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Abstract

Seismic signals are characterized by strong exaisit short durations, non-linearity
and non-stationarity having both the amplitude filaquency content vary as a function
of the recorded time. Various classical detectiod astimation techniques, like the
time-frequency representations and the Fourierébdasehniques have been used to
analyze such signals, but these techniques havetyarf limitations and they fail to
correctly estimate the concerned signals. The Ddripeplitude and Polynomial-
Frequency Model has been introduced to help intagapo the seismic signals where
the amplitude is damped. This model is based onoappating the frequency by low-
order polynomials and the amplitude by damped egptials. Its amplitude in turn is
characterized by a damping coefficient; which westly assumed to be time-invariant.
However the results of the studied signals shovegadramplitude fluctuations and
frequency content variations of each component ¢batd be justified by the fact that
the dynamic response of the structure is highlysisiee to the dynamic characteristics
of the ground motion. Accordingly and to be moredd with the physical model of
the building motion that is characterized by dameegonential functions, the damping
coefficient was then assumed to be time-varianditepto the foundation of a new
model that keeps the same approximation for thqueacy like the aforementioned
model, and changes that of the amplitude by apprating its damping-coefficient by
low-order polynomials. This model was then namedymamial Damping Function
Model. Results on different seismic signals showt tine time-variant assumption is
more efficient than the time-invariant one.

1. Introduction

Seismic signals are non-stationary; having bothamgplitude and frequency content
vary considerably as a function of recording tif@@nsequently, for a more reliable
representation of such signals, both the amplitadd frequency variations of the
recorded time histories should be accounted foceRty, a large number of methods
have been proposed in this context. For examplieRat al. (2009 compared time-

frequency and time-scale methods in seismic daieegsing and interpretation, the S-
transform method was also applied in seismic da#dyais by Pinnegar and Mansinha



(2003)@, and the reassignment method was proposed fantladl frequency variations
in civil engineering structures under weak andrgiranotions by Michel and Gueguen
(2009) ®. In the context of the signals under study in théper, these techniques
present certain drawbacks. The analysistof 2" ?is based on the time-frequency
representation which is limited in time-frequenegalution by the choice of a window
length. Particular drawback i is that the reassignment of the energy yields gron
amplitude estimations. Accordingly, and in ordeafiproach the dynamic evolution of
the modulations, a high time resolution is requiraad to have better performance in
multi-component case, a high frequency resolutomeeded.

Generally, to get away from the constraints andvbeeks of such non-parametric
classical methods, and to correctly reconstructstgeals under study, a model should
be set. This model should be as general as postiblee applicable in different

domains.

In previous papers, we already proposed a polyrofriequency model with
polynomial amplitude ifi* > ® or with damped amplitude i . In this paper, a new
model named polynomial damping function model i®posed for the amplitude
modulation. This model is of great interest sintesistill able to deal with multi-
component signals of very short durations, and withrapid non-linear amplitude and
frequency variations of each component of a sigakeover, compared to the damped
amplitude model it ®, the damping coefficient of its amplitude is assdno be time
variant, so that it is less constrained and bettevenient for damping factor estimation
of seismic signals.

The model proposed in this paper needs a paraestieration method, and a procedure
to solve the non-linearity problem of the likelitbéunction similar to those df' ®,
which are the Maximum Likelihood Estimation (MLEhdthe Adaptive Simulated
Annealing (ASA) techniques respectively. The obyecbf this paper is then to apply
the method proposed herein to estimate the amplimnd frequency modulations
(AM/FM) of seismic vibration signals of buildingsrecorded by different
accelerometers placed on the top of the buildings.

The remainder of the paper is structured as folldwsection 2, the physical model for
the seismic vibration signals of interest is forataed. The signal model for the AM/FM
estimations and the parameter estimation methodirdreduced in section 3. The
obtained results over the analysis of simulatedhadgy computed from the physical
model and real-world seismic data are discusseskation 4. Finally, the paper ends
with final conclusions in section 5.

