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H-adaptive Navier–Stokes simulations of free-surface flows around
moving bodies

Alexander Hay, Alban Leroyer, and Michel Visonneau

Laboratoire de Mécanique des Fluides (CNRS UMR 6598), Equipe de Modélisation Numérique, Ecole Centrale de Nantes, BP 92101,
rue de la Noë 44321, Nantes, France

Thus, the simulations of complex free-surface flows
around real ships can be undertaken with control of
the numerical approximation using mesh adaptation.
Determining the dynamic response of moving bodies
is a large area of concern in ship hydrodynamics:
ship maneuvring, behavior in the seaway, slamming
phenomena, etc. For all these applications, CFD is
complementary to towing-tank tests because it provides
a large amount of detailed information on the flow,
which helps the designer to improve the performance of
new ships.

It was observed during the last Gothenburg 2000
workshop1 that the free-surface capturing methodology
was more and more popular among CFD developers
dealing with viscous naval hydrodynamics. This increas-
ing interest is due to the fact that this approach is more
robust than those based on a free-surface fitting method-
ology, since no regridding is necessary and the numerical
wave-breaking, which may occur during the initialization
period, is perfectly tolerated. When specific compressive
discretization schemes are used to solve the concentra-
tion transport equation, one can ensure that the density
discontinuity between air and water is captured on three
to five control volumes.2,3 However, if the discontinuity
occurs in a region where there are not enough grid
points, the free-surface elevation is dramatically attenu-
ated, making the free-surface capturing strategy far less
accurate (and far more expensive) than classical algo-
rithms based on free-surface fitting. Therefore, the al-
most perfect numerical strategy should integrate a
coupling between a free-surface capturing approach and
an automatic local adaptive mesh refinement and coars-
ening methodology in order to maintain dynamically a
prescribed density of grid points around the steady or
unsteady interface between air and water.

In this context, the goal of this study was two-fold:
first, the emphasis was on demonstrating the robustness
and flexibility of the whole numerical approach in order
to simulate the motions of moving bodies in multiphase

Abstract This article deals with Navier–Stokes simulations of
multiphase flows around moving bodies coupled with an adap-
tive mesh refinement strategy. The numerical framework is
considered first: the Navier–Stokes solver, the methodologies
for handling multiphase flows and moving bodies, the
remeshing techniques, and the adaptive procedure are ex-
plained and detailed. Then an application involving hydro-
dynamic impacts is presented in detail and studied to highlight
the relevance of the whole global approach. Of particular
interest is the accurate computation of pressure peaks arising
during impacts.
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1 Introduction

Over the past few years, numerical methodologies have
stirred much interest in the engineering community.
The use of computational fluid dynamics (CFD) tools is
no longer limited to simple physical problems, but can
enlarge its field of interest as solvers integrate new
physical features to deal with more and more realistic
applications. This new trend is illustrated in this article,
which presents the coupling between:

1. a finite-volume Navier–Stokes solver for arbitrary
unstructured grids;

2. a free-surface capturing approach;
3. a resolution procedure for simulating the motions of

freely moving bodies;
4. an automatic local adaptive mesh refinement and

coarsening methodology.

Address correspondence to: Michel Visonneau
(michel.visonneau@ec-nantes.fr)
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flows accurately. The focus was also on its ability to
capture precisely the free-surface discontinuity for a
reduced computational and human effort. While each of
the four issues enumerated in the very beginning of this
introduction has already been the subject of studies
in the literature, such a complete and fully coupled
approach has never been developed or studied for
hydrodynamic applications. Many surveys of the earlier
literature dealing with multiphase flows can be
found.1–7 Similarly, the subject of freely moving bodies
in fluid flows has been addressed,8–10 while an extensive
study of h-adaptive methods has also been reported.11

This article is organized as follows. Section 2 provides
a detailed presentation of the numerical methods. Sec-
tion 2.1 presents the computational techniques used in
order to enable the considerations of hydrodynamic
applications. It describes the incompressible flow code
which solves the unsteady Reynolds-averaged Navier–
Stokes equations (URANS) on unstructured grids with
a finite-volume formulation that naturally handles arbi-
trarily shaped control volumes. Also presented is the
free-surface capturing method implemented with the
specific discretization schemes which are required to get
an accurate description of a density discontinuity.

Section 2.2 describes the numerical techniques that
allow the treatment of an arbitrary number of bodies,
rigid or flexible, in free or imposed 3D motions. Details
are given concerning the resolution of Newton’s laws,
regridding strategies for the mesh to be adapted to
the new position of bodies in time, and fluid–structure
coupling.

Section 2.3 describes the local adaptive mesh proce-
dure that is designed in the framework of unstructured
grids. The adaptive process is made dynamic and able to
consume less CPU time by the use of an adequate data
structure. The adaptive procedure is entirely included in
the flow solver, making it a complete automatic single
tool for computing hydrodynamic flows.

Following these numerical methods, Sect. 3 intro-
duces the physical problem considered in this study. It
concerns the two-dimensional simulation of drop tests,
which are of relevance in investigating slamming prob-
lems and planning boats operating at high speed in a
seaway. Sections 4 and 5 consider the detailed results
for symmetric and asymmetric cases, respectively. Of
particular interest is the computation of pressure peaks
that arise during impacts. The results of this general
methodology are further compared with the predictions
provided by an asymptotic method developed by Scolan
et al.12 and Cointe et al.13 and with experimental data
obtained by Peterson et al.27 A discussion about the
advantages of the global approach, that are demon-
strated in terms of the accuracy of the predictions,
the optimal use of discretization points, and user-
friendliness, concludes this article.

