16 };
17 . . .

18 }
19

20 System DecoderStream : TCPIP_MF = new TCPIP_MF extended with {

21 Component application : TCPIP_Application;
22 Component transport : TCPIP_Transpot;

23 Component internet : TCPIP_Internet;
24 Component link : TCPIP_Link;
25

26 Connector

27 application2transport, transport2internet, internet2link:

Conn2Layers;
28 Attchments {

29 application.requiredService to application2transport.source;
30 application2transport.sink to transport.service;
31

32 transport.requiredService to transport2internet.source;
33 transport2internet.sink to internet.service;

34

35 internet.requiredService to internet2link.source;
36 internet2link.sink to link.service;

37 }
38 . . .

39 }

Figure 4: Simplified version of TCP/IP stack system
in ACME ADL.

at the type level (IPv6 extends the type of IPv4).

Also, the dynamic reconfiguration can be foreseen or unfore-
seen [12]. The foreseen is a programmed dynamic reconfig-
uration specified at design time. While the unforeseen is an
ad-doc defined at runtime. Example of foreseen and unfore-
seen is the scenario 1 and 3, respectively. In the scenario 1,
the architect specify at design time that the system modify
itself when the bandwidth change. Whereas the behaviour
improvement is built at runtime as defined in scenario 3.

4. RELATED WORK
Medvidovic and Taylor [18] created a classification frame-
work based on architectural elements and illustrated them
with the following ADLs: ACME, Aesop, C2, Darwin, Me-
taH, Rapide, SADL, UniCon, Weaves, and Wright. How-
ever, this work has no focus on the dynamic reconfiguration.
Hence, its discussion about dynamic reconfigurations is lim-
ited, e.g. all ADLs were assessed only at the instance level,
not at the type level.

Kacem et al. [14] described the capabilities of Darwin, Arch-
Java, Olan, Rapide, Wright, and ACME to support dynamic
reconfiguration. They classify the ADLs as configuration
and description language. The configuration language sup-



ports the description of a software system and limited dy-
namic reconfigurations, while the description language sup-
ports the specification of modifications to be applied to an
existing architecture. Despite this work focus is on dynamic
reconfiguration, it also presents some limitations such as the
fact that the evolution is applied only at instance level and
do not take into account the behaviour of the architectural
elements.

Bradbury [7] and Bradbury et al. [6] proposed a framework
to compare fourteen formal specification approaches which
support dynamic software architectures. Amongst the cri-
teria, Bradbury et al. considered the basic operations, how
they can be composed and whether they apply to variable
sets of architectural element types. About the basic opera-
tions (addition and removal of components and connectors),
Bradbury et al. showed that most approaches support them.
Also, they considered the criterion of operations composition
(basic1, sequence, choice, and iteration). Only 3 approaches
(CommUnity, Dynamic Wright, and Gerel) provide full sup-
port while the other only support basic composition. Finally,
Bradury et al. mentioned that all approaches support only
the types of architectural elements defined prior runtime,
fixed sets of architectural elements.

While ADL surveys have reached good understanding of the
concepts underlying software architectures (Medvidovic and
Taylor [18]), this is not true regarding dynamic reconfig-
uration at the architecture level. Even Bradbury [7] and
Bradbury et al. [6], probably the most complete surveys,
do not consider operations such as insertion of configuration
and behaviour modification. They do not recognize link and
unlink as basic operations. However, they present the ex-
amples of these operations on some approaches, like Gerel
and C2SADL. Considering the scenarios of section 2, these
related works address only the first scenario (partially) but
not the two last. Consequently, it is clear that to discuss
the three scenarios presented in section 2 is essential to have
a better understanding of the dynamic reconfiguration is-
sues. These scenarios consider both instance and type lev-
els, the basic operations include configurations, components,
and connectors, as well as their structures and behaviours.

5. COMPARISON OF 4 ADL

5.1 Applying the example in ADLs
In this subsection, we describe the scenarios defined in Sec. 2
in all four ADLs: π-ADL (subsection 5.1.1), ACME/Plas-
tik (subsection 5.1.2), C2SADL (subsection 5.1.3), and Dy-
namic Wright (subsection 5.1.4). For each ADL we show
the purpose, the TCP/IP stack system, a solution for three
scenarios, and discussion about this implementation.

5.1.1 π-ADL

Purpose of the ADL. π-ADL is based on π-calculus and
it is designed to describe the concurrent and mobile sys-
tems [23]. The description of architectural elements is mainly
represented by ports and behaviour.