2. Physical model of the building motion

In ® the dynamic behavior of a building is deduced frtv\® matching of the building

with a continuous Timoshenko beam. In this modet, mass of each storey of the
building is considered to be mostly concentratedtstfloor, and a lumped mass
modeling is assumed for this structure. Thereftire,Duhamel integral gives the elastic

motion of the building at each flodt,, (t) by only knowing the mass of each floor, the



modal parameters (namely the mode shapes, fregseraid damping ratios), and the
ground motionP(t) .

The mode shape of thé@™ floor q[ fI] depends on the number of the flofir and it
participates as the weighting factor to generagditial response of the structure, as will
be shown later in this section. The impulse resparfsa single degree of freedom
system for &k mode is

h, () Bt pr sin(wpt) VK €[N, g ] » (1)

Wpk
with w,, = 2nf 4/1-¢7 the pseudo-pulsation of mode This system being excited by

the ground solicitations, the time-varying respoaséhe modek is obtained from the
convolution with the ground solicitatioR(t) and is given by the Duhamel integral

%(®)=p, [, PO ¢ -1)dr = p, PE) Da‘).—fe‘fk%‘ Sin@, L), @

k

>l ]

with p, the participation factor that is defined ps= —{———"

2 a4 (]
In fact, a building is more complex than a singbgmke of freedom system, so that the
motion of the building is then modelized as a Imgaperposition of the motion of all

the N, modes. Therefore, the dynamic response for a dleen with fl D[l, Nﬂ} IS

obtained by superimposing ti¢, .. modal responsesy, (t) obtained in (2)
Uy =27 v Or[1]. (3)

From this point, it is worthwhile mentioning thdttet non-stationary dynamic response
of the structure is highly sensitive to the dynacharacteristics of the ground motions.
In the next two sections, two cases will be studibd ambient ground excitations and
the seismic ground excitations.

Accordingly, as an initial step to clarify this gigal model, and to introduce the next
two sections, let's consider one example with tohatiouous physical model of a
commercial building, located in Sherman-Oaks, Gatila, assuming that the mass of
each floor is constant, and the number of floordd3 (see Fig. 1 left). From the
spectrogram and the Fourier spectrum of the datarded at the top of this building

when excited by the real-world earthquake of Nadte January 17, 1994\, =6.4)
(see Fig. 1 middle and right respectively), the banmof modesN, . could be clearly

seen as 3 located at 0.4, 1.2 and 2.2 Hz respBbctiMeus, knowledge of the first two
modal frequenciesf,=0.4 Hz and f,=1.2 Hz, necessary in the Timoshenko beam

model “9 allows evaluating the third modal frequency & Biz which is perfectly
matched with what is presented by the spectrognachtiae Fourier spectrum of this
signal.

For each modé, the damping raticf, is assumed to be fixed at 0.05, accordingly the

pseudo pulsationsy,, of this building will be a,, =2.504.rad/s, a,, =2.712 rad/s,
and w,, =4.972rad/s.
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Figure 1: The 13-storey commercial building locatedn Sherman-Oaks, California (left), the
spectrogram calculated with Hann window of 12.8 6@ points) (middle), and the Fourier spectrum
(right), of the data recorded at the top of the Shenan-Oaks building when excited by the real-
world earthquake of Northridge January 17, 1994 M, =6.4)

Figs. 2 (left and right) present respectively thedm shapes of the ©3loors and the
impulse response of the 3 modes of the Sherman-Qaksng.
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Figure 2: The mode shapes of the ¥3floor (left) and the impulse response of the 3 ma (right) of
the Sherman-Oaks building

2.1 Under Ambient ground excitations

Ambient vibrations in buildings are produced by thmd (low frequencies < 1Hz),
internal sources (machinery, lift at high frequesgiand seismic noise (broadband).
The seismic noise being prevailing in case of antbggound excitations, the input in
model (2) is then assumed to be a stationary wiotse with zero mean and constant
variance.