2 Computational approach

2.1 Flow solver

The ISIS solver, developed by EMN (Equipe de
Modélisation Numérique, i.e., CFD Department of the
Fluid Mechanics Laboratory), uses the incompressible
unsteady Reynolds-averaged Navier–Stokes equations
(URANS). The solver is based on the finite-volume
method to build the spatial discretization of transport
equations. The face-based method is generalized to un-
structured meshes for which nonoverlapping control
volumes are bounded by an arbitrary number of con-
stitutive faces. The velocity field is obtained from the
momentum conservation equations, and the pressure
field is extracted from the mass conservation constraint,
or continuity equation, transformed into a pressure
equation. Picard’s procedure is used for the lineariza-
tion of the momentum equations, and this is combined
with an iterative process. Each iteration in this process
is referred to as a nonlinear iteration in the remainder of
this study.

In the case of turbulent flows, additional transport
equations for the modeled variables are solved in a
form similar to the momentum equations, and they can
be discretized and solved using the same principles.
Several near-wall low-Reynolds-number turbulence
models, ranging from the one-equation Spalart–
Allmaras model,14 and two-equation k − w closures,15 to
a full stress transport Rij − ω model,16 are implemented
in the flow solver to take the turbulence phenomena
into account.17

Incompressible and nonmiscible flow phases are
computed using conservation equations for each vol-
ume fraction (or concentration) ci of each phase i. Con-
sidering the incompressible flow of a viscous fluid under
isothermal conditions, the mass, momentum, and vol-
ume fraction conservation equations can be written
as follows (using the generalized form of the Gauss
theorem):
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where V is the domain of interest, or the control vol-
ume, bounded by the closed surface S moving at the

velocity   Ud with a unit normal vector   n directed out-

ward,   U and P represent the velocity and pressure,
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respectively, � and �t refer to the viscous and Reynolds

stress tensors, respectively, and   g  is the gravity vector.
The time derivative following the moving grid is written
d/dt. While �t is determined according to the turbulence
model used, � follows the classical relation of
Newtonian fluids for incompressible flows. The effec-
tive physical flow properties (viscosity m and density r)
are obtained from each phase property (mi and ri) with
the following constitutive relations:

ρ ρ µ µ= = =∑∑ ∑c c ci i i i

ii

i

i

; ; 1 (2)

When the grid is moving, the so-called space conserva-

tion law must also be satisfied:

δ
δt

V U n Sd
S

d d
V

− ⋅ =∫ ∫ 0 (3)

Except for the convection terms and volumetric mass
fluxes, interfacial quantities qf are rebuilt linearly from
the quantities themselves and their available cell-
centered gradients. Special attention has to be paid to
face reconstructions of the volume fraction ci. The chal-
lenge posed by the discretization of a transport equation
for the concentration is the accurate modeling of a
contact discontinuity, i.e., the free-surface. In order to
assume face-bounded reconstructions and to avoid un-
realistic oscillations, the search for an acceptable com-
promise between the accuracy and boundedness of ci ∈
[0, 1] is a key point.18,19 Moreover, the method must also
preserve the sharpness of the interface through the
transport equation (Eq. 1c).

These requirements are fullfilled by the inter-gamma
differencing scheme (IGDS).20 This is based on the GD
scheme,18 but it introduces downwind differencing since
compressive characteristics are required to capture the
interface accurately. Through a normalized variable
diagram (NVD) analysis,21 this scheme enforces local
monotonicity and the convection boundedness crite-
rium (CBC).22 The main disadvantage of the IGDS
scheme is a Courant number limitation: Co < 0.3 in
multidimensional cases, known as the Courant–
Friedrich–Levy (CFL) condition. The Courant number
of any face is defined as

Co = ∆t VF (4)

where F is the total (positive) velocity flux through the
face considered, V is the volume of the upwind cell, and
∆t is the global time-step of the temporal discretization.
Therefore, the discretized time-step needs to be
sufficiently small by the CFL condition. It has been
shown that the role played by the compressive property
of the IGDS is fundamental to get a reliable simulation
of the free surface.3 Interested readers can find more
details on the IGDS in the literature.3,23

2.2 Moving bodies

An arbitrary number of rigid or flexible bodies can be
considered, along with the flow around them, by the
ISIS solver. Furthermore, their motions can be either
imposed or solved.9

Considering the applications involved in this study,
this section focuses mainly on the particular point of
freely moving rigid bodies that raises three different
issues. First and foremost, Newton’s laws have to be
solved. Then the computational grid must be moved in
accordance with the displacement of the bodies, and last
special attention has to be paid to flow-motion coupling
for the global procedure to be stable. These topics are
addressed in the following subsections.

2.2.1 Resolution of Newton’s laws

The aim here is to calculate the temporal evolution of
the kinematic characteristics of a rigid body submitting
to forces acting on it (hydrodynamic forces, gravity,
etc).

The first step consists in the definition of an inertial
frame of reference R0 = (O0; b0), linked to the physical
space, and assimilated to a Galilean referential (b0 is the
basis associated with R0). The origin O0 of this referen-
tial is fixed to the mass center of the body G at the initial
time. In the case of a flexible body, the desired shape is
then imposed on R0. A rigid motion (that changes R0 to
a new referential R1) is then carried out to place the
body in space (Fig. 1). Thus, the characteristics of the
body motion are given by the transformation R0 → R1

(position and orientation).
In the general framework of a three-dimensional

resolution, a classical description of the body’s orienta-
tion by three successive rotations (like Euler angles),
written (y, q, f), is unsuitable because of singular
configurations for which the triplet (y, q, f) is not
unique. The use of a quaternion eliminates these
problems. This technique has already been used by
McDonald and Whitfield.24 Quaternion space � is a
four-dimensional algebra spanned by a real axis e and
three orthogonal imaginary axis denoted by i, j, k. It can