1Basic composite operation is the ability to group basic op-
erations for reconfigurations.

Dynamic reconfiguration support. This ADL provides
support for foreseen and unforeseen dynamic reconfigura-
tion. The foreseen can be described in the behaviour of any
architectural elements. While unforeseen needs some sup-
port, e.g., in the Virtual Machine (VM), in order to obtain
a root reference to the reconfigured system. In ArchWare,
this issue is addressed by the deep intrication between the
toolset (including the visual and textual editors) and the
VM thanks to the hyper-code technology [24].

Initial architecture. The implementation of TCP/IP stack
system is shown in Fig. 5. The configuration is composed at
lines 1-18 basically with a behaviour, statement behaviour

is ... where ...! (lines 2-17). This architectural behaviour
defines the instances of components (lines 3-6) and connec-
tors (lines 7-9). The statement where in behaviour specifies
the connections between components and connectors (lines
11-16). The example of component TCPIP_Application is
partially showed at lines 20-35: two ports and a behaviour.
The component behaviour is implemented with two internal
methods (lines 24-25) and the definition of communication
between its ports (lines 27-33).

Scenario 1. The implementation of scenario 1 in π-ADL is
composed by a component that performs the dynamic re-
configuration (Fig. 6). This component has two parameters:
the application component and the system component. Both
are represented as a behaviour. The application component
is a MPEG-Decoder or H263-Decoder.

Still, this component is structured with seven“variables”and
a behaviour, lines 2-4 and 5-27, respectively. The variables
are used for behaviours of components and connectors. To
perform the modification, the behaviour component use the
following steps: 2 decomposition the system behaviour (line
6); assign the behaviours to variables (lines 8-14); compose
a new system behaviour (lines 16-26) with a replaced appli-
cation component (line 20).

Scenario 2. The implementation for the unforeseen sce-
nario 2 is shown in Fig. 7. This code is applied in a system at
runtime to deploy the two new component “type”. First, the
component type is a new protocol IPv6 (lines 1-3), and the
second is a component to perform dynamic reconfiguration
(lines 4-32). In order to execute this dynamic reconfigura-
tion two steps are applied: (i) to obtain the root behaviour
of the system, and (ii) to invoke the computation of the
reconfiguration component. Both operations are aided by
toolset and hyper-code.

The code of the reconfiguration component is described us-
ing the following steps: (i) to decompose the behaviours

2Decomposition, modification, and composition is a process
provided by the ArchWare Virtual Machine. This facility is
possible: take a snapshot of the system or a specific com-
ponent/connector, both represented as a sequence of be-
haviour; make a modification; and, compose again the be-
haviour with new composition. When it is composed, the
ArchWare Virtual Machine automatically updates the sys-
tem.



1 archictecture TCPIP is abstraction() {
2 behaviour is compose {
3 application is TCPIP_Application()

4 and transport is TCPIP_Transport()
5 and net is TCPIP_Internet()

6 and link is TCPIP_Link()
7 and app2transp is Conn2Layers()

8 and transp2net is Conn2Layers()
9 and net2link is Conn2Layers()

10 } where {

11 appliation::request unifies app2transp::source
12 and app2transp::sink unifies transport::service

13 and transpost::request unifies transp2net::source
14 and transp2net::sink unifies net::service
15 and net::request unifies net2link::source

16 and net2link::sink unifies link::service
17 }

18 }
19

20 component TCPIP_Application is abstraction() {
21 port service is { ... }.
22 port request is { ... }.

23 behaviour is {
24 processRequest is function(d: DataType):DataType {

unobservable}.
25 processResponse is function(d:DataType):DataType {

unobservable}.

26

27 choose {

28 via service::wait receive entryData: DataType.
29 via request::call send processRequest(entryData).

30 or

31 via request::response receive replyData: DataType.
32 via service::reply send processResponse(replyData).

33 }
34 }

35 }
36

37 component TCPIP_Transport is abstraction() { ... }

38

39 component TCPIP_Internet is abstraction() { ... }

40

41 component TCPIP_Link is abstraction() { ... }

42

43 connector Conn2Layers is abstraction() {
44 ...

45 port source is { ... }
46 port sink is { ... }

47

48 behaviour is { ... }

49 }

Figure 5: Partial specification of the TCP/IP stack
system in π-ADL.

of the system in components and connectors (lines 9); (ii)
to assign to “variables” the instances of components that
represent application, transport, and link (lines 11-13); (iii)
to attribute connectors to “variables” (lines 15-17); (iv) to
compose a new system behaviour (lines 19-30) with a new
instance of the protocol IPv6 component (line 21). As in
the scenario 1, when performing a new composition, the be-
haviour of the system is automatically updated.