For the example of Sherman-Oaks building of Figwhen excited by such a ground
excitations, the result of Eq. (2) for simulatingaal responsey, (t) for the 3 modes,



and the result of Eq. (3) for simulating the fujindmic response will be as shown in
Fig (3).
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Figure 3: Dynamic response model at the top of Sheran-Oaks building when excited by white
Gaussian ground excitations: modal responsey, (t) of the 3 modes, mode k=1, 2 & 3 {line top,

2" line, 3¢ line respectively), the dynamic response of the £3loor U, (t) (4" line), and its
spectrogram (Hann window of 51.2 s-256 points) {5line)

2.2Under Seismic ground excitations

Seismic ground excitations are more difficult torbedeled, and their spectral shape is
no longer white. In this paper, these seismic exoms will be a real-world ones
recorded at the ground level of the Sherman-Oakklibg of Fig. 1 during the
earthquake of Northridge January 17, 1994, (=6.4). For the most energetic part of
this signal between 2 and 12 s, as shown by thetrggeam in Fig. 4 left, the spectral
shape is no longer white. The log-log presentadiotine spectrum of this energetic part,
(see Fig. 4 right), corresponds actually to therBrmodel™ with a flat frequency
band betweerf, =0.6 Hz and f__, =5 Hz.

Such an input in Eq. (2) provides the modal respoyt) of each mode and the full

dynamic response of the Sherman-Oaks buildingedcetrthquake considered (see Fig.
5).
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Figure 4: The spectrogram calculated with Hanning wndow of 3.2 s (16 points) (left), and the log-
log presentation of the Fourier spectrum around theanost energetic part of the seismic data [2-12s]
corresponds to Brune Model (right) of the seismic ata recorded at the ground level of the

Sherman-Oaks building
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Figure 5: Dynamic response model at the top of Sheran-Oaks building when excited by the real-
world earthquake of Northridge Jan. 17, 1994 I, =6.4): modal responsesy, () of the 3 modes,

mode k=1, 2 & 3 (f' line top, 2 line, 3¢ line respectively), the dynamic response of the £3loor
U, ® (4" line), and its spectrogram (Hann window of 51.2 856 points) (%' line)

Generally, different types of excitations will atfethe building response differently.
Whereas for the ambient ground excitation, all thadal responses in Fig. 3%(12™



and 3 lines) are affected in the same way by ground onetiduring the whole
recorded time series, where for seismic ground tatxans case (see Fig. 5), the
response increases in presence of the seism befwv&2s, then return to the amplitude
variations due to the ambient ground excitations.

Comparing the two spectrograms, (Fig. 3 {®e) and Fig. 5 (5 line)) show that the
mode at 0.4 Hz is more energetic than the otheraiwb?2 and 2.2 Hz. These last two
modes have also been modified by the earthqualkessider the energy of the modée
E, calculating in the most energetic part between as8®llows

E =Y (w() OKO[LN,] @)

t=2s
wherey, (t) is the modal response of the mddeTable 1 shows an energy calculation

of all the modes for both ambient and seismic exiahs during the seismic period
between 2-8s.

Table 1: Energy calculation for each mode of the alnent and seismic excitations

E =_Energy_of Fhe E'_: E_nergy_ of _the AE = E
Ambient excitations Seismic excitations E'
Mode 1 at 0.4 Hz 5.24 0.1141 45.9
Mode 2 at 1.2 Hz 0.0468 1.044*10™ 448.2
Mode 3 at 2.2 Hz 0.0278 9.351*10™ 297.3262

3. Signal models in view of AM/FM estimations

In this paper, we intend to estimate the AM/FMhade seismic signals. A signal model
y[n] is defined as a discrete time signal with timeywag amplitude and frequency,
having shortime duration, and composed of a multi-componemérdanistic process

s[n] embedded in an additive white Gaussian nefsg with zero mean and variance

o’.

