
HAL Id: hal-00699565
https://inria.hal.science/hal-00699565

Submitted on 21 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Filtering by ULP Maximum
Matthieu Carlier, Arnaud Gotlieb

To cite this version:
Matthieu Carlier, Arnaud Gotlieb. Filtering by ULP Maximum. Proc. of the IEEE Int. Conf. on
Tools for Artificial Intelligence (ICTAI’11), Nov 2011, Floride, United States. �hal-00699565�

https://inria.hal.science/hal-00699565
https://hal.archives-ouvertes.fr

Filtering by ULP maximum

Matthieu Carlier
INRIA Rennes Bretagne Atlantique

Rennes, France
Email: Matthieu.Carlier@inria.fr

Arnaud Gotlieb
Certus Software V&V Center
Simula Research Laboratory,

Norway, Oslo, Norway

Abstract—Constraint solving over floating-point numbers
is an emerging topic that found interesting applications in
software analysis and testing. Even for IEEE-754 compliant
programs, correct reasoning over floating-point computations
is challenging and requires dedicated constraint solving ap-
proaches to be developed. Recent advances indicate that
numerical properties of floating-point numbers can be used
to efficiently prune the search space. In this paper, we re-
formulate the Marre and Michel property over floating-point
addition/subtraction constraint to ease its implementation in
real-world floating-point constraint solvers. We also generalize
the property to the case of multiplication/division in order to
benefit from its improvements in more cases.

I. I NTRODUCTION

Numerical programs used in critical software systems
must be thoroughly tested before being embedded within a
final product. In the presence of floating-point computations,
this involves 1) producing test inputs [18] targeted to reveal
faults and 2) predicting the program results expected on
those computations. For this latter problem, called theoracle
problem[21], several techniques have been proposed, such
as using multiple program executions to check the results
in the data diversity approach [1], or using the Abstract
Interpretation framework [6] to estimate the deviance of the
floating-point results w.r.t. an interpretation over the reals
[9], or else using perturbation techniques to evaluate the sta-
bility of a numerical program [20]. Constraint Programming
techniques have also been used to tackle theoracle problem:
[12] proposed a Gecode model to evaluate the expected
results of a trading system’s continuous double auction, [8]
proposed using the SICStus Prolog clpfd library to generate
test inputs that violate properties over imperative programs,
etc. However, in the presence of floating-point computations,
very few approaches addressed the former problem, namely
the test inputs generation problem. Thirty years ago, Miller
and Spooner [18] proposed to automatically find a floating-
point test input that exercises a given program path, by
minimizing a cost function which evaluates the distance
between the currently executed path and the expected one.
Their work opened the door for search-based test data
generation methods [11], [15] that share great similarities
with local search techniques in Constraint Programming
[2]. However, these approaches are only based on program

executions and do not rely on symbolic reasoning. Thus,
they cannot be used to study path feasibility, i.e. to decide
whether a possible execution path is feasible or not in the
program. In addition, these techniques can be stuck in local
minima without being able to provide a meaningful result
[2]. An approach to tackle these problems combines both
the program execution and the symbolic reasoning [7], but
this kind of reasoning over floating-point computations is
hard and requires dedicated filtering algorithms [16], [17].
In summary, solving constraints over floating-point numbers
allows us to generate test inputs that exercise a selected
behaviour of the program under test. This approach is
currently implemented in three solvers: the FPCS solver [3],
FPSE for C programs [4] which is available for experiments1

and Gatel, the test data generator for Lustre programs [3],
[13].

A promising approach to improve the filtering capabilities
of constraints over floating-point variables consists in using
numerical properties of floating-point computations. For
linear constraints, this led to a relaxation technique where
floating-point numbers and constraints are converted into
constraints over the reals by using Linear Programming
approaches [19]. For interval-based consistency approaches,
Marre and Michel proposed in [14] to exploit the floating-
point representation in filtering algorithms for both the
addition and subtraction constraints.

This paper is concerned with the reformulation of the
Marre and Michel property in terms of filtering by maximum
ULP (Units in the Last Place), in order to ease its imple-
mentation in real-world constraint solvers such as FPSE
or FPCS. In addition, we generalize the property to the
multiplication and division operators for benefiting of its
improvements in more cases. This generalization has an
interesting impact on non-linear problems where no other
techniques yet exist to improve the search space filtering.

