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Abstract. On modern multi-core processors, the growing gap between
memory size, bandwidth and latency compared to computing capability
makes the memory hierarchy predominant for performance. The Micro-
kernel-Description-Language based Performance Evaluation Framework,
MDL-PEF, accurately predicts optimized inner-loops performance de-
pending on the loop’s data access. The MDL-PEF approach revolves
around a data flow description language, MDL. A static analysis step
extracts the data flow structures of the assembly code. Then the pre-
dictor uses pattern matching against an MDL-Microkernel database for
predicting performance. Finally, MDL-PEF provides an automatic tool
to initialize a pattern matching database for the target architecture.
The overall system can predict the kernel performance on different plat-
forms and optimizations, helping the user choose the best architecture
for a given kernel. Preliminary experiments, with a 56 elements database,
predict the innermost loop throughput of 636 binary loops of the NAS
benchmarks with an average 10% of relative error. The performance pre-
dictor is part of the Modular Assembly Quality Analyzer and Optimizer
(MAQAO) performance tool framework. Future works will extend MDL-
PEF to other architecture paradigms and more complex control flows
such as outer loops.

Keywords: Performance analysis, Performance prediction, Dataflow,
Microbenchmarking

1 Introduction

New architectures use an increasing number of cores, more complex hardware
mechanisms for performance, and wider memory hierarchy. The growing com-
plexity of the system makes their performance fuzzier, to the extent where build-
ing accurate analytical models is not possible anymore. Furthermore, to build
empirical models, exhaustive approaches are not realistic.

Manual or compiler optimizations require a cost model and performance ana-
lyzer to drive the process. Cost models predict where to apply the optimizations



and their potential efficiency; performance analysis quantifies their impact. Op-
timizing is a costly and error prone iterative-process which must converge as
fast as possible. Therefore, both the performance model and analysis need to be
accurate.

To tackle the emerging challenge of performance analysis on complex many-
core systems, we propose a new approach based on micro-benchmarking and
pattern matching. To be more precise, the remainder of the article will use the
three following definitions:

– MDL-Kernel: code snippet abstraction from an external application and
candidate for matching against micro-kernels (µKernels),

– µKernel : atomic element of an MDL-Kernel representing a single connected
dependency graph,

– Micro-benchmark: machine specific code fragment instantiating a partic-
ular µKernel which MDL-PEF benchmarks to build the matching database.

Since the gap between memory and flops bandwidth in modern architectures
is getting wider and wider, we base our approach on the following assumption:
memory access patterns dominate performance when the accessed memory is
far from the CPU. Therefore, at the core of the MDL-PEF framework is a data
flow description language, MDL, which models memory access performance. The
framework addresses three different issues:

1. Code abstraction: An application’s code snippet is broken down into a set
of independent µKernels. Each µKernel conveys the data flow and arithmetic
intensity characteristics of a small code segment.

2. Pattern matching : MDL-PEF matches newly extracted µKernels against a
database of existing µKernels with known performance. By identifying similar
µKernels in the database it predicts the performance.

3. Micro-Benchmark code generation: To initialize the database, MDL-PEF
measures a set of seed µKernels on different platforms and execution con-
texts. From each abstract MDL kernel, MDL-PEF generates many con-
crete machine specific binaries, called micro-benchmarks. Instantiated micro-
benchmarks have explicit addressing, operations, loop trip, and scheduling.

New hardware or software developments provide new optimization opportu-
nities and can make older design choices obsolete or even counter productive,
especially when dealing with legacy applications, in HPC or in embedded sys-
tems. In this context, MDL-PEF is useful in two ways:

1. Code optimization
(a) Performance debugging: an application segment’s performance being far

from what is expected is a performance bug. MDL-PEF spots perfor-
mance bugs by predicting the expected performance of the kernel and
comparing it to the measured performance.

(b) Identify code segments with high potential for optimization: MDL-PEF
can predict when it is possible to perform the same data flow pattern
with better performance. Examples include using a different architecture



or applying new optimizations: unrolling, blocking, loop splitting, loop
interchange, etc. MDF-PEF measures the potential return on investment
of the proposed optimizations.