y[n]=s[n]+e[n] where s[n]|= ziK:lA (1] il )
The time reference is set to the center of the wmas-%s nsﬂz, K is the number

of components,j is the complex number verifying® = -1, A[n] is the time-varying

amplitude, and(Di[n] is the phase of thé"™ component, obtained by numerical

integration of the Instantaneous Frequency IF, aeedtered in the middle of the
observation window in order to minimize the estimaterror ¥, thus making

.0=[0],
n 0
CDi[n] :¢i,0+2”(2k:—N/2Fi[k]_Zk:—leFi[k]) (6)
To assure the uniqueness of the model, the Instaots Amplitude (IA) should be
strictly positive A[n] >0, the phasep, [n] should not contain any discontinuities, and



the IF should respect Shannon’s theorém F, [n] <F,/2 where F, is the sampling
frequency® ®.

3.1 Damped amplitude and polynomial frequency model

For the frequency modulation model, likein®, the IF is approximated by low order
polynomials, in order to track the strong localiaaons,

F ] =30, o O[N], (7)
where M, is the approximation order of IFgm[n] is an orthonormal polynomial of
order m, andf_;is the frequency parameter.

In this paper, the amplitude modulations are appmated by two types of damped
functions, one with time-invariant damping coeféict like in'" ® and another, which is
the proposition of this paper, with time-variantypmmial damping coefficient. Table 2
presents these two studied signal models and¢hamacteristics.

3.1.1 Time-invariant damping coefficient

In this section, the damping coefficient of thausture is assumed to be time-invariant,
so that

Aln]=ge . (8)
where S and a; are the initial amplitude and the damping coeffiti respectively,
characterizing the amplitude of thi&component of this model. With regard to the real-
world data, £ is always constrained to be posith’é).

In summary, the P parameters to be estimated&a:e{,é’i,ai,@o, figneanf] Mf} with

P=M, +4.

3.1.2 Time-variant polynomial damping coefficient

The real seismic signals are characterized by rapiplitude fluctuations and frequency
variations of the energy contents of each of tle@mponents, from this point the
damping coefficient was assumed to be time-vardemt thus a new model known as
“Polynomial Damping Function Model” is proposed approximate the amplitude
fluctuations. This model is more adapted to thel @ngineering buildings that are
characterized by the exponentially damping funatjand thus it is in well accordance
with the physical model presented in section 2.

For this model, the amplitude is defined as follows

A[n] :ﬂle‘(zkz_mzm[k]‘zk:_N,zai[k]) where ai[n] :z:;)pm,i gm[n]’ ©)
with £ being the initial amplitudeM, is the approximation order of the damping
coefficient, gm[n] is an orthonormal polynomial of order m, apg, are the amplitude
parameters.



Accordingly, the P parameters to be estimated are
8= BP0 P, B0 oms i, | With P=M, +M, +4.

Table 2: The two studied signal models
Time-Invariant Damping Coefficient Time-Variant Damping Coefficient
- Damped Amp.& Polynomial Freq. Model - -Polynomial Damping Function Model-

(1A) A[n] = ,Bie_”‘” A[n] ﬂe (Zk— WaUe ZK -ns2f k])
(IF) R[] = X fo ] R = X fo ]
(o) @, constant a[n=X" 5. 9.[n]
(P) M, +4 M, +M, +4
(Q) [lguau¢|0! 01000 ||v| J giz[lgi'loi,O"“’lOi,Ma 1¢i,0’fi,ov--’fiMf}

3.2 Parameter estimation method

A maximum-likelihood approach as If ® is used to estimate the model parameter
vector €. As the noise is assumed to be a white Gaussianegs; the MLE is

equivalent to minimization of a least Square apghoa

6=argminl ¢ (6), with 1,4(6)=>""" ly[n] - s[n]‘ (10)
6ORF

n -N/2
with y[n] the noisy observation, arﬁ;z[n] the signal model computed by substituting
Aln],F[n] and®,[n] in s[n].