Scenario 3. In the scenario 3 it is also used the process
of decomposition, modification, and composition, as showed
above. We use the ArchWare Virtual Machine facility to get
a reference to the root of the target Transport component.
After, we make a modification into the behaviour of the com-
ponent. At last, the ArchWare Virtual Machine synchronize
the system with this modification.

1 component reconfiguration is abstraction(application:
Behaviour, system: Behaviour) {

2 behaviours : sequence[Behaviour].

3 transport : Behaviour. net : Behaviour. link : Behaviour.
4 app2transp : Behaviour. transp2net : Behaviour. net2link :

Behaviour.
5 behaviour is {

6 behaviours := decompose system.
7

8 transport := behaviours::1::bhvr.

9 net := behaviours::2::bhvr.
10 link := behaviours::3::bhvr.

11

12 app2transp := behaviours::4::bhvr.
13 transp2net := behaviours::5::bhvr.

14 net2link := behaviours::6::bhvr.
15

16 compose {
17 application and transport and net and link

18 and app2transp and transp2net and net2link
19 } where {
20 appliation::request unifies app2transp::source

21 and app2transp::sink unifies transport::service
22 and transpost::request unifies transp2net::source

23 and transp2net::sink unifies net::service
24 and net::request unifies net2link::source
25 and net2link::sink unifies link::service

26 }
27 }

28 }

Figure 6: Implementation of scenario 1 in π-ADL.

Summary of π-ADL. With these implementations, some
issues are identified on π-ADL support for dynamic recon-
figuration:

1. changing types needs external help, e.g. toolset, hyper-
code and π-ARL. Toolset and hyper-code are used for
capturing, specifying the changes, and applying the
changes. While π-ARL is a language to specify refine-
ments in the system;

2. instances modifications can be specified in architec-
tural elements or also with toolset and hyper-code help.
At first, usually the dynamic reconfiguration is tangled
with nominally behaviour. However, we used other ap-
proach with a specific component to specify dynamic
reconfiguration;

3. For the third scenario, the π-ADL do not provide a
mechanism to design the intermediate states for updat-
ing the instances with the improvement of behaviour.
However, if we use the π-ARL approach, we can have
better control;

4. Also with π-ARL is possible build constraints and non-
functional properties for architectural elements. How-
ever, it’s not used to assess dynamic reconfiguration.

5.1.2 ACME ADL and Plastik

Purpose of the ADL. ACME/Armani is a declarative lan-
guage based on the first-order predicate logic [11, 20]. Its
initial purpose was to define a common interchange lan-
guage for architecture design tools. Also, its statements
are designed to describe the architectural structures at in-
stance and type levels. The extensions [4, 13] to support dy-
namic reconfiguration preserves these initials purpose, and



1 component TCPIP_IPv6 is abstracion() {
2 ...
3 }

4 component reconfiguration is abstraction(system: Behaviour)
{

5 behaviours : sequence[Behaviour].
6 application: Behaviour. transport : Behaviour. link :

Behaviour.
7 app2transp : Behaviour. transp2net : Behaviour. net2link :

Behaviour.

8 behaviour is {
9 behaviours := decompose system.

10

11 application := behaviours::0::bhvr.
12 transport := behaviours::1::bhvr.

13 link := behaviours::3::bhvr.
14

15 app2transp := behaviours::4::bhvr.
16 transp2net := behaviours::5::bhvr.

17 net2link := behaviours::6::bhvr.
18

19 compose {

20 application and transport and link
21 and net is TCPIP_v6

22 and app2transp and transp2net and net2link
23 } where {
24 appliation::request unifies app2transp::source

25 and app2transp::sink unifies transport::service
26 and transpost::request unifies transp2net::source

27 and transp2net::sink unifies net::service
28 and net::request unifies net2link::source

29 and net2link::sink unifies link::service
30 }
31 }

32 }

Figure 7: Implementation of scenario 2 in π-ADL.

are named as ACME/Plastik. Thereafter, any configuration
and dynamic reconfiguration specified using this extension
(ACME/Plastik) are based on the structure of an architec-
ture.

Dynamic reconfiguration support. ACME/Plastik per-
mits to describe foreseen and unforeseen dynamic recon-
figuration. To unforeseen reconfiguration it is possible to
describe as a specific behaviour of a configuration with the
on (conditional_expression) do {operations} statement.
Unforeseen reconfiguration can be expressed in a script that
will be applied in the system at runtime aided by a toolset
provided by the Plastik framework. Both, operations and
script are composed with ACME statements and its ACME/-
Plastik extension. The conditional expression is composed
in the Armani language [20].