The rest of the paper is organized as follows. Next section
briefly presents the IEEE-754 standard of binary floating-
point numbers and introduces the notations used throughout
the paper. Section 3 recalls the basic principles of interval-
based consistency techniques over floating-point variables
and constraints. Section 4 presents our generalization of the

1http://www.irisa.fr/celtique/carlier/fpse.html

Marre and Michel property, while section 5 concludes the
paper.

II. PRELIMINARIES

A. IEEE-754

This section introduces the arithmetical model specified
by the IEEE-754 standard for binary floating-point arith-
metic [10].

IEEE-754 specifies two basic binary floating-point for-
mats (single and double) and two extended formats. A
floating-point number is noted(−1)sa.m × 2e wheres is
the sign bit,a is the hidden bit,m is the significand and
e is the biased exponent. The single format occupies 32
bits (1 bit for the sign, 8 for the exponent and 23 for the
significand) while the double occupies 64 bits (1 bit for
the sign, 11 for the exponent and 52 for the significand).
Each format defines several classes of numbers: normalized
numbers, denormalized numbers, signed zeros, infinities and
NaNs (which stands for Not-a-Number). For the single
format, normalized numbers corresponds to an exponent
value 0 < e < 255 and a value given by the formula:
(−1)s 1.m 2e−127. Denormalized numbers correspond to
an exponente = 0 and a value given by(−1)s 0.m 2−126

wherem 6= 0. Note that the significand possesses a hidden
bit which is 1 for normalized numbers and0 for denor-
malized. Note also that the bias is equal to127 for the
single format and the exponent is−126 for denormalized
numbers. There are two infinities (noted+INF, −INF with
e = 255,m = 0) and two signed zeros (noted+0.0,
−0.0 with e = 0,m = 0). NaNs (e = 255,m 6= 0) are
used to represent the results of invalid computations such
as a division or a subtraction of two infinities. They allow
the program execution to continue without being halted by
an exception. IEEE-754 indicates five types of rounding
directions: toward negative infinity (down), toward positive
infinity (up), toward zero (chop) and toward the nearest
representable value, with two flavors, tail-to-even or tail-to-
away in which respectively values with even mantissa are
preferred or values away from zero. The to-the-nearest tail-
to-even value of a realx will be noted◦(x). All rounding
modes are monotonic, i.e.,∀x y ∈ R, x ≤ y ⇒ ◦(x) ≤ ◦(y).
The most important requirement of IEEE-754 arithmetic is
the accuracy of floating-point computations: each of the
following operations, add, subtract, multiply, divide, square
root, remainder, conversions and comparisons, must deliver
to its destination the exact result if possible or the floating-
point number that requires the least modification of the
exact result w.r.t. the prescribed rounding mode and the
result format destination. It is said that these operations
are correctly rounded For example, the single-format result
of 999999995904+ 10000 is2 999999995904 which is the
single-format floating-point number nearest to the exact

2These numbers can be exactly represented by single binary FPnumbers.

result over the reals. This example shows that the accuracy
requirement of IEEE-754 does not prevent surprising results
from arising (the second operand is absorbed by the addition
operator).
B. Notations

R denotes the set of reals whileF denotes an idealized
finite set of numerical binary floating-point numbers, defined
from a given IEEE-754 format. Throughout the paper, we
will consider only floats having a numerical binary repre-
sentation in the single or the double format, excluding de-
normalized numbers and NaNs, but including−INF,+INF
and zeros. Considering this idealized set is advantageous to
simplify the properties and avoid too technical details about
denormalized numbers. But, extensions are mentioned when
available. A real decimal constant (such as1.0e12) denotes
a floating-point value, and thus, has to be understood as
its nearest floating-point number (i.e., as 999999995904).
Henceforthx+ (resp.x−) denotes the smallest (resp. great-
est) floating-point number strictly greater (resp. smaller) than
x w.r.t. the considered IEEE-754 format. We denotemin the
exponent of the smallest normalized numbers in absolute
values. Thus, the smallest positive normalized number is
1.0 . . . 0× 2min. In our idealized set of numbers,min is the
smallest possible exponent for a float. On the opposite,max
denotes the greatest possible exponent for a float distinct
from −INF or +INF. fmax is the greatest representable
numerical float. Its value is1.1 . . . 1 × 2max and we have
f+
max

