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1. Introduction: Cosmic Censorship and Stability

Typically, during the course of the gravitational collapse of a massive body, a black

hole event horizon forms, after which the imploding body collapses into a singularity

which is hidden behind the event horizon. However, in certain models the order of

horizon and singularity formation is reversed and the singularity is free to communicate

with the external universe. Such naked singularities are generally considered to be an

undesirable feature of gravitational collapse, as they effectively destroy the classical

predictability of a spacetime. In particular, associated with the naked singularity is a

Cauchy horizon which represents a barrier past which the physical evolution of matter is

not predictable. On a physical level naked singularities could potentially emit unlimited

amounts of matter and energy.

In response to the presence of naked singularities in certain collapse models,

Penrose hypothesised that nature should always censor the singularity associated with

gravitational collapse. In other words, this cosmic censorship hypothesis (CCH) loosely

states that physically realistic gravitational collapse will not result in naked singularity

formation [1]. Although mathematically rigorous versions of the CCH exist, it has

not been proven. It is generally expected that some form of the CCH will hold for

physically reasonable spacetimes. Nonetheless, studies of naked singularity spacetimes

are useful, as they provide a means of examining the nature of the putative cosmic

censor. Furthermore, they have resulted in more precise formulations of the CCH and

may provide insight into how it might be proven.

One manner in which a naked singularity spacetime may not be a serious

counterexample to the CCH is if the Cauchy horizon associated with the naked

singularity is not stable. In this case, perturbations which begin their evolution as

regular functions on some initial surface would diverge on the Cauchy horizon. The

naked singularity would then be regarded as a single (non-typical) member of a whole

class of spacetimes, in which the Cauchy horizon is replaced with a null singularity.

Should perturbations of a given naked singularity spacetime behave in a finite

manner at the Cauchy horizon, one can in some cases still rule out this spacetime as a

serious counter-example to the CCH due to other defects. In particular, certain naked

singularity spacetimes arise from unrealistic matter models which can form singularities

even in flat spacetime (for example, the Vaidya spacetime displays this property). Other

naked singularity spacetimes display sensitivity to the choice of initial conditions, in that

if the initial conditions are slightly perturbed, the naked singularity fails to form. We

can neglect such spacetimes as serious counter-examples to the CCH.

We consider here the self-similar Lemâıtre-Tolman-Bondi spacetime. This is

a spherically symmetric spacetime in which a pressure-free perfect fluid collapses

inhomogeneously into a singularity. A spacetime displays self-similarity if it admits

a homothetic Killing vector field, that is, a vector field ~ξ such that

L~ξgµν = 2gµν, (1)

where L indicates the Lie derivative. The choice of non-zero constant on the right
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hand side is arbitrary, and can be fixed by rescaling ~ξ. Imposing the existence

of a homothetic Killing vector field on a spherically symmetric spacetime results in

considerable simplification. The metric of a spherically symmetric spacetime can always

be written in the form

ds2 = −e2Φ(t, r)dt2 + e2Ψ(t, r)dr2 + R2(t, r)dΩ2,

where Φ(t, r) and Ψ(t, r) are arbitrary functions of t and r and dΩ2 = dθ2 + sin2 θdφ2 is

the usual metric on a two-sphere. Imposing condition (1) results in the scalings

Φ(t, r) = Φ(z), Ψ(t, r) = Ψ(z), R(t, r) = rS(z),

where z = −t/r. See [2] for a discussion of the role of self-similarity in general relativity.

See [3] and [4] for a discussion of spacetimes with homothetic Killing vector fields.

We note that the self-similar LTB spacetime cannot be taken as a serious counter-

example to the CCH, as the first of the abovementioned defects is present in this

spacetime. The matter model used is dust, which ignores pressure (and pressure

gradients), and therefore cannot be expected to provide a realistic description of

gravitational collapse. One could also reasonably expect that this matter model would

break down during the collapse to the singularity, as the curvature of the spacetime

becomes extreme. Nonetheless, the simplicity of this spacetime makes it a very useful

toy model of a gravitational collapse resulting in nakedin singularity formation.