Initial architecture. The example of the TCP/IP stack
system in ACME is showed in Fig. 4. The types are spec-
ified in the Family statement while the instances are in
the System statement. For types, a connector (lines 3-6)
and two components (lines 7-11 and 12-16) are implemented
as example. The configuration is composed by the compo-
nent instances (lines 21-24), connector instances (lines 26-
27), and the connections between them (lines 28-37).

Scenario 1. The implementation in ACME/Plastik of sce-
nario 1 is showed in Fig. 8. The configuration is named

1 System StreamDecoderSystem : TCPIP_MF, PlastikMF {
2 Component mpeg−decoder : TCPIP_MpegDecoder = new

TCPIP_Application extend with {

3 property decoder−type = "MPEG";
4 property algorithm = ...;

5 }
6 Component h263−decoder : TCPIP_H263Decoder = new

TCPIP_Application extend with { ... }
7 // other instances of component and connector
8 ...

9 // initial attachments
10 ...

11 // programmed dynamic reconfiguration to low bandwidth
12 on (link.bandwidth == ’low’) do {
13 detach mpeg−decoder.requiredService to application2transport.

source;
14 detach transport2application.sink to mpeg−decoder.

dataReceivedFromTransport;
15 attachments {

16 h263−decoder.requiredService to application2transport.source
;

17 transport2application.sink to h263−decoder.

dataReceivedFromTransport;
18 }

19 }
20 // programmed dynamic reconfiguration to high bandwidth
21 on (link.bandwidth == ’high’) do {

22 detach h263−decoder.dataTo to application2transport.source;
23 detach transport2application.sink to h263−decoder.

dataReceivedFromTransport;
24 attachments {

25 mpeg−decoder.requiredService to application2transport.source
;

26 transport2application.sink to mpeg−decoder.

dataReceivedFromTransport;
27 }

28 }
29 }

Figure 8: Implementation of scenario 1 in ACME/-
Plastik.

with StreamDecoderSystem and it extends the TCPIP_MF

and PlastikMF. The TCPIP_MF is showed in Fig. 4 while
Plastik_MF in [4, 13]. Such configuration consists of: the
insertion of two new components (type and instance) in lines
2-5 and line 6; the instantiation of components and connec-
tors (omitted with comment and ... in lines 7-8); the linking
of components and connectors (omitted with comment and
... in lines 7-8); and the specification of two dynamic recon-
figuration situations, lines 12-19 and 21-28.

Both dynamic reconfigurations use the same similar descrip-
tion. First, the conditional expressions are link.bandwidth

== ’low’ and link.bandwidth == ’high’. Second, the
operations are described as two unlinking (lines 13-14, 22-
23) and one linking (lines 15-18, 24-27) statements. These
operations specified the replacement of an instance of the
component.

Scenario 2. The scenario 2, an unforeseen insertion of a
new component type, is describe with an ACME/Plastik
script in Fig. 9. For this scenario, the script is composed by:
the insertion of a type and instance of a component (lines
1-3), the unlinking of the old component instance (lines 5-6)
and the linking of the new component (lines 7-10).



1 Component ipv6 : TCPIP_IPv6 = new TCPIP_Internet extended

with {
2 ...

3 }
4

5 detach ipv4.requiredService to internet2link.source;
6 detach link2internet.sink to ipv4.dataReceivedFromLink;

7 attachments {
8 ipv6.requiredService to internet2link.source;
9 link2internet.sink to ipv6.dataReceivedFromLink;

10 }

Figure 9: Implementation of scenario 2 in ACME/-
Plastik

1 Component Type TCPIP_Transport extends TCPIP_Component with {

2 ...
3 Property behaviour = {

4 \\ description of behaviour in other languages, e.g. CSP
5 }
6 ...

7 }

Figure 10: Implementation of scenario 3 in ACME/-
Plastik

Scenario 3. The unforeseen upgrade of a behaviour in sce-
nario 3 can be described by the script illustrated in Fig. 10.
This script defines a new version of a component with an im-
provement on its behaviour. The behaviour in ACME/Plas-
tik is expressed as a property and it can be also described in
other languages, such as external formal languages, see lines
3-5 in Fig. 10.