2. Hardware-software co-design either in HPC or embedded systems

(a) Extract from a whole application the set of abstract µKernels used in
loops: Instead of executing the whole application, MDL-PEF benchmarks
and tunes the loops one by one.

(b) Help tune the optimizing compiler on the target system while determin-
ing the best performing optimizations and their parameters on a set of
representative benchmarks.

The remainder of this article is organized as follows. Section 2 presents related
works. Section 3 details the design of MDL-PEF: it describes the MDL gram-
mar, how to extract the MDL representation of a code segment, and how to use
pattern matching on MDL. Section 4 exposes the specific algorithms used for
implementing micro-benchmarks code generation during the µKernel concretiza-
tion step. Section 5 presents first experiments, with a case study and preliminary
results on NAS parallel benchmarks. Section 6 concludes and gives an outlook
on future works.

2 Related Works

There are two main families of performance analysis tools: dynamic and static
ones. Dynamic analysis tools, like gprof [1], Scalasca [2], TAU [3], Intel Vtune,
or Likwid [4], analyze the live execution of a program, based on the execution
trace or hardware-counter-based profile, and help users spot the performance
bottlenecks. Their results are deeply linked to compiler, execution context, sys-
tem, and processor. They perform on-site specific code quality measurement,
optimizations and hotspots detection. Other dynamic tools, like Perpi [5] or
Acumem [6], are independent of the target system since they use architecture-
independent interpretation models of the trace.

Static analysis tools, like MAQAO [7], Salto [8] or Intel IACA, determine
the potential lower-bound of application performance based on a static model.
They compute their output with various metrics such as estimated floating-point
operation count, estimated data flow analysis, estimated number of live variables,
register count, etc. The static tools are language and compiler dependent. They
are useful for analyzing and optimizing the code quality produced by a compiler.

MDL-PEF uses fine grain static analysis based on the MAQAO [7] frame-
work to construct the MDL-Kernels and it optionally uses the dynamic profile to
specialize the prediction context. The basic usage helps to determine and quan-
tify the potential optimizations to apply at loop level. Furthermore, during the
abstraction process, it extracts new static metrics about the code characteristic
and the compiler work quality.

All optimization work starts with the kernel-to-optimize detection and ex-
traction. ASTEX [9] is an existing source-level approach based on application



instrumentation and profiling. Avoiding full-scale application execution is a ne-
cessity to make iterative optimization possible. The objective is to special-
ize the code generation and optimization for the hotspot using complex and
costly approaches. MDL-PEF offers such a possibility with MDL concretization
and replay in the micro-benchmark framework. Since the MDL-PEF replay the
compiler-optimized kernel, it does not influence the process from the source code
to the optimized binary. Contrary to ASTEX, MDL-PEF does not yet capture
the real application working-set.

The finality of performance analysis is performance optimization. The col-
lected metrics and performance properties need a translation into hardware or
software optimizations. Performance prediction and cost model can help to ex-
plore the design space, as done in SPIRAL[10] for signal applications.

Some approaches base their predictions on a theoretical and empirical model.
For instance, the Acumem Threadspotter [6] tool varies the cache parameters,
such as associativity and size. By replaying the sample trace with new parame-
ters, it characterizes the cache effect in single and multi-core execution.

Other approaches use an adaptive model based on machine learning, collect-
ing data from experiments and predicting the set of design properties based on
similarities with known results. GCC milepost [11], for instance, measures the
relation between compiler flags and performance for several codes. Based on syn-
tactic similarities, it predicts the flags to use for a new input. Its drawback is to
be a blind optimizer: it optimizes, but does not explain why the optimizations
are successful.

MDL-PEF explores both approaches, respectively for performance prediction
and affinity between architecture and kernel. Contrary to GCC milepost [11],
and similarly to XARK [12], the MDL-PEF metrics computation and pattern
matching approach is based on semantic features, mostly related to polyhedral
model. Thanks to code abstraction, MDL-PEF uses a reduced database of micro-
benchmarks compared to [11]. Therefore, there is no large system requirement
and the MDL-PEF pattern matching is much cheaper.