= +INF.
Arithmetical operations over the floats will be noted using

the four operators:⊕, ⊖, ⊗ and⊘, corresponding respec-
tively to +,−, ∗, / over the reals. According to IEEE-754,
they are defined with the rounding operator◦ as follows:

x ⊕ y = ◦(x + y), x ⊖ y = ◦(x − y),
x ⊗ y = ◦(x ∗ y), x ⊘ y = ◦(x/y)

⊙ denotes any of⊕, ⊖, ⊗ and⊘. A floating-point variable
x will be associated an interval of possible floating-point
values, notedx ∈ [x,x] wherex denotes the smallest float
of x andx its greatest value andx ≤ x. Finally, mid(a, b)
denotes the floating-point number at the middle ofa and
b, which may be a floating-point number of a wider format
than of its operands.

III. B ACKGROUND ON CONSTRAINT SOLVING OVER

FLOATING-POINT VARIABLES

A. Interval-based consistency on arithmetical constraints
[4], [16] contain formulas for projectors in a interval-

based consistency approach to constraint solving over the
floats. It is worth distinguishing direct from indirect pro-
jectors as constraints come from program analysis. Roughly
speaking, when analyzing an imperative program, assign-
ments are considered as if they were equality constraints,
where the assigned variable is labelled with a fresh name.
For example, the assignmenti++; is translated into the

Addition : z = x ⊕ y

z = x ⊕ y, z = x ⊕ y (direct)
x = mid(z,z+) ⊖ y (1st indirect)
x = mid(z,z−) ⊖ y
y = mid(z,z+) ⊖ x (2nd indirect)
y = mid(z,z−) ⊖ x

Substraction : z = x ⊖ y

z = x ⊖ y, z = x ⊖ y (direct)
x = mid(z,z+) ⊕ y (1st indirect)
x = mid(z,z−) ⊕ y
y = x ⊖ mid(z,z−) (2nd indirect)
y = x ⊖ mid(z,z+)

Figure 1. Formulas for direct/indirect projectors

equality constrainti2 = i1 + 1. Hence, there are two
distinct kinds of projection. The projection over variable
i2 is called direct projection while the projector overi1
is called indirect projection. When solving constraints over
floating-point variables, the formulas for direct and indirect
projections may be different in order to improve the filtering
results. Fig.1 recalls the formulas used for implementing the
interval-based addition/subtraction projectors, while (non-
optimal) formulas for product/division can be found in [4],
[16].

B. The Marre and Michel property

This section presents the Marre and Michel property
published in [14] for improving the filtering of the addi-
tion/subtraction projectors. The idea behind this property
comes from the representation of floating-point numbers
among the reals: the greater a float is, the greater the distance
between it and its immediate successor is. More precisely,
for a given floatx with exponentn, if ∆ = x+ − x, then
for y of exponentn+ 1 we havey+ − y = 2 ∗∆.

Fig.2 gives an intuitive view of the property for sub-
traction. Letz = y ⊖ x and suppose thatz ∈ [vz, vz]
is a strictly positive constant, then the Marre and Michel
property says that it exists two greatest valuesym andxm

such thatym ⊖ xm = vz. It is worth noticing thatym and
xm depends neither ony nor onx and do not necessarily
belong to them. For example, the existence ofxm (similar
for ym) can be explained on Fig.2 as follows. Considerx+

m,
then for all floating-pointv, v ≤ ym =⇒ v− x+

m ≤ A and
ym < v =⇒ B < v − x+

m with A < vz < B. Thus,x+
m

cannot be part of the solution. Considering values greater
than x+

m leads to equivalent inequalities with someA′, B′

such thatA′ ≤ A andB ≤ B′.
property 3.1: [14] Let a variablez ∈ [z,z] such that

0 < z < z, if z = x ⊖ y, then upper bounds ofx andy
can be computed using the following formulas. Letζ be a
normalized floating-point number ofz such that