Summary of ACME/Plastik. The dynamic reconfiguration
issues for ACME can be summarized as follows:

1. Dynamic reconfiguration in terms of structure is sup-
ported by ACME/Plastik. In terms of behaviour, dy-
namic reconfiguration is described using any external
language embedded inside the property element. Usu-
ally, this is used for foreseen reconfiguration. This ap-
proach is limited in the sense that components and
connectors usually needs the dynamic reconfiguration
of their behaviour but as ACME/Plastik does not pro-
vides elements for behaviour specification, the archi-
tect has to rely on an external language. E.g. if the
TCPIP_Transport component needs to decide if it has
a buffer or not, and if it uses a error detecting or not,
and so on. These situations have to be described using
an external language (in general formal languages such
as CSP).

2. ACME/Plastik does not provide a mechanism to con-
trol the intermediate states of a reconfiguration. E.g.
the implementation of the scenario 3, the architect can-
not define the approach used to update the instances.

3. For unforeseen reconfiguration ACME/Plastik relies
on external scripts. This approach requires an exter-
nal interpreted associated to the ADL to interpret the
external script in order to reconfigure the system.

5.1.3 C2SADL

1 ...
2 component TCPIP_Transport is

3 interface // define the component ports

4 top domain is // ports to link high level connectors
5 out

6 ...
7 in

8 ReceiveData(package: ApplicationPackage);
9 bottom domain is // ports to link low level connectors

10 out

11 SendToInternt(package: TransportPackage);
12 in

13 ...
14 methods // define interfaces of internal behaviours
15 function pack(data: ApplicationPackage) : TransportPackage

);
16 ...

17 behaviour // describe the external behaviour
18 ...

19 received_messages ReceiveData;
20 invoke_methods Pack;
21 always_genarate SendToInternet;

22 ...
23 end TCPIP_Transport

24 ...

Figure 11: Components of TCP-IP stack system def-
inition in C2 IDL.

Purpose of the ADL. Initially, the purpose of C2 was to
describe the architecture of a software based on a Graphical
User Interface (GUI) [31]. Therefore, the ADL is based on
hierarchically concurrent components. C2 also allows the
use of messages to notify the architectural elements. C2
is subdivided in 2 languages: C2 IDL (Interface Descrip-
tion Language) for describing the components types, and
C2 ADL to specify the configurations. For components it
is possible to specify top and bottom ports, to declare in-
ternal methods, and to specify the behaviour of its ports.
The implementation of the internal methods is done by the
developer in the source code generated by a toolset. With
C2 ADL it is possible to define instances of components and
connectors, as well as links between them.

Dynamic reconfiguration support. The Architectural
Modification Language (AML) was created to extend C2
for supporting dynamic reconfiguration [16, 27]. AML is a
declarative language that uses the structure view of an exist-
ing configuration and messages to notify this configuration
about a dynamic reconfiguration. This language provides
statements to build the scripts that specify dynamic recon-
figuration. However, in these scripts it is not possible to
determine the moment to apply a dynamic reconfiguration.
Because that, human intervention is needed via a toolset to
trigger dynamic reconfiguration.

Initial architecture. The TCP/IP stack system is descri-
bed in C2 IDL in Fig. 11 and C2 ADL in Fig. 12.

Scenario 1. For scenario 1, for changing the component
according to the low or high bandwidth state, it is nec-
essary two C2SADL scripts. In Fig. 13 is described the
script for dynamic reconfiguration when bandwidth is low.
This script uses two statements, a Unweld for unlinking



1 architecture DecoderStream is

2 component_intances {
3 mpeg instantiates TCPIP_MpegDecoder;

4 h263 instantiates TCPIP_H263Decoder;
5 transport instantiates TCPIP_Transport;

6 internet instantiates TCPIP_Internet;
7 link instantiates TCPIP_Link;

8 }
9 connectors {

10 application2transport;

11 transport2internet;
12 internet2link;

13 }
14 topology {
15 connector application2transport {

16 top ports { mpeg filter no_filtering; }
17 bottom ports { transport filter no_filtering; }

18 }
19 connector transport2internet {

20 top ports { transport filter no_filtering; }
21 bottom ports { internet filter no_filtering; }
22 }

23 connector internet2link {
24 top ports { internet filter no_filtering; }

25 bottom ports { link filter no_filtering; }
26 }
27 }

28 end DecoderStream;

Figure 12: TCP-IP stack system implementation in
C2 ADL.