3 Design of MDL-PEF

This section describes the Microkernel Description Language Performance Eval-
uation Framework. Figure 1 represents a schematic view of the framework. The
figure can be read from two different points of view:

1. Daily user : the framework’s input is an application code snippet. The frame-
work abstracts the input into the MDL language, described in section 3.1.
Then it refines the raw MDL description to its canonical form using the
algorithm of section 4.1. The canonical MDL form is then matched against
the MDL-µKernels database using the k-NN algorithm of section 4.2. The
framework predicts the best performance and the best optimization using
the information from the closest neighbors.

2. Tool provider or database builder : MDL-PEF relies on performance results
in its MDL-µKernels database. To fill it, MDL-PEF prepares concretized



IN MDL-Kernel
Performance 

Issue

OUT

Performance 
Prediction on 

Various Targets

MicroBenchmark 
generator

µKernel n µKernel1

#best unroll factor
#input streams and size
#output streams and size
#add and #mul

...

Concretize

-Perf L1
-Perf L2
-Perf L3
-Perf RAM

MDL
 Database

µKernel2

Pattern Matching

ISA
Abstraction

Binaries / 
Assembly / 

Source 

Execution 
Engine

Normalization

Fig. 1: The MDL-PEF organization

versions of the database µKernels to run through a micro-benchmarking tool
such as MicroTools or Likwid [4]. Section 4.3 describes this process.

The two previous utilizations are grouped in one single framework presenting
two concepts: the MDL language described in section 3.1 and the framework,
PEF, described in section 4.

3.1 Microkernel Description Language

The intuition behind MDL’s abstraction is that, whatever the implementation of
a kernel is, it will always use the same number of input and output data flows to
compute a result-element. For instance, a Finite Impulse Response (FIR) filter
is composed of one input data flow, reading N elements backwards, and one
output data flow writing one output element. The description does not change
after applying compiler optimizations. What makes a difference for the stencil,
with unrolling for instance, is the flop/byte metrics. Thus, MDL description
language focuses on the access pattern and arithmetic intensity description.

The following guidelines lead the MDL design:

– The abstraction should allow efficient pattern matching and be abstract
enough so that similar programs share the same MDL representation. In
addition, the number of MDL seeds in the database should be reduced to
the minimum to reduce matching complexity. Therefore, complex patterns
should be broken into combinations of simpler patterns using the same mem-
ory stream.

– The language should be architecture independent. A machine description
file is used at the concretization step to produce micro-benchmarks. This file



hides the architecture specifics, such as Instruction Set Architecture’s (ISA),
type sizing, register mapping, from the MDL abstraction.

3.2 MDL Kernel Description

An MDL-kernel description is composed of three parts: meta-data, data and
body.

The meta-data part describes all the associated metrics embodied in the
MDL description, but not related to the abstract data flow pattern. It captures
information specific to the original code implementation of the kernel such as
unrolling factor, spill-fill, loop bounds, and array physical addresses. The metrics
are produced either by the static analysis, a dynamic profiling, or any external
tool.

The data section contains the set of variables describing the working set of
the benchmark code such as memory streams identifier, strides value, offsets
value, and immediate values.

Finally, the body describes the abstract data flow accesses of the kernel and
the arithmetic intensity. The full grammar of the body follows:

〈loop〉 ::= 〈outer loop〉 | 〈inner loop〉
〈outer loop〉 ::= ’Trip:’.〈expr〉.’I/O:’.〈InOut〉.’LoopBody:’.(〈flow binding〉)*.〈loop〉)
〈inner loop〉 ::= ’Trip:’.〈expr〉.’I/O:’.〈InOut〉.’LoopBody:’.〈ukernels〉.
〈InOut〉 ::= ’In:’ (〈flow〉.〈expr〉.)* . ’Out:’ (〈flow〉.〈expr〉)*
〈flow binding〉 ::= 〈fixed〉 | 〈strided〉 | 〈switch〉
〈fixed〉 ::= ’fixed ’ 〈flow〉
〈strided〉 ::= ’strided ’.〈flow〉.〈expr〉
〈switch〉 ::= ’switch’.〈flow〉.’in’.〈flow〉*
〈expr〉 ::= (〈value〉|’(’.〈expr〉.’)’).((’+’|’-’|’*’|’mod’|’div’).(〈value〉|’(’.〈expr〉.’)’))*
〈ukernels〉 ::= 〈ukernel〉*
〈ukernel〉 ::= 〈mem access〉*.〈arith〉
〈mem access〉 ::= (〈flow〉.’Stride:’.〈value〉.’Offset:’.〈value〉.’Size:’.〈value〉)*
〈arith〉 ::= (’Add:’.〈value〉.’Mul:’.〈value〉) | AST