ζ =



















1.0 . . . 0× 2ez iff ez 6= ez
z iff z = 1.0 . . . 0× 2ez

1.b2 . . . bi+10 . . .× 2ez iff
z = b1.b2 . . . bi0bi+2 . . . bp × 2n

z = b1.b2 . . . bi1b
′
i+2 . . . b

′
p × 2n

with bi+2 6= b′i+2

and letnbz be the number of zeros in the significand of
ζ. There do not exist any valuex′, strictly greater thanβ

andy′, strictly greater thanα such thatx′ ⊖ y′ = ζ where

α = 1.1 . . .1× 2eζ+nbz

β = α ⊕ ζ

The above theorem can be extended to the case where
ζ is a denormalized floating-point number by considering
that the hidden bit is0 and by shifting the significand to its
first non-zero bit. In the case wherez contains only strictly
non-negative numbers, the above theorem can be used as
is for improving the filtering algorithm of both the addi-
tion/subtraction constraints. Whenz contains only strictly
negative numbers, an argument related to the symmetry of
floating-point representation can be used as well. For similar
reasons, the Marre and Michel property can be used for
the filtering algorithm of both lower bounds of variablesx
andy. However, the above theorem cannot be extended to
an interval ofz that contains zero. Fig.3 summarizes the
formulas obtained with the Marre and Michel property over
floating-point addition/subtraction constraints after exploit-
ing symmetries.

IV. F ILTERING BY MAXIMUM ULP

This section reformulates the Marre and Michel property
by considering the properties that should be verified by
a function δ⊙ to deduce an optimal interval-consistency
based filtering algorithm for⊙. It also generalizes the
property to product/division projectors. In this paper, the
filtering algorithms that result from this generalization are
collectively calledfiltering by maximum ULPto refer to the
maximal distance between two successive floats.

A. Upper bound

Let δ⊙ : F → F+ be a function that satisfies the
following properties:

∀z ∈ F , z 6= 0 ⇒ ∃y, δ⊙(z) ⊙ y = z

∀z z′ ∈ F , z 6= 0 ⇒ z′ > δ⊙(z) ⇒ ∄y, z′ ⊙ y = z

Roughly speaking, those properties say thatδ⊙ returns the
smallest float that permits one to recoverz. The following
is entailed by both properties:

property 4.1: Let {v1, . . . , vn} be a set of non-zero floats
andm a float such that∀i, δ⊙(m) ≥ δ⊙(vi). Then, for all
floatsm′ > δ⊙(m), there does not exist a floaty such that
m′ ⊙ y = vi.

vz
xm

x+
m

ym

y+m

vz

∆ 2 ∗∆

B

A
0 A = y+m − x+

m

B = ym − x+
m

Figure 2. Existence of a limit such thatx+ − x ≥ vz

z > 0 z < 0
z = x ⊖ y x ∈ [−α, β],y ∈ [−β, α] x ∈ [−β, α],y ∈ [−α, β]
z = x ⊕ y x ∈ [−α, β],y ∈ [−α, β] x ∈ [−α, β],y ∈ [−α, β]

Figure 3. Summary of the filtering formulas for the Marre and Michel property

As a consequence, by considering the constraintz = x ⊙
y where 0 /∈ z, we got that the smallest floatm greater
than the upper bound of the co-domain ofδ⊙ on z (i.e.,
∀vz ∈ z, δ⊙(m) ≥ δ⊙(vz)) such thatδ⊙(m) is the upper
bound ofx. It is worth says thatm belongs toz.

Lastly, if we have a functionδ′

⊙ which satisfies all the
above mentioned properties but where the operands of⊙
are inverted in the conclusions, i.e.,

∀z ∈ F , z 6= 0 ⇒ ∃x, x ⊙ δ′

⊙(z) = z

∀z z′ ∈ F , z 6= 0 ⇒ z′ > δ′

⊙(z) ⇒ ∄x, x ⊙ z′ = z

then δ′

⊙ permits one to estimate the upper bound ofy in
the above constraint. Moreover, when⊙ is a commutative
operator (e.g.,⊕, ⊗), the properties ofδ⊙ and δ′

⊙ are
equivalent andδ⊙ = δ′

⊙.