We also note that a natural application of this work would be the study of odd

parity perturbations of the self-similar perfect fluid spacetime. This spacetime has been

considered by [5]. We also note the work of Harada and Maeda [6] which discusses the

role of the self-similar solution in the general spherically symmetric collapse of a perfect

fluid. Indeed this paper in part motivates the current work. Harada and Maeda have

found numerical evidence of a stable naked singularity in soft fluid collapse. In this

paper, we develop techniques that we hope will allow us to study the linear stability

Harada and Maeda’s naked singularity spacetime in a rigorous mathematical fashion.

In this paper, we consider linear odd parity perturbations of the self-similar LTB

spacetime. We choose to study the odd parity perturbations first as the even parity

perturbations obey a far more complex system of equations which presents extra

technical difficulties. We find that the odd parity perturbations remain bounded up

to and on the Cauchy horizon with respect to certain energy norms defined on natural

spacelike hypersurfaces. One may be tempted to interpret this result as evidence against

the cosmic censorship hypothesis; however, a full treatment of the perturbations of

this spacetime would have to include the linear even parity perturbations, and indeed,

non-linear perturbations as far as possible. We therefore cannot interpret our result

concerning the behaviour of odd parity perturbations only as providing evidence against

cosmic censorship.

We are currently considering the behaviour of even parity perturbations of this

spacetime using methods broadly similar to those of this paper, and these results will

be discussed in a future paper. Even parity perturbations of this spacetime have been
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studied both numerically [6] and analytically [7]. Harada et al found numerical evidence

of instability in the ` = 2 perturbation. In [7], both a harmonic decomposition and a

Fourier mode decomposition of the gauge invariant perturbation variables and equations

were used, and the individual Fourier modes Xω,`,m(z) were analysed. It was found that

modes which are finite on the past null cone remain finite on the Cauchy horizon.

However, the question of how to resum these modes on the Cauchy horizon was not

fully addressed, and so the problem of getting a complete analytic understanding the

even parity linear perturbations remains unresolved.

We note also that should linear perturbations turn out to grow without bound as

the Cauchy horizon is approached, the perturbative framework would not be valid and

a full non-linear analysis would be required.

In the next section, we describe the structure of the self-similar LTB spacetime

and examine necessary conditions for this spacetime to contain a naked singularity. In

section 3, we discuss a gauge invariant perturbation formalism for spherically symmetric

spacetimes due to Gerlach and Sengupta. We specialise this formalism to the odd partity

case, and show that the matter perturbation can be entirely determined by a choice of an

initial data function. In the odd parity case, the metric perturbation can be described by

a single gauge-invariant scalar whose evolution is determined by the linearised Einstein

equations. These equations reduce to a single inhomogeneous wave equation in the

gauge invariant scalar, sourced by an initial data function. In section 4, we first present

an existence and uniqueness result for solutions to this equation before showing that

this scalar remains finite on the Cauchy horizon, subject to a specification of initial

data. Finiteness is measured in terms of naturally occuring energy norms evaluated

on suitable hypersurfaces which are generated by the homothetic Killing vector field ~ξ.

This result also applies to the first derivatives of the perturbation scalar. This indicates

that there is no instability present at the level of the metric or matter perturbation. In

section 5 we discuss the leading order behaviour of the perturbation near the Cauchy

horizon and provide a physical interpretation of our results in terms of the perturbed

Weyl scalars. In section 6 we make some concluding remarks. We follow throughout

the example of [8] and [9] and we use units in which G = c = 1.