Fig. 1. Parameterization of the motion
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be roughly considered as a spatial extension of the
plane representation of complex numbers. Each rota-

tion around the axis directed by the unit vector   u

(its corresponding quaternion is denoted by u) with
angle q is associated with only one quaternion

q e u=






+






cos sin
θ θ
2 2

 on the � basis (e, i, j, k). This

quaternion (and its time-derivative) can be related to

the instantaneous rotation vector Ω . This relation

makes it possible to calculate q by knowing Ω  (for
further information, see Leroyer9). Thus, the solved sys-
tem reduces here to
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with the following notation:

— MS, mass of the body;
— (A1, B1, C1, D1, E1, F1), elements of the inertia

matrix of the body (see Eq. 5);
— (x, y, z), coordinates of the vector     O O0 1  =   X  on the

basis β0;

— (x
.
, y

.
, z

.
), coordinates of the vector 

    
V O1 0R( )  on the

basis b0;
— (a, b, g) coordinates of the vector   Ω0

1  on the basis b0;
— (q0, q1, q2, q3) coordinates of q on the basis b0;

— {  R , 
     
MO1

}, screw of external forces acting on the
body;

—   SI inertial source term.

The expression of 
  SI
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For two-dimensional simulations, this approach with
quaternions is unnecessary since the resolution of the
rotation reduces to C1 g̈  = MO1

, which can be integrated
twice without any difficulty.

2.2.2 Regridding strategies

To implement the motion of bodies in a flow solver, the
mesh must be adapted in time to the new position of
the bodies. In order to keep an appropriate grid, three
complementary methods have been integrated:

— the spring analogy regridding procedure;
— rigid transformation of the mesh;
— the analytical weighted regridding approach.

These different regridding strategies can be mixed,
which provides a useful flexibility when one wants
to combine deformation and rigid body motion
modes.

In the first method, the mesh is represented by a
mechanical structure composed by fictitious lineal and
torsional springs.25 The new mesh is obtained by resolv-
ing a pseudostructural system after imposing the new
positions of nodes belonging to bodies and other bound-
aries. This technique is very convenient because of its
capacity to deal with any deformation. However, the
computational cost is quite high, since it requires the
resolution of three additional elliptic equations.

With the rigid transformation, all the nodes are
moved according to the solid motion of the body
from the resolution of Newton’s laws or from an im-
posed law. This is not strictly speaking a regridding
approach, since there is no deformation. The grid sim-
ply follows the body in physical space. This approach
can only be used for simulations with one body in an
infinite fluid domain, but tolerates movement of arbi-
trary amplitudes.
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tions such as rigid ones. An example is given in Fig. 3 for
a square body with a 60° rotation. Regardless of the
fineness of the mesh, the technique does not raise any
problems for near-body cells with a high aspect ratio
because the weighting factor in the vicinity of the body
is almost 1. The orthogonality is therefore well con-
served. An extension of this technique has also been
developed for beam-like bodies (for further informa-
tion, see Leroyer9).

In the flow solver, mesh mobility is taken into account
by calculating the grid displacement velocity flux on
each face. For deformation techniques (spring analogy
and weighted regridding), this is obtained by computing
the exact volumes swept by cell faces, which ensures
that the space conservation law is automatically satis-
fied.26 If a rigid transformation also has to be used, its
contribution to the displacement velocity fluxes is com-
puted directly by using the parameters of the rigid trans-
formation R0 → R1.

9

2.2.3 Flow-motion coupling

In the case of prescribed motions, the bodies are first
displaced at every time step, then the mesh is rebuilt,
and lastly the flow is solved. Therefore, there is no real
coupling when motion is imposed owing to the lack of
fluid feedback on the body’s position. The problem is
more complex when motion is solved with Newton’s
laws: then the body’s kinematics are linked to the flow
at the same time-step by forces acting on them. Recipro-
cally, the body’s motion modifies the flow through the
displacement velocity fluxes, as illustrated in Fig. 4.

If the hydrodynamic forces and moments provided by
the solution of the RANS equations are only calculated
at the end of every time-step to compute the new posi-
tions of bodies, instabilities appear if the body’s density
is close to the density of the surrounding fluid. A stable
procedure is obtained as follows: at the end of each
single nonlinear iteration (see Sect. 2.1), the estimated
flow is used to calculate the forces and moments acting

1

0.8

0.2

0.4

0.6

0

Fig. 2. Isolines of the weighting factor kw

Fig. 3. Example of the weighted regridding approach. a 15°. b 30°. c 45°. d 60°

The last one approach, named analytical weighed
regridding, is a type of extrapolation of rigid transfor-
mation, but in this case, the displacement of each node
is weighted by a factor kw varying between one and zero
according to its distance from the body (1 for nodes
belonging to the body and 0 for nodes on other bound-
aries, (Fig. 2)). The values of kw are calculated at the
beginning of the simulation by solving a Laplacian
operator, and in the case of multibody simulations, a
weighting factor is computed for each body.

As far as rigid bodies are concerned, the weighting is
directly applied to the parameters of the rigid transfor-
mation R0 → R1. Thus, this regridding strategy is far less
CPU time-consuming than the spring analogy method,
and can favorably replace it in the case of peculiar mo-

a,b c,d
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on the bodies and then to compute the new positions of
the bodies (see Fig. 8). Thus, both the flow equations
and Newton’s laws are solved during each iteration of
Picard’s procedure (called nonlinear iteration). Conse-
quently, the resolution of the flow and body’s kine-
matics are closely linked. This ensures a stronger flow/
motion coupling that is responsible for the stability of
this procedure. However, such an approach means that
it is necessary to calculate the forces and to solve
Newton’s laws more often, but the associated CPU time
is almost negligible compared to the computation time
for the flow. Similarly, the mesh has to be adjusted to
the new computed positions of the bodies at each itera-
tion of Picard’s procedure, that is to say very often. As
explained before, the analytical regridding technique is
straighforward and takes very little CPU time, making it
very appealing compared with the spring analogy proce-
dure in such a context.

