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A fight for performance and accuracy
of the matrix multiplication routines :
CUBLAS on Nvidia Tesla
versus
MKL and ATLAS on Intel Nehalem

Philippe Estival , Luc Giraud

CERFACS, }2 avenue Gustave Coriolis, 31057 Toulouse Cedex, France

Abstract : Scientific computation relies heavily on 64 bits arithmetic. The evolution of the Graphical
Processing Units to the status of massively micro-parallel vector units and the improvement of their pro-
grammability make them stand as powerfull algebraic coprocessors for many classes of matrix calculus. But
on these processors inheriting from architectures dedicated to video processing in the first place, the space
for double precision is narrow yet. One building block of dense linear algebra, the GEneralized Matrix Mul-
tiply Routine has been considerably accelerated on the GPU. We figure in this paper more details regarding

its speed, but first, accuracy.

1. Introduction

Before computing anything fast, one have to
compute correctly. If not meeting exactitude as
a requirement, and that is the case of floating
point standards, then we must know how accurate
the computations are. Scientific computation is a
very demanding for 64 bits double precision floa-
ting point arithmetics, specially when using itera-
tive techniques subjects to propagations of roun-
ding errors along with schemes of high amplitude
scales. The Generic Purpose Computation on GPU
is very attracting exercise in physics. But on these
hardwares, speed nibbled on precision. Introducing
more rounding errors in exchange for speed leads
to this question, asked by [Goldberg, 1991] : "Since
most floating-point calculations have rounding er-
rors anyway, does it matter if the basic arithmetic
operations introduce a little bit more rounding error
than necessary”?

When considering real-time image rendering,
the answer is clearly no. Broadening to the spec-
trum of simulation, we give in this paper, the be-
ginning of an answer for one class of general purpose
computation hardware and one operation by inves-
tigating the performance and numerical accuracies
achieved by the T10-series Nvidia GPUs on simple
and double precision floating point matrix-matrix
multiplication using CUBLAS, the Nvidia CUDA
BLAS implementation.

Regularity and predictability of data access pat-
tern, highly parallel computationnal requirements
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and reuse of cached data set this function as a good
candidate to evaluate the peak GPUs performances.

Exact results will be compared against two wi-
dely used BLAS implementation as reference : AT-
LAS and Intel’s Matrix Kernel Library, showing
that the accuracy on CUDA-enabled hardware is
lower with an order between one and two when
compared to a CPU computation in single (32-bits)
floating point and double (80-bits extended x86)
precision.

2. Parallel matrix multiplication

Be the matrix product C' = A x B of size N X N.
The parallel product without per-block computa-
tion, produces one thread handling one element for
every result of the product. A and B are loaded N
times from the global memory. This computation
features O(n) data reuse.

On a per-block basis, one thread block of size
b handles one sub-matrix Cy,, of C of size b x b.
A and B are only loaded N/b times from global
memory wich represents the equivalent of saving as
memory bandwith. The shared memory acts like
a cache memory : smaller but faster than global
memory, saving more bandwidth by reducing the
global memory traffic. This is where the blocks are
loaded to.

The kernel implemented into CUBLAS 2.1, de-
livered by [Volkov and Demmel, 2008] is a cache-
aware strategy with explicit definition of the cache
size optimal for a GTX280 GPU. The technical spe-
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FiG. 1 — Per-block microparallel matrix product

cifications of the Tesla are kept closed by its manu-
facturer, but the informations given by the CUDA
driver, indicate a number of core units and cache
sizes equivalent on the Tesla T10.

The dimension of Cj,; is bounded by the num-
ber of threads per block. Keeping tiles squares, and
the maximum number of threads per block beeing
512, the size of the tiles is consequently 162. Each
thread carrying a unique identifier under the combi-
nation of a unique block ID and a thread ID inside
this block identifies the element to work on.

Let A, B and C be respectively of dimension
(m, k), (k,n) and (m,n). Csyp is equal to the pro-
duct of two rectangular matrices : the sub-matrix
of A of dimension (b, m) that has the same line in-
dices as Cyyp, and the sub-matrix of B of dimension
(n,b) that has the same column indices as Clyyp.
These two rectangular matrices are divided into as
many square matrices of dimension b as necessary
and Cyyp is computed as the sum of the products
of these square matrices. Each of these products is

Unit 1
Unit 2
Unit 3

Stream 1

performed by first loading the two corresponding
square matrices from global memory to shared me-
mory with one thread loading one element of each
matrix, and then by having each thread compute
one element of the product. Each thread accumu-
lates the result of each of these products into a re-
gister and once done the result is written back to
global memory.