2. The Self-Similar LTB Spacetime

2.1. The LTB Spacetime

The Lemâıtre-Tolman-Bondi spacetime is a spherically symmetric spacetime containing

a pressure-free perfect fluid which undergoes an inhomogeneous collapse into a

singularity. Under certain conditions this singularity can be naked. We will initially use

comoving coordinates (t, r, θ, φ), in which the dust is stationary so that the dust velocity

has a time component only. In these coordinates, the radius r labels each successive

shell in the collapsing dust. The line element for such a spacetime can be written in
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comoving coordinates as

ds2 = −dt2 + eν(t, r)dr2 + R2(t, r)dΩ2, (2)

where dΩ2 = dθ2 + sin2 θdφ2 and R(t, r) is the physical radius of the dust. The stress-

energy tensor of the dust can be written as

T̄ µν = ρ̄(t, r)ūµūν,

where ūµ is the 4-velocity of the dust, that is, a future pointing, timelike unit vector

field, which is tangential to the flow lines of the dust and satisfies ūµū
µ = −1. ρ̄(t, r) is

the rest mass density of the dust. In comoving coordinates, ūµ = δµ
0 .

The background Einstein equations for the metric and stress energy in comoving

coordinates immediately provide the following results:

eν/2 =
R′

√
1 + f(r)

, ρ̄(t, r) =
m′(r)

4πR′R2
,

(
∂R

∂t

)2

− 2m(r)

R
= f(r), (3)

where ′ = ∂
∂r

. The function m(r) is known as the Misner-Sharp mass and is a suitable

mass measure for spherically symmetric spacetimes. The last equation in (3) has

the form of a specific energy equation, which indicates that the function f(r) can be

interpreted as the total energy per unit mass of the dust. The background dynamics of

the dust cloud can be determined by a choice of m(r) (or a specification of the initial

profile of ρ(t, r)) and a choice of f(r).

Recall that a shell focusing singularity is a singularity which occurs when the

physical radius R(t, r) of the dust cloud vanishes, so that all the matter shells have

been “focused” onto a single point. In this spacetime, a shell focusing singularity occurs

on a surface of the form t = tsf(r), which includes the scaling origin (t, r) = (0, 0).

In spacetimes consisting of a collapsing cloud of matter, one can also encounter a

shell crossing singularity, which occurs when two shells, labelled by particular values of

the radius, r1 and r2, cross each other. More precisely, there are values r1, r2 and times

tA, tB for which R(tA, r1) < R(tA, r2) but R(tB, r1) > R(tB, r2). No such singularity

occurs in the spacetime under consideration here [10].

We immediately specialise to the marginally bound case by setting f(r) = 0.

2.2. Self-Similarity

We follow here the conventions of [2]. In comoving coordinates, the homothetic Killing

vector field is given by ξ = t ∂
∂t

+ r ∂
∂r

. When self-similarity is imposed on the metric and

stress-energy tensor, we find that functions appearing in the metric, the dust density

and the Misner-Sharp mass have the following scaling behaviour:

ν(t, r) = ν(z), R(t, r) = rS(z), (4)

ρ̄(t, r) =
q(z)

r2
, m(r) = λr, (5)
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where z = −t/r is the similarity variable and λ is a constant (the case λ = 0 corresponds

to flat spacetime). By combining (3), (4) and (5) we can find an expression for Ṙ,

∂R

∂t
= −dS

dz
= −

√
2λ

S
,

where we choose the negative sign for the square root, so that we are dealing with a

collapse model.

This can be immediately solved for S(z):

S(z) = (az + 1)2/3, (6)

where a = 3
√

λ
2

and we used the boundary conditions R|t=0 = r and R′|t=0 = 1. With

this expression for S(z) we can solve for R′ explicitly. In (3) we convert R′ to a derivative

in (z, r) and find that

eν/2 = R′ = (
1

3
az + 1)(1 + az)−1/3. (7)

We state the metric in (z, r) coordinates, for future use:

ds2 = −r2dz2 + eν(z)(1 − z2e−ν(z))dr2 − 2rzdrdz + R2dΩ2. (8)

In section 5 we will need the null directions of the self-similar LTB spacetime. In terms

of (z, r) coordinates, the retarded null coordinate u and the advanced null coordinate v

take the form

u = r exp

(
−
∫ zo

z

dz′

f+(z′)

)
, v = r exp

(
−
∫ zo

z

dz′

f−(z′)

)
, (9)

where f± := ±eν/2 + z. In these coordinates, the metric takes the form

ds2 = − t2

uv
(1 − eνz−2) du dv + R2(t, r)d Ω2.