2.3 Local mesh adaptation

As indicated above, the free-surface capturing method-
ology is based on the solution of a transport equation
of a contact discontinuity that indicates the location of
the interface. Although the compressive discretization
scheme IGDS guarantees that the interface is captured
over three to five cells, it is essential to keep the charac-
teristic length of the cells on either side of the interface
as small as possible in order to avoid too much numeri-
cal smearing of the discontinuity. Clearly, an automatic
local adaptive mesh procedure (h-refinement), based on
successive refinement and unrefinement steps, is well
suited to following the temporal evolution of the inter-
face and to maintaining a fine computational grid
around it. Moreover, an automatic grid adaptation frees
the user from a tedious task: the generation of a mesh
suited to all parts of the unknown interface, since one
can start from a uniform grid which will be automati-
cally refined near the interface thanks to an explicit
interface indicator.

To be efficient, the local adaptive procedure has to
fulfill some requirements that can be figured out a
priori. First and foremost, the methodology must be
able to handle unstructured grids, since such topologies
are now well known to facilitate (and sometimes to
make possible) the treatment of real hydrodynamic

problems on complex geometries. Second, when un-
steady flows are considered, the free surface may be
submitted to rapid variations in time, so that mesh adap-
tation may be required very often during the numerical
simulation for the current grid to fit the discontinuity.
Such a constraint clearly points out the need for local
mesh adaptation rather than adaptive mesh generation
where each adaptation step corresponds to an auto-
matic global mesh generation.11 Moreover, in order to
keep the CPU time for the local grid adaptation process
to a minimum, the adaptive procedure should be based
on a data structure which allows dynamic grid alter-
ations. Lastly, a mapping routine has to be part of
the whole adaptation step in order to interpolate the
solution computed on the last grid considered to the
newly adapted one in order for the computation to be
continuous.

The remainder of this section is devoted to the pre-
sentation of the adaptive techniques developed and
their main characteristics.

2.3.1 Data structure and grid alteration

For the mesh adaptation process to be flexible, quick,
and easy to implement, a suitable data structure is re-
quired. Thus, the present local mesh adaptation proce-
dure is based on the notion of a relationship between
the successive generations of elements of grids.
Connectivities of relationship are considered for both
the control volume type of element and the face type of
element. These are presented here only for the control
volumes, but similar notions apply for the faces of the
control volumes. The relationships introduced between
the cells of the meshes lead to a natural vocabulary of
family, father, son, and brother, as illustrated in Fig. 5

COUPLINGFlow at time t Body kinematic at time t

Fluid forces on body

Displacement velocity flux

Fig. 4. Diagram of the fluid–structure interaction

Generation 0

Generation 1

Generation 2

GENERATION 1

GENERATION 2

GENERATION 0

son

father brother

Fig. 5. Relationship between the different generations of
elements
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(either for two-dimensional control volumes or three-
dimensional faces). The initial mesh consists of the ele-
ments of generation 0, and a first refinement step leads
to the creation of elements of generation 1. A refined
control volume becomes a father, and is split into
several sons that share a brotherly relationship. The
father and sons form a family. A further refinement
step will induce elements of generation 2, and so on.
It should be emphasized that this structure does not
reduce the generality of the grid alteration since it does
not take into account how the elements are refined.
In addition, negative generations can exist due to the
unrefinement by agglomeration that coarsens the initial
grids.11 As an example, the cell (father) resulting from
the agglomeration of cells (sons) of the initial grids
(generation 0) belongs to the generation −1. It should
also be pointed out that all the elements of the succes-
sive generations are kept in the memory (they are only
destroyed by unrefinement), but the cost of additional
memory is reduced since only a local adaptation is
performed.

Such a data structure addresses several problems at
once. First, the unrefinement of a family (thus of a
previously refined cell) becomes straightforward since
it corresponds to the recovery of the father (and also
the destruction of the sons). Thus, the refinement/
unrefinement process becomes very dynamic and is
quick to achieve. Secondly, it permits the easy and exact
recovery of the initial mesh if refinement is no longer
necessary in an area of the computational grid, as is the
case for an unsteady problem.

During the refinement process, each control volume
to be refined is split into several smaller ones of the
same topology. Thus, the topology of an element on any
part of the mesh will always be the same, and only its
size will be adapted. In this way, the initial desired local
mesh quality is preserved everywhere throughout the
simulation. For two-dimensional grids, as illustrated in
Fig. 6, the refinement process can occur with a possible
directional sensitivity for flows with simple features.

2.3.2 Description of the procedure

The goal of the adaptive procedure presented is to
maintain a desired prescribed cell size around the free
surface. In the framework of capturing methodologies,
an explicit indicator is required in order to locate the
free surface in space, and this is easily derived using
information from the volume fraction. The indicator
considered is proportional to the concentration ci, which
has already been computed during the calculation of the
flow. This permits the identification of cells for which
the volume fraction is between 0.01 and 0.99, and which
are thus filled with a mixture of the two fluids. However,
a safety margin is also added around the detected zones,
as indicated in Fig. 7, to guarantee that the free surface

is inside the finest mesh level. Its thickness is improved
by the number of layers of neighboring cells.