Analytical solutions are not applicable on (10) dweits non-linearity, the same
stochastic optimization technique as’if is then applied. This technique speeds up the
convergence process to the global optima and irda@min in the computing time. The
detailed steps of this technique can be fourt&in

4. Applications on seismic signals

Firstly in this section, the aforementioned twansigmodels of section 3 will be applied
over the real-world seismic data recorded at tpeofdhree different buildings:
1% building: The 7-storey hotel building located imiVNuys, California, Fig. 6
(left), which was severely damaged by the Nortleiégrthquake of Januaryl7,
1994, M, =6.4). The signal is of 60 seconds (3000 samples) tenygtotal,
sampled at 50Hz and decimated at 5Hz.

- 2"%puilding: The 13-storey governmental office Sasé&lbuilding located in the
Bay area of California, San Francisco, Fig. 6 (iglvhich was severely
damaged as well by the earthquake of Loma PrietaDctober 17, 1989
(M_ =6.9). The signal is of 120 seconds (6000 samples)tlemg total,

sampled at 50Hz and decimated at 10Hz.



- 39 building: The 13-storey commercial building, loedtin Sherman-Oaks,
California, already presented in Sec. 2 and FigTHis building has been

damaged by the earthquake of Northridge Januaryl994 (M, =6.4), The

signal is of 60 seconds (3000 samples) length tal,tsampled at 50Hz and
decimated at 10Hz.

The two signal models considered will be evaluateer these real-world seismic data
and compared all together in the aim of highlightihe interest of the model proposed
in this paper when dealing with such data. Thethatend of this section, the proposed
model will be applied over the simulated seismgnais of section 2.
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Figure 6: 7-storey hotel building located in Van-Nys, California (top left), 13-storey San-José

building located in the Bay area, California (top light), and the spectrograms of the real-world

seismic data recorded at the top of the Van-Nuys anSan José buildings calculated with Hann
window of 3.2 s (32 points) and 6.4 s (32 pointd)dttom left and bottom right respectively)

4.1 Analysis of real-world seismic data

For each of the three real signals presented inptegious section, an appropriate
segment of 6 s length is studied. For the cashefime-invariant damping coefficient,
the frequency is estimated at tH¥ @rder. While for the case of time-variant damping
coefficient, the polynomial damping function isiesdted at the 8 order.

4.1.1 Time-invariant and time-variant damping coefficient

In 7 ¥ the initial amplitudef and the damping coefficient, are constrained to be
strictly positive (Sec. 4.1).

Fig. 7 presents the results of the damped ampliaude polynomial frequency model,
with a, constrained to be strictly positive, when studmcer the three real-world

10



seismic data of the buildings presented in sectiobhis model has shown its efficiency
when applied over ambient vibration sign@&. Our aim in this paper is mainly to test
this model over real-world seismic data, which abaracterized by more intense
vibrations.
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Figure 7: Analysis of the real-world seismic data@corded at the top of Van-Nuys hotel ¢column
left), San-José building (2 column middle) and Sherman-Oaks building (3 column right) when
using the damped amplitude and polynomial frequencynodel (; constant): The spectrograms

calculated with Hann window of 15 points (' line top), the estimated amplitude modulations (¥
line middle), and the estimated frequency modulatios (3¢ line bottom)

The results reported in Fig. 7 proved that this ehasl no longer reliable when dealing
with seismic data. The amplitude modulations of ttmee chosen studied signals are
not correlated with the spectrogram, which indisatieat the local variations of the
concerned signals weren't tracked correctly usimg inodel. From this point, and in the
aim of improving the performance of this mode], was then assumed to be without

constraints. The results of this hypothesis, stiidieit not presented here, didn't
improve the performance at all, neither the normealierrorsvere minimized, nor the
amplitude variations were in agreement with thecspgram.