Computated this way, using the maximum of
registers, and the fast level one shared memory to
save bandwidth, can be seen as a more general stra-
tegy to divide the number of times the matrices are
read. The idea goes beyond the scope of a single
graphical unit : by spliting huge matrices among
a several Tesla connected through PCI express 16,
and beyond, to a hybrid cluster. All the units runs
its own part of computation, and produce one m xn
matrix. However this is memory and bandwidth
consuming, because it leads to gather as many sub-
matrices as there are load distributed, the computa-
tion may overlap with streaming. but doesn’t scale.

Stream 2
Stream 3

Unit 1

Unit 2

Unit 3

tream |l

tream P

tream B

F1G. 2 — On a coarse level, load balance of the computation, featuring a O(n x u) memory overload of the
matrix C', where n is the matrix size and u the number of unit.



3. Floating point specification

According to [Cud, 2009b], the binary floa-
ting point arithmetic available on the Tesla T10
series is compatible with the norm IEEE-754
[Goldberg, 1991]. with deviations :

— Rounding modes are not dynamically confi-

gurable and must be explicitly set.

— No mechanism for detecting a floating point
exeception as occured.

— Operations behave as if the IEEE-754 excep-
tions are always masked, and deliver the mas-
ked reponse as defined by IEEE-754 if there
is an exceptionnal event.

— For the same reason as above, while SNaN en-
codings are supported, they are not signaling.

— Absolute value and negation are not com-
pliant with IEEE-754 with respect to NaNs.

4. CUBLAS Library

For now, the CUBLAS can stand for immediate
substitution to an other BLAS implementation with
very minor modifications. However, the default be-
havior of the library is to perform allocations and
transferts of data on every time a host fonction
call a CUBLAS routine. For an efficient use and
in the general case, the memories zones allocations,
desallocations and transferts between host (CPU)
and device (GPU) should not occur as part of a
call to the BLAS routines. Moreover, the memory
allocated on the host must be aligned and non-
pageable for maximum performances [Cud, 2009a].
This leads to extra code.

Where transferts operations — specially strea-
med transfert for stripes of matrix — occur most of
the time a few instructions before the kernel call,
the memory allocations — or in the same order of
idea the device initialisation and warming' — should
be tactically positioned to avoid repeating instruc-
tions, and the programmer should make a clever
"use of reuse of data”. This is reinforced if the com-
putation shows any behavior of redundancy.

However memory allocation on the device is not
a costly operations, and has very minor impact on
the performances when compared to memory band-
width issue.

Should the program be written in Fortran, the
call requesting page-lock memory allocation re-
quires C bindings for pointer manipulations. The
performance comparison of a direct linking of CU-
BLAS and its optimal use is described on figure 3.

Version 2.1 of CUBLAS release is incomplete,
without any BLAS 3 complex functions. which are

IThe effect is noticeable enough to worth to be mention.
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to be partially found in the beta version 3.0.

Listing 1 — Extra Fortran code for allocation of page
locked memory on the host

module cuda
use iso_c_binding
interface
! cudaMallocHost
integer (C_INT) function cudaMallocHost (buffer,
size) bind(C,name="cudaMallocHost")
use iso_c_binding
implicit none
type (C_PTR) :: buffer
integer (C_SIZE_T), value :: size
end function cudaMallocHost
end interface

! allocate m*m elements of p bytes into array A
! of page-locked memory on the host RAM,
! to ensure maximal host<->gpu bandwidth
subroutine allocateforgpu( A, m, p, cptr )
! page-lock constant, stack or heap data going
! to the gpu requires a pointer reference

real, dimension(:,:), pointer :: A
integer :: m
integer :: r

type (C_PTR) :: cptr
integer (C_SIZE_T) :: p

r = cudaMallocHost (cptr, m*m*p)

! bind the C pointer

call c_f_pointer (cptr, A, (/ m, m /))
end subroutine allocateforgpu

5. Numerical accuracy

To have a guess of the numerical accuracy achie-
ved with CUBLAS on a T10, we compute the
GEMM function C' = aAB + BC, square matrices
of size m, with B and C' equals to an integer A\ po-
sitive. Odd columns of A are equal to A and even
columns of A equals to a floating point value £ com-
prised between 0 and 1. The result is a matrix C
constant.

A €
A= | |
A €

B=X, C=2\

> — >
M — M

Resulting in
9 k
C=alA +€)\)§ + B

We compute from real to floating point space, with
an approximation ¢§, giving the result a.
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where ¢ is the epsilon machine. On Intel Xeon
Nehalem or Core 2 Duo CPU :
epsilon(double precision) = 2.220446049250313 16
epsilon(simple precision) = 1.1920929E~°7

Results

We take A = 2 and ¢ = 107" withn = 1..N. We
have B = C = 2. Asaresult C' = 4m+2em—+4. The
matrix dimension m varies from 256 to 12000. The
accuracy is estimated from the relative difference
between the exact result, computed on the CPU in
double precision and the result given by the GPU.