〈flow〉 ::= stream identifier

〈value〉 ::= integer | scalar identifier

The terminal elements of the grammar are of two kinds: integer immediate
values and identifiers for flow and scalar parameters declared in the data section.

The body description starts with the outermost loops expression. For each
loop level, the description contains a loop trip count variable and the list of the
polyhedric expression of the in and out accesses. They are computed from the
current level code and the lower-level loop-components in and out expression.
Then, it contains a list of the next level loop. The inner loop description is the
lowest loop level; it contains a list of µKernels instead of a lower loop-level list.
Each µKernel is built from memory accesses description and arithmetic charac-
terization. Currently, we only consider the arithmetic intensity for addition and
multiplication. The current assembly abstraction is limited to the innermost loop
expression. We are also not considering indirect accesses, conditional branching,
and irreducible loops. Since our first target result is the asymptotic innermost
and branch-free loop body throughput prediction for MAQAO [7] in L2, L3, and
RAM memory level, the current limitations have no significant impact.
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4 Implementation of MDL-PEF

This section describes the PEF prototype implementing the pattern matching
and replay features. As described before, the PEF pipeline has three steps: nor-
malization of the µKernels to their canonical form, pattern matching and con-
cretization of the µKernels for replay.

4.1 MDL-Kernel Construction and Normalization

Figure 2 shows the full MDL-kernel construction from the asssembly and nor-
malization process. It removes ISA artificial limitations to get a canonical data
flow representation which assumes an unlimited number of registers, arbitrarily
large memory moves, and is identical for different unroll factors.

First, MDL-PEF renames registers assuming a virtual infinite number of reg-
isters and removes obsolete spill-fill code abstracting the code from any register
pressure impact. During this process, to clearly separate the memory and arith-
metic streams, the instructions combining arithmetic and memory access, are
fissed.

Then the modified assembly code segment is broken into elementary and
independent µKernels. Compiler unrolled code makes this process difficult, be-
cause unrolling factorizes instructions from different iterations. To reconstruct
the original instruction stream, all the factorized memory accesses are fissed.
After this process, every connected sub-graph of the Data Dependency Graph
(DDG) represents a separate computation segment and Tarjan’s connected com-
ponents algorithm [13] extracts the set of µKernels.

Next, memory coalescing abstracts the access instruction size limitations of
the ISA, by fusing contiguous memory accesses. The MDL language considers
an ideal memory access with arbitrarily large memory stores or loads. The final



step is re-rolling. µKernels that are unrolled instances of the same code segment
will have a unique canonical representation after this step.

Normalization removes ISA and compiler side effects from the MDL repre-
sentation, to avoid hindering the pattern matching with such effects. During the
whole process, PEF extracts related static metrics for each µKernel: the unroll-
factor, the spill-fill, the flop per byte and the ADD per MUL ratio.

4.2 MDL Pattern Matching

The MDL-PEF approach for pattern matching is based on the k-Nearest -
Neighbor [14], k-NN, algorithm. The µKernel studied and each seed in the data-
base are tagged with a feature vector. In the MDL context, feature vectors are
built from five metrics: the load per stream, the store per stream, the number
of streams, the ADD number, and the MUL number. In Section 5 we will show
empirically that these metrics work well for the Nehalem x86 architecture. More
complex feature vectors capturing the structural matches between different data
flows will be studied in future. The algorithm finds the closest k seeds to the
studied µKernel and predicts its performance by combining the closest seeds’ per-
formance. We iteratively apply the following algorithm: find the closest neighbor,
scale it to minimize the distance, add the scaled performance to the accumula-
tor, substract (saturated arithmetic) the scaled feature from the target vector,
loop until target vector is null. Then the algorithm searches for next order per-
formance prediction. Therefore, the closest neighbor has the higher impact on
the result.