The adaptive procedure for an unsteady computation
is summarized in Fig. 8. An adaptation step is required
every N time-steps during the temporal loop. This
parameter has to be sufficiently small so that the
adapted meshes can follow the temporal evolution of
the interface correctly. Thus, it is related to both the
Courant number and the safety margin selected. Actu-
ally, N is always fixed to a small value so that the need
for adaptation is checked very often. However, if no
significant adaptation is required, the computation is
resumed. Otherwise, the current mesh is modified ac-

directionalisotropic

isotropicdirectional

Fig. 6. Refinement of two-dimensional volumes

Fig. 7. Safety margin around the interface
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cording to the explicit indicator, and a mapping proce-
dure is introduced in order to interpolate the solutions
computed on the previous grid onto the newly adapted
mesh. The mapping operator is designed in such a way
that it preserves the conservative property of any func-
tion to be interpolated, as required by the finite-volume
methodology.11 However, the current interpolated solu-
tion will no longer satisfy the discrete unsteady opera-

tor. Thus, it is necessary to achieve a new convergence
of the solution at the current time with the previously
computed positions of the bodies, as shown in Fig. 8.
The additional CPU time due to these added steps in the
temporal loop is part of the overall computational cost
of any adaptive calculation.

The typical cell size in the vicinity of the free surface
is controlled by the parameter NGen. This is the maxi-
mum number of generations which can be created.
Thus, the local characteristic length h of any part of the
initial mesh can, at most, be reduced to h/2NGen in each
direction. The higher the value of NGen, the more accu-
rate the free-surface capturing is expected to be.

3 Physical problem

3.1 Experimental configuration

The emphasis of this study is on drop tests for which
experimental data and theoretical results exist. The un-
steady flows around a prismatic hull falling through the
air and impacting the free surface of water are consid-
ered. Symmetric and asymmetric drop tests have been
investigated experimentally by Peterson et al.27 and
theoretically by Xu et al.28 The main interest in such a
physical problem comes from the need to understand
the dynamic response of high-speed ships during asym-
metric water impacts in order to reduce the hull damage
resulting from boat slamming.29

The physical model used is a high-aspect-ratio pris-
matic wedge with a 20° deadrise, as illustrated in Fig. 9.
This is dropped from different heights H, with different
weights MS, and with initial zero (symmetric cases) or
nonzero (asymmetric cases) heel angles a. For the
asymmetric tests, the position of the center of gravity
and the inertia are also parameters, and instruments
with accelerometers recorded the roll and the vertical
acceleration time-history. The different configurations
considered are summarized in Table 1.

3.2 Numerical framework

The basic grid for all the computations performed in
this study is illustrated in Fig. 10 (for the symmetric
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Fig. 9. Experimental configura-
tion of drop tests. a Geometry of
the prismatic hull. b Experimental
parametersa b
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problems). It is a coarse grid, with only 3400 control
volumes. For the asymmetric cases, the computational
mesh is simply reproduced for positive values of the X-
axis (and the heel angle is modified), and thus it has
twice as many cells.

The simulations considered involve the motion of a
rigid body in an infinite fluid domain. Thus, rigid trans-
formations of the meshes can be used to address trans-
lations. This is combined with the analytical weighted
regridding approach when rotations have to be consid-
ered (asymmetric cases). As can be seen in Fig. 10, the
basic grid is initially very coarse at the free-surface loca-
tion, but as the grid falls vertically, the mesh is finer and
finer in the area of the interface (whatever the set value
of NGen) until the wedge goes through the free surface
(the clustering of point reaches a maximum at y = 0).
This change in mesh size in the vicinity of the free

surface during the computation does not pose any nu-
merical problems. Indeed, the compressive property of
the IGDS scheme (see Sect. 2.1) ensures that the finer
the mesh, the smaller the free-surface thickness.

Figure 10 also shows the typical boundary conditions.
Far from the body, the disturbances of the fluid are
assumed to be minimal. Thus, the fluid velocity is pre-
sumed to be zero except on the upper boundary, where
it is possible to fix the pressure to its known hydrostatic
value (which is not constant, since the mesh falls down
along with the prismatic hull). The slip wall condition
also holds on the boundaries corresponding to the body,
since the viscous friction there can easily be neglected in
such a problem. In the figure, the shaded area is filled
with water. The initial free-surface position is H + T =
0.721011m, since the upper part of the hull is located
at Y = 0, where T is the thickness of the hull

(T = °0 61

2
20

.
tan , see Fig. 9a) and H is the dropping

height (see Table 1).
Starting from the basic grid previously presented,

adaptive computations are performed for all the con-
figurations using the different numbers of maximum
generation size allowed (NGen). As shown in Fig. 11,
both isotropic and directional refinement are consid-
ered. Indeed, accurate free-surface capture requires a
fine spatial discretization in its normal direction only.
Away from the body, the free surface is barely de-
formed, and thus is aligned with the mesh lines. There-
fore, directional refinement is very suitable, bearing in

 Table 1. Parameters of the configurations studied

Name Sym-light Sym-medium Asym-light Asym-medium

H (m) 0.61 0.61 0.61 0.61
a 0° 0° 5° 5°
MS (kg) 122 291 124 293
CG (m) — — 0.216 0.165
IG (kg m2) — — 8.85 10.95

X

Y

-2 -1 0

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5 Imposed hydrostatic pressure

Slip
condition

Symmetry

Symmetry

Imposed velocity

Imposed
velocity

Fig. 10. Initial configuration
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Fig. 11. Isotropic → directional transition
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mind that its computational cost is less than that of
isotropic refinement. However, isotropic refinement is
required closer to the body where the interface is
strongly deformed. The limit is located at |X| < 0.75m
where both isotropic and directional refinement are
performed alternately in order to ensure a smooth
transition.

For all the computations performed, the time-step ∆t

linked to the second-order accurate time discretization
scheme follows an adaptive law. Thus, the adaptation is
performed in both space and time. In the framework of
free-surface capturing methodology, it has been ob-
served that the CFL condition applied in time-steps (see
Sect. 2.1) is very restrictive, and thus leads to small
values of ∆t.2,3 Therefore, no significant improvement is
achieved over temporal discretization if one considers
even smaller time-steps. In the present study, the corre-
sponding time-step law is derived in such a way that the
Courant number is always slightly under the critical
value of 0.3 in the vicinity of the free surface using Eq.
4. Then the IGDS scheme for the transport equation of
concentration is in the best configuration in terms of its
capturing capacities since the CFL condition is fully
respected at any time in the simulation and whatever
the mesh size. Furthermore, the user is no longer asked
to give an adequate time-step law, which is particularly
interesting when considering adaptive computations for
obvious reasons. This particular point is more thor-
oughly addressed in Sect. 4.4.