B. Lower bound

For computing the lower bound, we consider the function
δ⊙ : F → F− having the following properties:

∀z ∈ F , z 6= 0 ⇒ ∃y, δ⊙(z) ⊙ y = z
∀z z′ ∈ F , z 6= 0 ⇒ z′ < δ⊙(z) ⇒ ∄y, z′ ⊙ y = z

As for upper bound, these two properties entailed a
property similar to property 4.1. Hence, considering the
constraintz = x ⊙ y, the value ofz which minimizes
δ⊙ permits to deduce the lower bound ofx.

example 4.1:Consider the following constraints,
x ∈ [−1.0× 250, 1.0× 250] y ∈ [−1.0× 230, 1.0× 230]
z ∈ [1.0, 2.0] z = x ⊕ y

we obtain the following results after filtering
without maximum ULP

x = mid(z,z+) ⊖ y = 1.0× 230

x = mid(z,z−) ⊖ y = −1.0× 230

y = mid(z,z+) ⊖ x = 1.0× 250

y = mid(z,z−) ⊖ x = −1.0× 250

usingmaximum ULP
ζ = 1.0 . . . 0× 21 and thennbz = 23
α = 1.1 . . . 1× 21+nbz

β = α ⊕ ζ = 1.0 . . . 0× 225

x = β = 1.0 . . .0× 225

x = −α = −1.1 . . . 1× 224

y = β = 1.0 . . .0× 225

y = −α = −1.1 . . . 1× 224

This example shows that the Marre and Michel property
(called filtering by maximum ULP, see below) permits one
to get tighter results than classical interval-consistency based
filtering. Note that other trivial examples show that the
opposite may also arise and therefore it is worth computing
the intersection of both filtering to get optimal results. Other
examples that show those phenomena can be found in [5].

C. Filtering by maximum ULP on addition/subtraction

This section introduces only the functionsδ⊕ andδ⊕. The
functionsδ⊖ and δ⊖ can be deduced from symmetries, as
explained in Sec. III-B and [14].

definition 4.1: The functionδ⊕ is defined as follows (i
andn are defined such|z| = 1.z1 . . . zi10 . . . 0× 2n):

δ⊕(0) = 0

δ⊕(z) = z + 1.1 . . . 1× 2n+(p−i−1) for z > 0

δ⊕(z) = 1.1 . . . 1× 2n+(p−i−1) for z < 0

which is always a float asz + 1.1 . . .1× 2n+(p−i−1) =

0.0. . .01z1. . .zi 10. . .0 × 2n+(p−i)

⊕ 0.1. . .11 1 . . .1 1 × 2n+(p−i)

1.0. . .01z1. . .zi 00. . .0 × 2n+(p−i)

δ⊕ respects both properties stating for all non-zeroz, δ⊕(z)
returns the smallest float that permits to recoverz. δ⊕ is
defined asδ⊕(z) = − δ⊕(−z) and its properties are entailed
by properties ofδ⊕.

definition 4.2: For a variablez of normalized floating-
point values such that0 does not belong toz domain, the
value inz maximizingδ⊕ (and minimizingδ⊕) is defined
by destr(z) as:

destr(z) = 1.0 . . .0× 2n if ez 6= ez with n = ez
destr(z) = 1.b2 . . . bia0 . . .× 2n

if
z = 1.b2 . . . bibi+1 . . .× 2n

z = 1.b2 . . . bib
′
i+1 . . .× 2n

with bi+1 6= b′i+1

anda =

{

0 if 1.b2 . . . bi0 . . . 0× 2n = z
1 otherwise

Definition 4.2 can easily be extended to intervals with
denormalized numbers and intervals composed of negative
floating-point values. But it is useless to extend it with
intervals containing both negative and positive values as such
an interval contains0 and the property is not applicable. As
a result, we got formulas that compute filtering similar to
those resulting from the Marre and Michel property. So, the
filtering by maximum ULP presented here is similar to the
filtering of [14] which is restricted to addition/subtraction
operators.

D. Filtering by maximum ULP on the product

Fig.4 gives an intuitive view of ULP maximum over the
floating-point multiplication. Letz = x ⊗ y and suppose
that z ∈ [vz, vz] is a strictly positive constant, then there
exists a greatest valuesxm such that, its exists a valuey,
xm ⊗ y = vz. As for property 3.1, this value depends neither
on x nor ony and do not necessarily belong to them. Let
explain the existence ofxm on Fig.2. Considerxm such that
xm ⊗ 0+ = vz

3, then by monotonicity of⊗, vz < x+
m ⊗

0+ (B in the figure). Thus, still by monotonicity, there is
no strictly positive valuey such thatx+

m ⊗ y = vz. By
sign analysis, there is no negative or nil valuey such that
x+
m ⊗ y = vz.
δ⊗(z) is defined asδ⊗(z) = |z| ∗ 2p−min and δ⊗(z) =