The k-NN approach works well when predicting a single µKernel’s perfor-
mance. In cases where multiple µKernels interact, it is not clear how to combine
their individual predictions for the whole application’s performance prediction.
The problem is difficult because multiple µKernels performance is rarely addi-
tive [15]. Indeed, an out-of-order machine can overlap the work as long as the
superscalar resources are not saturated and the access overhead in higher mem-
ory hierarchy benefits from the pipelining effect.

4.3 MDL Concretization: x86 Binary Generation

Concretization produces many binary versions from a single MDL seed to ex-
plore performance and optimization trade-offs. Concretization can be used in
two ways:

1. Replay mode: Replay a specific µKernel with different parameters to precisely
explore performance trade-offs.

2. Populate the database with performance and optimization information: Con-
cretization can help explore the unroll factor, best amount of thread-paralle-
lism, most efficient blocking size, etc.

The database concretization should provide accurate lower-bound through-
put performance to reveal the optimization potential, whereas the replay con-
cretization must measure real performance accurately. Therefore the replay does



not normalize the µKernel to preserve the original code dependencies, aliases and
alignment issues. Concretization is performed in three stages:

1. Choose assembly instructions to execute the kernel. For memory instructions,
the selection policy is to maximize vector-load instructions, to produce qual-
ity vectorized code. For arithmetic instructions, current Intel x86 Nehalem
architectures are able to dispatch one vectorized ADD and MUL per cycle.
By avoiding clusters of ADD and MUL instructions, Algorithm 1 produces
balanced schedules which maximize Instruction-Level Parallelism (ILP).

2. Schedule memory and arithmetic instructions streams together. Algorithm 2
ensures that flow dependencies between memory and arithmetic are satisfied.
Therefore, each bundle is composed of a load section, an arithmetic section,
and a final store section. The bundle scheduling granularity can be tuned
with the nb bundles parameter in algorithm 2. The coarsest granularity is
composed of only one large bundle; the finest granularity is composed of small
interleaved bundles. The scheduler is able to produce all the intermediate
granularity schedulings. Figure 3 shows schedules of different granularities,
from one to three bundles.

3. Allocate the physical registers. Algorithm 3 is our register allocator. It is a
modified round robin register allocation which minimizes registers’ depen-
dencies and maximizes the distance between definition and store in the same
register. It is important to note the register allocator breaks the semantics of
the original kernel assembly to be as performance-neutral as possible during
the allocation. MDL’s register allocation allows studying the performance of
a code without worrying about register dependencies slow-downs.

Finally, MDL sends the assembly produced to an external tool, the Micro-
Tools framework, which handles memory allocation, initialization, time measure-
ment and the loop trip count.

5 Preliminary Experiments

This section presents preliminary experiments validating the MDL-PEF concept
and prototype implementation. Section 5.1 explores the characterization of the
OpenMP NAS 3.0 and the MDL database. It shows that the feature vector’s
distribution in the database is compatible with the feature vector’s distribution
in the OpenMP NAS 3.0 benchmarks [16].

Section 5.2 analyses PEF’s prediction accuracy on NAS benchmarks. The
section focuses on lower-bound performance estimation and across-architecture
performance prediction.

5.1 Database Generation

The prototype database contains 56 seed µKernels distributed as follows:



Require: int nbadd, nbmul

nbfop ← nbmul + nbadd

minop ← min(nbmul, nbadd)
if minop 6= 0 then

ratio← nbfop ÷minop

ratiomul ← ratioadd ← 1
if nbmul ≥ nbadd then

ratiomul ← ratio
else

ratioadd ← ratio
end if
while nbmul and nbadd do

print ratiomul ∗mul
print ratioadd ∗ add
nbmul ← nbmul − ratiomul

nbadd ← nbadd − ratioadd

end while
end if
print nbmul ∗mul + nbadd ∗ add

Algorithm 1: Arith pre sched

Require:
Dbundle, nload, nstore, nadd, nmul

foplist ←
Arith− pre− sched(nbadd, nbstore)
Nbundle ←
min(Dbundle, nload, nstore, nadd + nmul)
nfop per bundle ← fop/Nbundle

nload per bundle ← nload/Nbundle

nstore per bundle ← nstore/Nbundle

while i < Nbbundle − 1 do
print Nload per bundle ∗ load
print
Nfop per bundle ∗ get line(foplist)
print Nstore per bundle ∗ store

end while
print
(nload − nload per bundle ∗ nbundle) ∗ load
print (nfop − nfop per bundle ∗
nbundle) ∗ get line(foplist)
print
(nstore−nstore per bundle∗nbundle)∗store

Algorithm 2: LSA sched

Require: Stream input
lastreg = −1
reglast def [7] = 0
while currline == input.getLine() do

if isLoad(currline) then
lastreg = (lastreg + 1)%8
insert load(lastreg)
reglast def [lastreg] = currline.id

else if isArith(currline) then
firstreg = (lastreg + 1)%8
lastreg = (lastreg + 2)%8
insert arith(firstreg, lastreg)
reglast def [lastreg] = currline.id

else if isStore(currline) then
lastreg = search older(reglast def )
insert store(lastreg)

end if
end while

Algorithm 3: Neutral alloc
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– 36 memory-only µKernels: six of them are the single stream memory kernels
which are shipped inside MAQAO. The remaining thirty are synthetic kernels
generated by all the combinations of loads and stores with a maximum of 8
loads and 4 stores.

– 20 Numerical Recipes µKernels: ten of the µKernels are synthetic memory-
arithmetics µKernels whose memory/arithmetic, load/store and add/mul ra-
tios are representative of the Numerical Recipes benchmarks. The other ten
seeds are extracted from long, vectorized kernels from the Numerical Recipes
benchmarks [17].

The right part of figure 4 presents the database load/store and flop/byte
distributions. The left part presents the same distributions for all the vectorized
floating point µKernels extracted from the NAS benchmarks.



The database distribution range for store over load ratio is close to the NAS
distribution range: less than 5% of the NAS µKernels are outside the database
distribution bounds. In the NAS benchmarks, balanced load-store kernels pre-
dominate. Therefore, the future base extension will have a particular focus on
those configurations. Database and NAS arithmetic distributions are very close
up to 0.8. For higher intensity, we rely on the scaling step of the pattern match-
ing. Indeed, the database focus is mainly on memory-only seeds since we assume
memory access cost predominates. However, to reduce the scaling factor, a future
MDL database should explore larger arithmetic intensity bound.

Comparing the database and NAS distributions shows no large discrepancy.
Therefore, we conclude that the current database correctly captures the features
of the studied NAS benchmarks and it can be used to predict NAS performance.
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Fig. 4: NAS FP-SSE loops and MDL prototype database profiles.

5.2 Performance Replay and Prediction

The first case study is based on an industrial Gauss filter kernel implementation.
Figure 5 compares the loop throughput in cycles and time per iteration of the
MDL replay and the real code execution for different array sizes and architec-
tures. The test architecture are: an Intel Xeon L5609@1.87GHz, an Intel Xeon
E5620@2.40GHz and an Intel Core i5 M560@2.67GHz.

The mean relative error in replay is 8.66% and the absolute error average
is 2.28 cycles. When comparing performance across architectures, cycles per
iteration throughput is a misleading metrics. Indeed, the number of cycles is
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Fig. 5: MDL replay of the Gauss filter on multiple architecture and input data-
size.

not a time measure. When dividing by the frequency, the time in L1 and L2
appear to be proportional to the frequency, weheras in L3 there is no gain by
moving from 2.40 to 2.67GHz, and in RAM the Xeon E5620 is clearly the fastest
architecture for this code. Therefore, the user can save energy and money by
choosing the best fitting architecture for an application.