It should also be noticed that during each temporal
loop, the nonlinear loop (see Fig. 8) ends when the
residual of each single equation is reduced by two or-
ders of magnitude, which ensures sufficiently converged
solutions when using small time-steps such as those con-
sidered here.

4 Symmetric cases and numerical study

4.1 Dynamics of the impacts

The emphasis is first on the dynamic response of the two
symmetric drop tests. Figure 12 shows the time history
of the vertical upward acceleration of the prismatic hull,
in units of the gravitational constant (g = 9.81 ms−2),
during symmetric impact under light (sym-light) and
medium (sym-medium) weight conditions. The time t*
considered is zero when the impact occurs, i.e.,
when the lowest point of the hull (keel) touches the
water surface (it takes only 0.356s for the wedge to
reach the water). The results from all the simulations
performed using a growing NGen number from 0 (no
adaptation) to 5 were compared with the corresponding
experimental data from the CSS and with the predic-
tions from an asymptotic method developed by Scolan
et al.12 and Cointe et al.13 and based on Wagner’s theory.
The body forces applied on the hull can then easily be
deduced.

All the simulations performed are in fairly good
agreement with the experimental results, showing
that the motions of moving bodies in multifluid flows
are correctly predicted by the procedure previously
described. However, looking at these results, the h-
adaptive strategy is relatively useless since the dynamic
responses computed show no significant improvement
with an increase in NGen. In fact, the outcomes of the
single-mesh computations (NGen = 0) are already satis-
factory, which means that the global dynamic forces
exerted on the body are easy to compute and cannot be
used to assess the accuracy of a discretization method
applied to impact flows.

4.2 Free surface

This section deals with the accuracy of the free surface
computed by the numerical simulations. First, it should
be noted that the specific discretization scheme used to

Fig. 12. Adimensional vertical
acceleration. a Sym-light. b Sym-
mediuma b
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solve the volume fraction equation (see Sect. 2.1) al-
ways successfully captures the free surface over typi-
cally three to five cells. As the prismatic body falls, the
free surface gets closer and closer to it and thus the size
of the control volumes becomes smaller and smaller (for
a fixed number of generations in the adaptive proce-
dure), as can be seen in Fig. 10 for NGen = 0. As a
consequence, the free surface is more and more finely
captured thanks to the good behavior of the IGDS
scheme.

Obviously, this result also holds when the local cell
size is reduced by using a higher maximum number of
generations in the adaptive strategy. This result is illus-
trated in Fig. 13, showing the influence of NGen on the
free-surface definition. Figure 13a–c shows snapshots of
the captured free surface at the same time but for differ-
ent values of NGen (1, 3, and 5, respectively). It is clear
from these figures that the higher NGen, the finer the
description of the free surface. Thus, the interest of such
an adaptive process becomes clear. In order to quantify
it more precisely, Table 2 gives the positions of the
computed interface zci (for the present purpose, the free
surface corresponds to the isoline ci = 0.5) slightly be-
fore the impact (t = 0.3 s) for all values of NGen consid-
ered along with their corresponding exact errors (the
relative error is computed using the total distance trav-
elled down by the body during that time, dv = 0.438 m).
Since the mesh follows the prismatic hull as it falls
through the air, the free surface is theoretically always
located at its initial position of zp = 0.721011 m as long as
the body is sufficiently far away from it. The first free-
surface deformations can be observed only shortly be-
fore the impact, and they are due to the movement of
air around the approaching body. However, during the

mesh fall the solver has to transport the free surface
accordingly. Even though the IGDS scheme ensures a
reduced numerical diffusion of the volume fraction ci

for a given mesh size, a deviation of the position of the
interface to its theoretical value always exists. As can be
seen in Table 2, this error can almost be cancelled using
a suitable h-adaptive procedure since the computed
positions of the interface converge to the exact value as
NGen is increased.

4.3 Pressure peak

The emphasis is now on the pressure peak that arises
during any drop test. When the hull hits the free surface,
its violent change in speed is related to the great in-
crease in pressure on its surface. The pressure peak
corresponds to the maximum pressure applied on the
prismatic body. In the early stage of the impact, the
peak is localized on the keel of the body, quickly moves
up onto the surface of the body, and then decreases.
Thus, the phenomenon is local in both space and time,
and consequently is difficult to compute accurately9,11 or
to measure experimentally.

Figure 14 shows the temporal evolution of the vertical
position of the pressure peak on the prismatic hull. As
no experimental data are available, the results of the
simulations are compared with the asymptotic method
of Scolan et al.12 Similarly, the evolution of the intensity
of the pressure peak on the prismatic hull is shown in
Fig. 15. As the local cell size is reduced by increasing
NGen, the convergence of the computed intensity of the
pressure peak is clearly observed, and emphasizes the
interest of the h-adaptive strategy used. The agree-
ment between the finest adaptive computation and the

Fig. 13. Influence of NGen on the free-surface definition. a NGen = 1. b NGen = 3. c NGen = 5

Table 2. Exact error in the position of the computed interface (ci = 0.5) at t = 0.3 s

NGen zci (m) Err = |zci − zp| (m) Relative error Err/dv (%)

0 −0.7171 0.003911 0.9
1 −0.72015 0.000861 0.2
2 −0.72075 0.000261 0.06
3 −0.72085 0.000161 0.037
4 −0.72090 0.000111 0.025
5 −0.72098 0.000031 0.007

a,b c
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Fig. 14. Evolution of the vertical position of the pressure peak on the prismatic hull. a Sym-light. b Sym-medium
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Fig. 15. Evolution of the intensity of the pressure peak on the prismatic hull. a Sym-light. b Sym-medium

asymptotic method is extremely good. This illustrates
the advantages provided by the joint use of free-surface
capturing techniques and automatic grid refinement.