The plots 6, 7, 8 are the results of the succes-

!
sive computation of the relative errors H(ﬂ Cﬁ | asa

a function of the matrix size, of the exact expected
result C solely rounded to the epsilon machine, and
the computations of the constant matrices through
the BLAS implementation C’, subject to cumula-
tive rounding errors.

The variability and cancelations of precisions
comes from the denormalization and rounding
modes of numbers.

GEMM’s MKL shows a great deal stability. AT-
LAS runs on one core only and gets even more ac-
curate but the tradeoff of a computationnal power
is high. Moreover, the fluctuations of accuracy is in
itself a factor of inpredictabilty, hence inaccuracy.

6. Performances

In 32-bits floating point precision, the SGEMM
function reaches 370 gflops of peak performances.
This is acheieved on a matrix of 12K square size. 300
gflops is reached at 4K. A know fact of GPGPGU :
full efficiency is achieved with matrices big en-
ough. Below 20002, memory transferts latency has
more impact on the overall computation and below,
thread multiprocessors are left idled.

The increasing sizes of matrices has less impact
on the kernel execution than on the data transfert.
Using streams, that is, concurrent copy and execu-
tion, the input matrix A and C are split into row-

major stripes and transfered asynchronously, while
the kernel run on an other piece of data.

The performances achieved by MKL comes from
the sustained cached access : the Pentium 4 can
fetch a 128 bits SSE value (4 packed 32 bits floats)
in one cycle and eight cores units are to be found
on the Xeon Nehalem.

The speedup when comparing the two librairies
begins in single precision for matrices bigger than
10002, reaching 2.6 at 70002. In double precision,
MKL wins, but both solutions converge to a maxi-
mum computationnal power of 67 GFlops.

A division of the computationnal
load wusing streaming was shown first in
[Fatahalian et al., 2004] dispatching the load bet-
ween the threads of multiprocessors of one GPU.
As we mentionned, it is also technically possible to
apply it on the macro-scale too : that is, among
several Tesla cards. The blocking strategy performs
sub-matrix blocks products and blocks additions
inside the cache-memory before retrieval to glo-
bal memory. The strategy dispatching the load
would organize the two matrices in row-major and
column-major stripes, with as many stripes as com-
putation units. One submatrix is computed inside
every units. In the end, on master unit has the
task to perform a parallel one to one sum of every
submatrix inside of its memory. A two by two fused
access can hide some more of the latency, while the
parallel sum of every subset is at peak speed.

One other way to do this is through a library
layer such as the CUDA Wrapper Library [2]. It’s
implemented in a forced preload, such that the de-
vice allocation calls to CUDA are intercepted by it
for a few different benefits. Users requesting mul-
tiple GPUs per node really need to be aware of it’s
transparent operation. The wrapper libary accom-
plishes two things :

1) Virtualizes the physical GPU devices to a
dynamic mapping, that is always zero indexed.
The virtual devices visible to the user map to a
consistent set of physical devices, which accom-
plishes "user fencing” on shared systems and pre-
vents users from accidentally trampling one ano-
ther.

2) NUMA affinity, if relevant, can be mapped
between CPU cores and GPU devices. This can save
much memory bandwidth.
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7. Conclusion

We evaluated the performance and accuracy of
the GEMM function, in single and double precision,
showing that MKL is the stablest and fastest solu-
tion in double precision, while a maximum speedup
of 2.6 can be reached in single precision for matrices
bigger than 2000 square size elements. This benh-
mark shows that the computation on the T10 has
higher relative errors when compared to one per-
formed on a CPU. This is can get to an order as
high as 10~%. In the general case, on or two orders
higher than MKL.

Computing many times big constant matrix on
a hardware lacking of EEC, this benchmark can be
extended fairly easily with a parallel prefix scan to
detect a memory fault occurence and give an esti-
mation of the mean time between faults (MTBF).
For exemple, if the MTBF for one isolated SP core

unit is 6 months, on a 240 core units, it would be
only 16 hours and 48 minutes (by establishing an
independant distribution of time).

These benchmarks will be run again on the T20
GPU, codenamed Fermi.

Regarding performances, a clearer picture of
the synchronisation, and memory transferts is be-
coming increasingly necessary for critical kernels
through examinations of the PTX assembly with
dissassemblers, such as Decuda [1]. The latter can
be a valulable source of information, to optimize
cache movements, understand clock cycles and get
more insight of the hardware.

On a final note, one should consider the very hy-
brid multicore architecture as a whole so to get the
best of the two worlds, like what autotuning tech-
niques [Li et al., 2009] does inspired by the ATLAS
developpement. When dealing with real world pro-
blems, we can alays request the contribution of both
librairies, working in concert.
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