The larger prediction experiment is based on the NAS benchmarks. MDL-
PEF identifies 1499 FP-SSE loops in the eight benchmarks of the NAS suite.
Since MDL-PEF predicts the perfectly vectorized bottom performance of the
loop, the accuracy measurement of the prediction has to be checked against the
vectorized FP-SSE loop. It represents 956 loops from the original set, among
which 636 run with the current extraction and replay engine. Figure 6 presents
the results on the 636 loops for two different architectures: a Nehalem Intel Xeon
L5609@1.87GHz and a Xeon E5620@2.40GHz. The four lines present respectively
L1, L2, L3, and RAM predictions. The whisker representation shows the relative
error of the MDL prediction against the real loop in single thread execution.
Each box is bounded by the first and third quantile value, with the bar inside
each box being the median value. In L1 the median is very close to the first
quantile value.

In this experiment, MDL-PEF used the database described in section 5.1.
The real execution time was measured by running the original assembly through
MicroTools:

– Base registers were rewritten with the adresses of the MicroTools allocated
arrays.

– Indirect access loops, large offset access and loops using more than 7 distinct
memory streams were blacklisted.

– The current approach does not consider aliasing, therefore two different base-
address registers are always considered as different streams.

The average relative error of the prediction is presented in array 6c. For
unrolled and very large kernels, results are worse because of the performance non-
additivity issues described in section 4.2. One should notice that the prediction is
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(a) Intel Xeon E5620@2.40GHz
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(b) Intel Xeon L5609@1.87GHz

Cache level L5609@1.87GHz E5620@2.40GHz

L1 0.076 0.077
L2 0.085 0.088
L3 0.153 0.139

RAM 0.0768 0.073

Average 0.097 0.094

(c) Statistical summary

Fig. 6: Performance prediction relative error to real measurement sequence on
the 636 loops extracted from the NAS benchmarks. The left plot is on an Intel
Xeon L5609@1.87GHz, the right one on an Intel Xeon E5620@2.40GHz

much more accurate in L1 and RAM. L2 and L3 predictions are unstable mostly
because the pattern matching algorithm does not yet deal with stride iand offset
matching. To overcome this problem we have to consider using data-mining to
explore all the concretization parameters more extensively.

From our experiments, we conclude that the first objective to replace the
MAQAO performance predictor by a new extensible framework is reached. Fu-
ture developments on the inner loop throughput prediction will have to exploit
a more advanced model for performance combination of µKernels, and explore
more unroll and stride parameters.

6 Conclusion and Future Works

This paper presents the MDL-PEF concept and its early prototype. The first
implementation focus is setting the software stack of MDL-PEF.

The first step converts an x86 assembly kernel to its MDL description. Then
MDL-PEF simplifies the kernel using memory access coalescing, spill-fill removal,



and renaming. The final step splits the kernel in µKernels and refolds the unrolled
one. MDL-PEF matches each µKernel with the closest seeds of the database and
combines their predicted performance to predict the kernel throughput.

The current implementation of MDL-PEF predicts the performance of a set
of 1499 inner-loops extracted from the NAS benchmarks. The prediction av-
erage relative error over the 636 studied vectorized loops is 10%. In addition,
MDL-PEF enables early exploration of the impact of the unroll factor and in-
struction scheduling using multiple MDL kernels. To improve the current model,
we identify three priority actions.

MDL represents a kernel as a data flow abstraction of the memory accesses
decorated with arithmetic intensity information. Despite MDL’s architecture
independent representation, the MDL construction and refinement process is
not ISA agnostic. To tackle this problem we propose to use an intermediate
representation (IR) assembly in MDL, such as KIMPLE [18] or GIMPLE [19].
The low level IR will enable more accurate replays and facilitate interfacing MDL
with new ISA.

Performance is not additive. The performance predictor needs to model more
precisely the interactions among µKernels on the target architecture.

Lastly, to enhance the accuracy of the pattern matching and the replay, we are
exploring the MAQAO binary instrumentation for value profiling. It makes the
execution context determinate and allows the extension of metric-quantification
to loop-nests.

To conclude, the current development and experiments clearly validate the
interest of our concept. With the future software and model extension and large
experimental validation, MDL-PEF will be a great complement to existing tools.
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