11



Based on these conclusions and contrary to the e@dnamplitude and polynomial
frequency model that is concentrated on the tinvasiant damping-coefficient, in this

paper, a new model namely the polynomial dampimgtfon model that accepts to
be time-variant is proposed (c.f. section 3.1.2).
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Figure 8: Analysis of the real-world seismic datae&corded at the top of Van-Nuys hotel Lcolumn
left), San-José building (2 column middle) and Sherman-Oaks building (¥ column right) when
using the polynomial damping function model ¢, variable): The spectrograms calculated with

Hann window of 15 points (f' line top), the estimated amplitude modulations (¥ line middle), and
the estimated frequency modulations (8 line bottom)

Fig. 8 presents the results of the polynomial dagpgunction model, when studied
over the three real-world seismic data of the hogd presented in section 4. The
improved performance could be clearly noticed, #Hraplitude variations are in
agreement with the spectrogram, the frequency ansare acceptable as well, and the
normalized error has been decreased noticeably.

It has been shown that the amplitude and frequeontent of the seismic data are well

extracted when applying the polynomial damping fiomc model; this model has
proven to be a good choice when dealing with seishata.

12



4.2 Analysis using simulated seismic signals

In this section, the polynomial damping functiondabis applied over the range 3-9 s
of the simulated seismic signal presented in secflp where the seismic ground
excitations correspond to those in Fig. 4.
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Figure 9: Analysis of the simulated seismic data morded at the top of the Sherman-Oaks building
when excited by seismic ground excitations {4column) and the real-world seismic data recordedta
the top of Sherman-Oaks building during the Northridge earthquake of Jan. 17, 1994 {2column):
The spectrogram calculated with Hann window of 32 gints (1% line top), the time-frequency
representation (2 line), the estimated frequency modulations (3 line), and the estimated
amplitude modulations (4" line)

13



Thanks to Fig. 4 the mode at 0.4 Hz doesn’t betonipe Brune model frequency range
of [f, =0.6Hz,f,,, = BHz], which justifies why this mode is less influencey the

seism. Accordingly, and in order to highlight thiéeet of the seism on the simulated
signals as well as the real ones, we applied a-pégis filter with f, =0.6Hz to

eliminate the component 8t4Hz.

From Fig.9, we can conclude that the two componantstheir variations are correctly
identified for both cases when applying the polyrmndamping function model.
Meanwhile, this model performs better with the deed seismic signal than with the
real-world seismic one, indeed the normalized raetin square error of the simulated
signal is about two times smaller than the seishaia.

The results of the real-world seismic data couldustified because for such data the
modal parameters (such as natural frequency, dgmgitio, and mode shapes) are
always time-variant, however, for the simulategsec signal the modal parameters are
constant and are a priori known. Neverthelessptignomial damping function model
has proven its efficiency even when dealing with piysical modeling of the building
motion.

5. Conclusions

Unlike input-output techniques for which buildingsponse is evaluated by knowing
both the input signal (for example, seismic groundtion) and the output signal
corresponding to building motion (for example, mas recorded on the roof), we
propose in this paper an Output-Only Modal Analysithod, considering the input as
unknown. The model proposed in this paper is tHgnamial damping function model

based on the time-variant damping coefficient apdliad in the context of seismic
vibrations, which are characterized by non-lingarihon-stationarity and short-

durations.

The proposed model has led to significantly imprbestimations of both the amplitude
and the frequency modulations as compared to thepdd amplitude & polynomial
frequency model, the variations of the multi-comguainseismic signals were tracked
correctly over the very short duration of 6 secoraagl the normalized error for each of
the studied segments for the concerned signalsnatiseably low. Furthermore, this
model is more adapted to the civil engineering dinds that are characterized by
exponential damping functions, and it is in welt@adance with the physical model of
the building motion.

In future we intend to study the applicability dfig Output-Only signal model in
extracting the dynamic properties of the buildirgisch as the natural frequency and the
damping ratios.
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