− δ⊗(z). The value of an intervalz which maximizesδ⊗
(respecting minimizesδ⊗) is the one that has the greatest
absolute value. Hence, forvz an element ofz (which does
not contain0) that maximizesδ⊗ thenδ⊗(vz) (resp.δ⊗(z))
is an upper bound (resp. a lower bound) ofx w.r.t. the
constraintz = x ⊗ y. As the product is commutative, the
same function can be used fory. Details can be found in
[5].
As an example, consider the following problem:

example 4.2:

x ∈ [−INF,+INF],y ∈ [−INF,+INF],
z ∈ [0+, 1.0× 2−30],z = x ⊗ y

We got δ⊗(1.0 . . . 0 × 2−30) = 1.0 . . .0 × 2−30 ∗
223−(−127)−1 = 1.0 . . .0 × 2119 and the filtering of the
domain ofx andy yield:

x ∈ [−1.0 . . . 0× 2119, 1.0 . . . 0× 2119],
y ∈ [−1.0 . . . 0× 2119, 1.0 . . . 0× 2119]

3this value always exists since this multiplication is equivalent to an
exponent shifting

This filtering only applies when the value returned byδ⊗
is smaller than the greatest representable float distinct from
+INF (i.e., whenz < 1 × 2−p). However, this filtering is
useful when zero knowledge is available on the domains of
x or y such as in the above example.

E. Filtering by maximum ULP on division

δ⊘(z) is defined asδ⊘(z) = |z| ⊗ fmax . For filteringx
in constraintz = x ⊘ y, it suffices to take the valuevz that
maximizeδ⊘. This value ismax(|z|, |z|). By considering
δ⊘(z) = − δ⊘(z), it is also possible to filter lower bounds.

F. Synthesis
In the previous sections, the following functions have been
defined:

δ⊕(z) = z + 1.1 . . . 1× 2n+(p−i−1) if z = +1.z1 . . . zi10 . . . 0× 2n

δ⊕(z) = 1.1 . . . 1× 2n+(p−i−1) if z = −1.z1 . . . zi10 . . . 0× 2n

δ⊕(z) = − δ⊕(−z)

δ⊗(z) = |z| ∗ 2p−min δ⊗(z) = − δ⊗(z)

δ⊘(z) = |z| ⊗ fmax (for denormalizedz) δ⊘(z) = − δ⊘(z)

For each constraint, when0 6∈ z, interval consistency based
filtering yields to

Constraint x ⊆ y ⊆

z = x ⊕ y(z > 0) [δ⊕(ζ), δ⊕(ζ)] [δ⊕(ζ), δ⊕(ζ)]

z = x ⊕ y(z < 0) [− δ⊕(ζ′),− δ⊕(ζ′)] [− δ⊕(ζ′),− δ⊕(ζ′)]

z = x⊖ y(z > 0) [δ⊕(ζ), δ⊕(ζ)] [− δ⊕(ζ),− δ⊕(ζ)]

z = x⊖ y(z < 0) [− δ⊕(ζ′),− δ⊕(ζ′)] [δ⊕(ζ′), δ⊕(ζ′)]

z = x ⊗ y [δ
⊗
(M), δ⊗(M)] [δ

⊗
(M), δ⊗(M)]

z = x ⊘ y [δ⊘(M), δ⊘(M)]

with ζ = destr(z), ζ′ = destr(−z) andM = max(|z|, |z|).

V. CONCLUSION

This paper is concerned with constraint solving over
floating-point computations. Filtering consistency basedal-
gorithms are currently the privileged technology for attack-
ing this problem. This paper reformulates the Marre and
Michel property proposed in [14] for improving the filtering
capabilities of the addition and subtraction operators. It
also proposes to generalize the property to the case of
multiplication and division, something that has not been
proposed elsewhere. Further work includes the exploration
of other properties based on linearization of floating-point
computations, such as those proposed in [19].

REFERENCES

[1] P.E. Ammann and J.C. Knight. Data diversity: An approach
to software fault tolerance.IEEE Transactions on Computers,
37(4):418–425, 1988.