1 \\ Bandwidth is low

2 DecoderStream.Unweld(mpeg, application2transport);
3 DecoderStream.Weld(h263, application2transport);

Figure 13: Partial implementation of scenario 1 in
C2SADL.

the mpeg instance and Weld for linking the h263 instance.
Other AML’s statements are AddComponent, AddConnector,
RemoveComponent, and RemoveConnector. All these state-
ments are used with a defined configuration, e.g. line 2 and
3 in Fig. 13 with the configuration named as DecoderStream.
Despite of the fact that AML statements are based on ser-
vices of the ArchStudio tool suite, there are services that
are not provided by the AML language, e.g. start() and
stop().

Scenario 2. The second scenario, the unforeseen insertion
of component instance and type, is inferred as shown in
Fig. 14. Inference because both work about AML [16, 27]
stated that it is possible to make insertion and deletion of
types. However, they only show examples how to build dy-
namic reconfiguration at the instance level. Medvidovic et
al. [17] mention types and subtypes but at design level.

Dynamic reconfiguration in Fig. 14 specifies: the insertion
of a new type of component (lines 2-5), the creation a new
instance of component (line 9), the unlinking of the instance
of IPv4 (lines 12-13), and the linking of the instance of IPv6
(lines 16-17). The component type name is inferred by a
toolset before performing dynamic reconfiguration.

1 \\ Creata a new type of component

2 component TCPIP_IPv6 is subtype
3 all <= all TCPIP_Internet (...)

4 ...
5 end TCPIP_IPv6

6

7 // Create a new instance of component

8 // The name of the type is implicitly discovered
9 DecoderStream.AddComponent(TCPIP_IPv61);

10

11 // Unlink the instance of component IPv4
12 DecoderStream.Unweld(trasport2internet, TCPIP_IPv41);

13 DecoderStream.Unweld(TCPIP_IPv41, internet2link);
14

15 // Link the instance of component IPv6

16 DecoderStream.Weld(trasport2internet, TCPIP_IPv61);
17 DecoderStream.Weld(TCPIP_IPv61, internet2link);

Figure 14: Implementation of scenario 2 in
C2SADL.

1 component TCPIP_Transport is

2 ...
3 behaviour // describe the external behaviour
4 ...

5 received_messages ReceiveData;
6 invoke_methods VerifyData, Pack;

7 always_genarate SendToInternet;
8 ...
9 end TCPIP_Transport

10 ...

Figure 15: Implementation of scenario 3 in
C2SADL.

Scenario 3. The third scenario is an improvement of the
behaviour that can be modeled by the behaviour statement
via a sequence of invocations to internal methods. Example
of this change, see line 6 in Fig. 15, the invocation is mod-
ified to verify the received and packed data before sending
a transport package to the internet layer. If the change is
an improvement of an internal method, it is not possible to
describe with C2SADL.

Summary of C2SADL. After the C2SADL implementa-
tion of the three scenarios, we identified these issues:

1. ArchStudio tool provides some services for supporting
dynamic reconfiguration, e.g. to start and to stop ar-
chitectural elements. However, these services are not
available in AML. Thus, the dynamic reconfiguration
specification in AML is limited.

2. foreseen dynamic reconfiguration needs human inter-
vention because C2SADL do not provide statements
for the system apply dynamic reconfiguration.

3. it does not support the specification of dynamic recon-
figuration inside of the architectural elements. Because
that, the foreseen dynamic reconfiguration is imple-
mented only at the implementation level;

4. it does not provide a mechanism for controlling and
monitoring the intermediate states of a dynamic re-
configuration;



5. it also does not support the assessment of dynamic
reconfiguration.

5.1.4 Dynamic Wright

Purpose of the ADL. Dynamic Wright has focus on the
structure and behaviour of an architecture [2]. Dynamic
Wright supports the description of the architectural ele-
ments types structures and behaviours3, and initial configu-
ration. Structure, initial configuration, instances, and links
are described in a declarative form, while behaviours are
specified in a graph-based and a variant of the Communi-
cating Sequential Process (CSP) form.

Dynamic reconfiguration support. Dynamic Wright only
supports foreseen dynamic reconfiguration. It is built as a
special behaviour of the initial configuration. It has the
same base of a “nominally” behaviour of architectural ele-
ments. The extension described in [2] proposes additional
statements and control events. The statements are new,
remove, attach, and detach. The control events are used
to define the specific moment to perform a dynamic recon-
figuration.

As Dynamic Wright does not support unforeseen reconfigu-
ration, the scenarios 2 and 3 cannot be implemented.