In Fig. 15, oscillations of the computed pressures can
be seen. These oscillations have nothing to do with
physics, but are due to numerical considerations. Firstly,
the discrete pressure is linear on each single control
volume (second order finite-volume method, see Sect.
2.1) but is discontinuous at volume interfaces. Thus, the
pressure peak is also discontinuous as it goes from cell
to cell. Secondly, the pressure field shows very strong
variations in space in the vicinity of the body, and the
second-order discretization scheme with its limiters has
difficulties with such rapid variations. However, these
oscillations are small compared with the values of the
pressure.

4.4 Numerical considerations

The physical results have already been examined. For
completeness, we now consider the computational costs
of the simulations.

As explained before, during any simulation both
space and time adaptations have been performed. The
benefits of the h-refinement strategy in terms of accu-
racy have been identified in the previous section. The
advantages of time-adaptation are now considered.

In classical simulations of unsteady flows, the
discretized time step ∆t is prescribed either by a con-
stant or by an imposed prescribed law that is derived a
priori. As explained previously, in the context of free-
surface capturing methodology, accurate predictions of
the free surface can be achieved provided that the so-
called CFL condition is satisfied. Thus, using a constant
time-step is seldom interesting in terms of CPU time
saving since it will lead to excessively small time-steps
during much of the computation in order to ensure the
CFL condition at all times. It should be noted that 10
inner iterations are typically needed to reach conver-
gence for a single full time-step with grid adaptation and
body movement.

For comparison, we now consider a classical imposed
law of the time-step that is derived in order to fully
respect the CFL condition while trying to save CPU

a b

a b
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time. It should be emphasized that the derivation of this
prescribed law requires some additional effort from the
user, and also some knowledge about the flow solution
that can be difficult to figure out a priori. The law con-
sidered is based on the hyperbolic tangent function, and
is illustrated in Fig. 16a along with the time-step evolu-
tion produced by the adaptive law. This figure clearly
shows that the time-step resulting from the imposed law
always satisfies the CFL requirement since the values
produced are lower than those from the adaptive law.
However, it is also uselessly too small most of the time,
leading to greater CPU time cost. Indeed, the computa-
tion with the imposed law requires 21590 time-steps,
and that with the adaptive law only requires 3580 time
steps (for 0.6 s of real time of simulation and with NGen
= 2). Thus, the number of time-steps is as much as six
times higher in the first case. Similarly, the CPU time
cost with the imposed law is five times higher than with
the adaptive law. Nevertheless, it should be noted that
the adaptive time-step evolution is somewhat noisy, so
that the question of the influence of this phenomenon
on the accuracy of the solution arises even though no
numerical problems have been encountered. This par-
ticular point is investigated in Fig. 16b, which compares
the intensity of the computed pressure peak using either

the adaptive law or the imposed law. No significant
differences can be observed.

Finally, the computational costs for all the simula-
tions for the sym-light case are listed in Table 3. Both
the CPU time (on a Pentium IV 3GHz) and the number
of cells (closely linked to the memory requirement) are
considered. Similar results holds for the sym-medium
case. Obviously, the number of cells for adaptive com-
putations is not fixed during the whole calculation since
the free surface is moving. During the early stage of the
computation, the interface is barely deformed, and thus
the number of grid points is lower than during and after
the impact. It can be seen that the CPU time require-
ments for these simulations are reasonable bearing in
mind the accuracy of the local pressure peak evolution.
However, considering the ratio of the accuracy over the
CPU time cost, the NGen = 4 simulation is a suitable
compromise.

5 Asymmetric cases

This section deals with asymmetric cases of the drop
tests under consideration. In the sequel, the emphasis is
on computed physical results, since the salient features
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Table 3. Information on the computations performed (t ∈ [0, 0.41 s])

NGen 0 1 2 3 4 5

TCPU en (min) 25 40 80 300 1 000 9 000
Max(NCELL) 3400 4000 5200 7000 11 000 20 000
Min(NCELL) 3400 4200 5700 8500 15 000 31 000

a b
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of the global numerical approach have been presented
and analysed. Following the previously drawn conclu-
sions, the numerical simulation is performed using
NGen = 4.

5.1 Dynamic of the impacts

As previously described, the emphasis is first on the
dynamic response of the drop tests under light (asym-
light) and medium (asym-medium) weight conditions.
Figure 17 shows the time-history of the nondimensional
vertical acceleration of the prismatic hull, and Fig. 18
shows the corresponding angular accelerations for both
the numerical simulation and the experiments. The ex-
perimental results clearly contain mechanical vibrations
associated with structural resonances which become
more pronounced as the weight increases. By its very
nature, the present methodology cannot deal with such
vibrations since the body is modeled as a rigid one.
However, the numerical results fit quite well with the
mean values of the experimental data.