In order to calculate the perturbed Weyl scalars, we will need the in- and outgoing null

vectors, lµ and nµ. These vectors obey the normalisation gµνl
µnν = −1. A suitable

choice is therefore

~l =
1

B(u, v)

∂

∂u
, ~n =

∂

∂v
, (10)

where B(u, v) = t2

2uv

(
1 − eν(z)

z2

)
. In what follows, we shall take a dot to indicate

differentiation with respect to the similarity variable z, · = ∂
∂z

.

2.3. Nakedness of the Singular Origin

We now consider the conditions required for the singularity at the scaling origin

(t, r) = (0, 0) to be naked. As a necessary and sufficient condition for nakedness, the

spacetime must admit causal curves which have their past endpoint on the singularity.

It can be shown [11] that it is actually sufficient to consider only null geodesics with

their past endpoints on the singularity, and without loss of generality, we restrict our
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attention to the case of radial null geodesics (RNGs). The equation which governs RNGs

can be read off the metric (2):

dt

dr
= ±eν/2.

Since we wish to consider outgoing RNGS we select the + sign. We can convert the

above equation into an ODE in the similarity variable:

z + rz′ = −eν/2. (11)

We look for constant solutions to this equation, which correspond to null geodesics that

originate from the singularity. It can be shown that the existence of constant solutions

to (11) is equivalent to the nakedness of the singularity. For constant solutions, we

set the derivative of z to zero and combine (7) and (11) to find the following algebraic

equation in z:

az4 +

(
1 +

a3

27

)
z3 +

(
a2

3

)
z2 + az + 1 = 0.

We wish to discover when this equation will have real solutions. This can easily be

found using the polynomial discriminant for a quartic equation, which is negative when

there are two real roots. In this case we have

D =
1

27
(−729 + 2808a3 − 4a6),

which is negative in the region a < a∗ where a∗ is

a∗ =
3

(2(26 + 15
√

3))1/3
≈ 0.638...

This translates to the bound λ ≤ 0.09. From (5), we can see that this result implies

that singularities which are “not too massive” can be naked. See figure 1 for a Penrose

diagram of this spacetime.

Remark 2.1: In fact, one can find D < 0 in two ranges, namely a < a∗ ≈ 0.64

and a > a∗∗ ≈ 8.89. We reject the latter range as begin unphysical. Consider (6),

which indicates that the shell-focusing singularity occurs at z = −1/a. If we chose the

range a > a∗∗ we would find that the corresponding outgoing RNG occurs after the shell

focusing singularity and so is not part of the spacetime.

Remark 2.2: We note that this analysis has assumed that the entire spacetime is

filled with a dust fluid. A more realistic model would involve introducing a cutoff at

some radius r = r∗, after which the spacetime would be empty. We would then match

the interior matter-filled region to an exterior Schwarszchild spacetime. However, it can

be shown that this cutoff spacetime will be globally naked so long as the cutoff radius is

chosen to be sufficiently small [12]. We will therefore neglect to introduce such a cutoff.
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R = 0
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t < 0
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b

Figure 1. Structure of the Self-Similar LTB spacetime. We present here the conformal
diagram for the self-similar LTB spacetime. The gray shaded region represents the
interior of the collapsing dust cloud. We label the past null cone of the naked singularity
by N , future and past null infinity by J + and J−.

3. The Gerlach-Sengupta Formalism

We shall use the Gerlach-Sengupta (GS) method [13] to perturb this spacetime (we

follow the presentation of [14]). This method exploits the spherical symmetry of the

spacetime by performing a decomposition of the spacetime into two submanifolds (with

corresponding metrics). Perturbations of the spacetime are then expanded in a multipole

decomposition and gauge invariant combinations of the perturbations are constructed.

We begin by writing the metric of the entire spacetime (M4, gµν) as

ds2 = gAB(xC)dxAdxB + R2(xC)γabdxadxb, (12)

where gAB is a Lorentzian metric on a 2-dimensional manifold M2 and γab is the metric

for the 2-sphere S2 (and the full manifold is M4 = M2 × S2). The indices A, B, C...

indicate coordinates on M2 and take the values A, B... = 0, 1 while the indices a, b, c...

indicate coordinates on S2 and take the values a, b... = 2, 3. The covariant derivatives

on M4, M2 and S2 are denoted by a semi-colon, a vertical bar and a colon respectively.