Initial architecture. The initial configuration of the TCP/-
IP stack system is illustrated in Fig. 16. The component and
connector types are specified in the Style ... EndStyle

(lines 1-16) statements. The implementation of the TCPIP_

MPEG−Decoder Component is described with two ports (lines
3-4) and a behaviour (lines 6-7). The configuration is de-
scribed with the Configuror ... EndConfiguror statement.
The initial configuration instances and connections are spec-
ified at lines 18-27.

Scenario 1. Fig. 16 also illustrates the specification of sce-
nario 1. It uses the Configuror [initial configuration

]where [behaviours] Statement. behaviours are special
named behaviours of the configuration for specifying dy-
namic reconfiguration. In this case, there are two specifi-
cation: lines 29-36 for low bandwidth and lines 37-44 for
high bandwidth. The following steps were used to define
the first and the second dynamic reconfiguration situations:

1. to define a name (lines 29 and 37).

2. to specify the control events that define the moment for
performing the operations of dynamic reconfiguration
(lines 30 and 38).

3. to determine the type of configuration to use (lines 31
and 39). Dynamic Wright use the term Style for this
purpose.

3In Dynamic Wright it is possible to specify the behaviour
for component ports and computations, and connector roles
and glues.

1 Style TCPIP−Style
2 Component TCPIP_MPEG−Decoder
3 Port dataReceivedFromTransport = ...

4 Port requiredService = ...
5 [describe the port behaviour using a variant of CSP]

6 Computation = ...
7 [describe the component behaviour using a variant of CSP]

8 ...
9 Connector Conn2Layers

10 Role source = ...

11 Role sink = ...
12 Glue = ...

13 [describe the connector behaviour using a variant of CSP]
14 Constraints

15 ...

16 EndStyle

17 Configuror DecoderStream

18 Style TCPIP−Style
19 new.mpeg : TCPIP_MPEG−Decoder

20 → new.h263 : TCPIP_H263−Decoder
21 ... [other component instances]
22 → new.app2trans : Conn2Layers

23 → new.trans2net : Conn2Layers
24 → new.net2link : Conn2Layers

25 → attach.mpeg.requiredService.to.app2trans.source
26 → attach.app2trans.sink.to.transport.service
27 ... [other attachments]

28 where

29 WaitForBandwidthLow = (

30 link.control.bandwidthDown → mpeg.control.off → h263.control
.on

31 → Style TCPIP−Style
32 detach.mpeg.requiredService.to.app2trans.source
33 → attach.h263.requiredService.to.app2trans.source

34 → detach.trans2app.sink.to.mpeg.dataReceivedFromTransport
35 → attach.trans2app.sink.to.h263.dataReceivedFromTransport

36 ) 2 §

37 WaitForBandwidthHigh = (
38 link.control.bandwidthUp → h263.control.off → −> mpeg.

control.on
39 → Style TCPIP−Style

40 detach.h263.requiredService.to.app2trans.source
41 → attach.mpeg.requiredService.to.app2trans.source

42 → detach.trans2app.sink.to.h263.
dataReceivedFromTransport

43 → attach.trans2app.sink.to.mpeg.

dataReceivedFromTransport
44 ) 2 §

45 EndConfiguror

Figure 16: Implementation of scenario 1 in Dynamic
Wright

4. to specify the operations to perform dynamic reconfig-
uration (lines 32-35 and 40-43).

5. to use the statements of the external choice (2) and
successfully terminate (§), lines 36 and 44.

Summary of Dynamic Wright. The following issues are
identified after the implementation of the scenario 1:

1. it does not provide operations to define dynamic recon-
figuration for the type level of architectural elements;

2. this ADL provides a refined mechanism of control e-
vents to determine the moment to perform a dynamic
reconfiguration. Although, it does not provide a mech-
anism to control and monitor the intermediate states.
e.g. if the application of the scenario 1 is a banking sys-
tem, the state must be copied from the instance of the



Table 1: Foreseen and unforeseen dynamic reconfig-
uration support in ADLs.

Foreseen Unforeseen
π-ADL inside of all archi-

tectural elements be-
haviour

ADL statements aided
by the ArchWare
toolset

ACME
Plastik

special behaviours in
the configuration

ADL statements and
external language
aided by the Plastik
framework

C2SADL limited support by the
ADL

external script in AML

Dynamic
Wright

special behaviours in
the configuration

not provided by the
ADL

replaced component to the new component. Dynamic
Wright does not provide operations for this purpose.

3. despite of providing the specification of behaviour for
components and connectors, it is not possible to de-
fine dynamic reconfiguration for this architectural ele-
ments;

4. similarly to the other ADLs, Dynamic Wright does not
provide a mechanism for the assessment of dynamic
reconfiguration.