5.2 Free surface

As the numerical simulation performed has a general
flavor, it is particularly well suited for studying complex
evolutions of the free surface. Indeed, this type of com-
putation is not limited to the predictions of quantities
defined on the surfaces of bodies. This trend is illus-
trated in Fig. 19, which gives a sequence of snapshots of
the free-surface position around the prismatic hull. Un-
fortunately, no experimental data are available for
comparison. However, these figures show that the free
surface is finely captured thanks to the adaptive strat-
egy. In addition, the capacity of the whole numerical
approach to compute wave breaking is also illustrated
here since the interface rolls up and eventually crashes
onto the top surface of the hull. Closer views of the
meshes around the computed free surface are given in
Fig. 20 for NGen = 4. As expected, the discontinuity is
strictly located inside the finest mesh area.
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5.3 Pressure peak

The emphasis is once again on the pressure peak that
arises during any drop test. As the problem is asymmet-
ric, two different pressure peaks appear: one on each
side of the hull. The evolution of the positions of these
peaks as they quickly rise are shown in Fig. 21. The
greater the mass of the hull, the shorter the time for the
peaks to reach the upper part of the geometry.

Figure 22 shows the evolution of the intensities of
the pressure peaks on the prismatic hull. As expected,
the right side is submitted to a stronger pressure peak
since the 5° heel angle brings it more directly in contact
with the free surface during the impact. For the two
cases considered, the maximum rises of pressure on
the right side are more than twice as large as the

t=0.501 s 

t=0.352 s t=0.600 s 

t=0.679 s t=0.364 s 

t=0.388 s t=0.760 s 

t=0.818 s t=0.416 s 

t=0.441 s t=0.871 s 

t=0.972 s 
Fig. 19. Temporal evolution of the
free surface (asym-light).

corresponding ones on the left side, and also larger than
the pressure peaks computed for the symmetric cases
(see Fig. 15).

6 Conclusion

This article has described a modern free-surface captur-
ing strategy implemented in an unstructured finite-
volume viscous flow solver. Furthermore, in a general
framework, the methods that allow the consideration of
moving bodies have been presented in detail. Special
attention has been paid to the regridding strategies for
the mesh to be adjusted to the new positions of bodies
in order to reduce the CPU time. The issues of solving
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Fig. 20. Inside views of the free surface and the corresponding
meshes.
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Fig. 21. Evolution of the positions of the pressure peaks on the prismatic hull. a Asym-light. b Asym-medium

Newton’s laws and performing fluid–structure coupling
have also been addressed. A mesh adaptation strategy
has been fully integrated in the code, making it a single
tool for performing accurate computations of free-

surface flows. The data structure used, the grid alter-
ations performed, the explicit indicator, and the adapta-
tion procedure have been detailed precisely.

The whole numerical approach has been applied to
the computation of unsteady flows around a prismatic
hull falling through the air and impacting the free
surface of water. Symmetric and asymmetric drop tests
have been considered, and extensive comparisons
have been presented between numerical results and
both experimental data and theoretical results from an
asymptotic method. The excellent agreement observed
has shown that the global approach is relevant for the
accurate computation of free-surface flows with moving
bodies. Of particular interest was the demonstration
that a local and intense phenomenon, namely the pres-
sure peak arising during the impact, can be accurately
computed in the general framework of the presented
simulations, thanks to the h-adaptive strategy, for a rea-
sonable CPU time and a minimum user effort.

Clearly, the next step will involve three-dimensional
applications while keeping the generality of the ap-
proach. The extension of the present methodology to
3D problems has already been carried out.2,23,30 How-
ever, the remaining question of building a parallelized
version of the adaptive procedure is not straight-
forward. Indeed, three-dimensional computations re-
quire a large number of points even with the use of a
suitable mesh adaptation strategy. Thus, a domain-
decomposition method is a way to maintain reasonable
CPU time using the performance of multiprocessor
computers. Future works will aim at developing an
efficient parallelization of the adaptive procedure with a
dynamic load-balancing. In fact, the adaptive procedure
can be parallelized in the same way as the other numeri-
cal techniques presented (whose parallelization is based
on the message passing interface (MPI)31), But ensuring

a b
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Fig. 22. Evolution of the intensities of the pressure peaks on the prismatic hull. a Asym-light. b Asym-medium

a dynamic load-balancing may be a more tedious task
and this feature is mandatory for the efficiency of the
parallelization of the adaptive procedure.

Acknowledgments. The authors gratefully thank Yves-
Marie Scolan for making the results from the asymp-
totic method available.

References

1. Larsson L, Stern F, Bertram V (2000) Summary, conclusions and
recommandations of the Gothenburg 2000 workshop. In: A work-
shop on numerical ship hydrodynamics. Chalmers University of
Technology, Göteborg, Sweden

2. Queutey P, Visonneau M, Ferrant P (2004) Numerical investiga-
tion of wave interaction with a fixed vertical cylinder. Int J Off-
shore and Polar Engineering (IJOPE) 14:202–209

3. Queutey P, Visonneau M (2004) Three-dimensional CFD simula-
tions using a free-surface capturing strategy. Proceeding of the
3rd International Conference on Computer and IT Applications
in the Maritime Industries, Siguënza, Spain

4. Ubbink O (1997) Numerical prediction of two-fluid systems with
sharp interfaces. PhD Thesis, Imperial College of Science Tech-
nology and Medicine, University of London
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26. Ferziger J, Perić M (2002) Computational methods for fluid
dynamics, 3rd edn. Springer, Berlin, New York

27. Peterson R, Wyman D, Franck C (1997) Drop tests to support
water-impact and planing boat dynamics theory. Technical
Report TR-97, CSS Technical Report, Coastal Systems Station,
Panama City

28. Xu L, Troesch A, Peterson R (1999) Asymmetric hydrodynamic
impact and dynamic response of vessels. J Offshore Mech Arctic
Eng 121:83–89

29. Okada S, Sumi Y (2000) On the water impact and elastic response
of a flat plate at small impact angles. J Mar Sci Technol 5:31–
40

30. Leroyer A, Visonneau M (2003) Moving bodies in viscous
flow simulation. 6th Numerical Towing Tank Symposium,
Rome

31. (1997) MPI-2: extensions to the message-passing interface.
Technical Report, University of Tennesse, Knoxville, TN. See
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html

18