[2] Andrea Arcuri. Theoretical analysis of local search in
software testing. InProceedings of the 5th international
conference on Stochastic algorithms: foundations and appli-
cations, SAGA’09, pages 156–168, 2009.

0

vz B

xm

x+
m

B = x+
m ⊗ 0+ vz = xm ⊗ 0+

Figure 4. Existence of a limit such that∀y, x ⊗ y 6= vz

[3] B. Blanc, F. Bouquet, A. Gotlieb, B. Jeannet, T. Jeron,
B. Legeard, B. Marre, C. Michel, and M. Rueher. The
v3f project. In Proc. of the 1st workshop Constraints in
Software Testing, Verification and Analysis (CSTVA’06), co-
located with CP’06, Nantes, France, Sep. 2006.

[4] B. Botella, A. Gotlieb, and C. Michel. Symbolic execution
of floating-point computations.The Software Testing, Verifi-
cation and Reliability journal, 16(2):pp 97–121, June 2006.

[5] Matthieu Carlier and Arnaud Gotlieb. Anr u3cat project report
– wp1: Floating-point computations. Technical report, INRIA,
Jan. 2011.

[6] P. Cousot and R. Cousot. Abstract interpretation : A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. InProceedings of Symp.
on Principles of Programming Languages, pages 238–252.
ACM, 1977.

[7] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. InProc. of PLDI’05, pages 213–
223, 2005.

[8] A. Gotlieb and B. Botella. Automated metamorphic testing.
In 27th IEEE Annual International Computer Software and
Applications Conference (COMPSAC’03), Dallas, TX, USA,
November 2003.

[9] E. Goubault. Static analyses of the precision of floating-point
operations. InStatic Analysis Symposium (SAS’01) and also
in LNCS 2126, pages 234–245, Paris, FR, July 2001.

[10] IEEE-754. Standard for binary floating-point arithmetic. ACM
SIGPLAN Notices, 22(2):9–25, February 1985.

[11] B. Korel. Automated software test data generation.IEEE
Transactions on Software Engineering, 16(8):870–879, Aug.
1990.

[12] Roberto Castañeda Lozano, Christian Schulte, and Lars
Wahlberg. Testing continuous double auctions with a cons-
traint-based oracle. InPrinciples and Practice of Constraint
Programming - CP 2010 St. Andrews, Scotland, UK, Sep. 6-
10, 2010., number 6308 in LNCS, pages 613–627, 2010.

[13] Bruno Marre and Benjamin Blanc. Test selection strategies
for lustre descriptions in gatel.Electronic Notes in Theoretical
Computer Science, 111:93 – 111, 2005.

[14] Bruno Marre and Claude Michel. Improving the floating
point addition and subtraction constraints. InPrinciples and
Practice of Constraint Programming - CP’2010, volume 6308
of LNCS, pages 360–367. 2010.

[15] P. McMinn. Search-based software test data generation:
A survey. Software Testing, Verification and Reliability,
14(2):105–156, 2004.

[16] C. Michel. Exact projection functions for floating point
number constraints. InSeventh Int. Symp. on Artificial
Intelligence and MAthematics (7th AIMA), Fort Lauderdale,
FL, USA, Jan. 2002.

[17] C. Michel, M. Rueher, and Y. Lebbah. Solving constraints
over floating-point numbers. InProceedings of Principles and
Practices of Constraint Programming (CP’01), Springer Ver-
lag, LNCS 2239, pages 524–538, Paphos, Cyprus, November
2001.

[18] W. Miller and D. Spooner. Automatic generation of floating-
point test data.IEEE Transactions on Software Engineering,
2(3):223–226, September 1976.

[19] Michel Rueher Mohammed Said Belaid, Claude Michel.
Approximating floating-point operations to verify numerical
programs. In14th GAMM-IMACS International Symposium
on Scientific Computing, Computer Arithmetic and Validated
Numerics (SCAN’10), ENS Lyon, France, Sep. 2010.

[20] Enyi Tang, Earl Barr, Xuandong Li, and Zhendong Su.
Perturbing numerical calculations for statistical analysis of
floating-point program (in)stability. InProc. of the 19th Int.
Symp. on Software Testing and Analysis, ISSTA ’10, pages
131–142, 2010.

[21] E. Weyuker. On testing non-testable programs.The Computer
Journal, 25(4), 1982.