5.2 Summary of comparison
The summary of the four ADLs support for dynamic recon-
figurations is shown in Tab. 1. π-ADL and ACME/Plastik
are the only ADLs that support both foreseen and unfore-
seen dynamic reconfigurations. As C2SADL with the AML
language do not provide a way to specify an internal initia-
tion of dynamic reconfiguration, foreseen dynamic reconfig-
uration cannot be automatically triggered. Dynamic Wright
supports only foreseen reconfiguration by defining the spe-
cial behaviour of a configuration.

The four ADLs do not address the issue of consistent recon-
figuration (reconfiguration at type and instance levels) as
shown the Tab. 2. π-ADL and ACME provides operations
for both levels, however the two ADLs use external help to
specify reconfiguration at the type level. C2SADL AML pro-
vides operations to modify instances. In spite of the toolset
provides the services for both levels. Dynamic Wright does
not provide operations to specify dynamic reconfiguration
for the type of architectural elements.

The support for specifying the behaviour of the architectural
elements can be subdivided in two categories: nominally and
dynamic reconfiguration. Nominally is a set of functions
that the architectural elements can invoke. Dynamic recon-
figuration is the specification of a behaviour to compose a
foreseen dynamic reconfiguration. The ADLs support for
both is resumed in Tab. 3. π-ADL supports both in the
architectural element behaviour. ACME/Plastik nominally
behaviour can be considered in two ways: a property of
architectural element described with an external language,
e.g. CSP; and, port/rule communication for components
and connectors; for dynamic reconfiguration, ACME/Plas-
tik provides the on-do clause. Dynamic Wright glue and

Table 2: Dynamic reconfiguration support for mod-
ification on type and instance level.

Type Instance
π-ADL ADL statements with

external help
ADL statements

ACME
Plastik

ACME/Plastik state-
ments with external
help

ACME/Plastik state-
ments

C2SADL not provided by the
ADL

operations defined in
AML

Dynamic
Wright

not provided by the
ADL

operations defined in
an extension of the
ADL

Table 3: ADL support for behaviour specification.
Nominally Dynamic reconfigura-

tion
π-ADL All architectural ele-

ments with π-ADL be-
haviour.

tangled with nomi-
nally behaviour.

ACME
Plastik

External language
used in properties
of the architectural
elements.

ACME/Plastik on-do
statement.

C2SADL Component behaviour
based on event com-
munication.

Not provided.

Dynamic
Wright

Variant of CSP in con-
nector glue and com-
ponent computation.

Configuration special
behaviour with variant
of CSP.

computation clauses define the nominally behaviour of con-
nectors and components; a configuration has a special be-
haviour for dynamic reconfiguration. C2SADL has no be-
haviour for dynamic reconfiguration but nominally compo-
nent behaviour is described by events communication.

None of the four ADLs has a mechanism for assessing the
system. π-ADL can rely on π-AAL for defining and analyz-
ing the architectural constraints and non-functional prop-
erties. While ACME/Plastik has Armani. even though it
has no formal semantics, and therefore, it is not liable to
rigorous analysis [33]. C2SADL provides type verification
for events communication. Dynamic Wright provides a re-
fined mechanism of control events to determine the moment
to perform a dynamic reconfiguration. Although, the as-
sessment of dynamic reconfiguration is not provided on four
ADLs.

6. CONCLUSION
In this paper we analysed the support of ADLs for handling
dynamic reconfigurations. We started with a motivation ex-
ample and some reconfiguration scenarios and we described
the example and the scenarios using four well-known ADLS.
We used the example and the specifications to discuss the
following issues: (i) how each ADL addresses the issue of
consistently reconfiguring both instances and types; (ii) how
each ADL takes into account the behaviour of the architec-
tural elements during reconfiguration; and (iii) how each
ADL supports the assessing of dynamic reconfiguration.



In comparison to related works, we analysed some important
issues for the dynamic reconfiguration support at the ar-
chitectural level: foreseen and unforeseen changes; instance
and type level modifications; structure and behaviour for all
architectural elements; definition of nominally and dynamic
reconfiguration behaviour for all architectural elements; and,
the analysis of dynamic reconfiguration.

We can conclude that some issues still remain open as no
ADL provides support for all of them together: how to apply
the changes made in type level to their respective instances?
how to control the set of intermediate states of a software
system during a dynamic reconfiguration? how to assess
dynamic reconfiguration?
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