The stress-energy can be split in a similar fashion:

tµνdxµdxν = tABdxAdxB + Q(xC)R2γabdxadxb,

where Q(xC) = 1
2
taa is the trace across the stress-energy on S2, which vanishes in the

LTB case. Now if we define

vA =
R|A

R
,
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V0 = − 1

R2
+ 2vA

|A + 3vAvA,

then the Einstein equations for the background metric and stress-energy read

GAB = −2(vA|B + vAvB) + V0gAB = 8πtAB,

1

2
Ga

a = −R + vAvA + vA
|A = 8πQ(xC),

where Ga
a = γabGab and R is the Gaussian curvature of M2, R = 1

2
R

(2)A
A where R(2)

indicates the Ricci tensor on M2.

We now wish to perturb the metric (12), such that gµν(x
δ) → gµν(x

δ) + δgµν(x
δ).

To do this, we will use a similar decomposition for δgµν(x
δ) and write explicitly the

angular dependence using the spherical harmonics. We write the spherical harmonics

as Y m
l ≡ Y . {Y } forms a basis for scalar harmonics, while {Ya := Y:a, Sa := εb

aYb} form

a basis for vector harmonics. Finally, {Y γab, Zab := Ya:b + l(l+1)
2

Y γab, Sa:b + Sb:a} form a

basis for tensor harmonics.

We can classify these harmonics according to their behaviour under spatial inversion

~x → −~x. A harmonic with index l is even if it transforms as (−1)l and odd if it

transforms as (−1)l+1. According to this classification, Y , Ya and Zab are even, while

Sa and S(a:b) are odd.

We now expand the metric perturbation in terms of the spherical harmonics. Each

perturbation is labelled by (l, m) and the full perturbation is given by a sum over all l

and m. However, since each individual perturbation decouples in what follows, we can

neglect the labels and summation symbols. The metric perturbation is given by

δgAB = hABY,

δgAb = hE
AY:b + hO

ASb,

δgab = R2KY γab + R2GZab + h(Sa:b + Sb:a),

where hAB is a symmetric rank 2 tensor, hE
A and hO

A are vectors and K, G and h are

scalars, all on M2. We similarly perturb the stress-energy tµν → tµν + δtµν and expand

the perturbation in terms of the spherical harmonics:

δtAB = ∆tABY, (13)

δtAb = ∆tEAY:b + ∆tOASb, (14)

δtab = r2∆t3γabY + r2∆t2Zab + 2∆tS(a:b), (15)

where ∆tAB is a symmetric rank 2 tensor, ∆tEA and ∆tOA are vectors and ∆t3, ∆t2 and

∆t are scalars, all on M2.

We wish to work with gauge invariant variables, which can be constructed as

follows. Suppose the vector field ~ξ generates an infinitesimal coordinate transformation
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~x → ~x′ = ~x+ ~ξ. We wish our variables to be invariant under such a transformation. We

can decompose ~ξ into even and odd harmonics and write the one-form fields

ξE = ξA(xC)Y dxA + ξE(xC)Y:adxa,

ξO = ξOSadxa.

We then construct the transformed perturbations after this coordinate transformation

and look for combinations of perturbations which are independent of ~ξ, and therefore

gauge invariant. We will list here only the odd parity gauge independent perturbations.

The odd parity metric perturbation can be written as a gauge invariant vector field:

kA = hO
A − h|A + 2hvA, (16)

and the gauge invariant matter perturbation is given by a 2-vector and a scalar:

LA = ∆tOA − QhO
A , (17)

L = ∆t − Qh. (18)

The linearised Einstein equations which govern the evolution of these perturbations are

kA
|A = 16πL, l ≥ 2, (19)

(R4DAB)|B + LkA = 16πR2LA, l ≥ 1, (20)

where L = (l − 1)(l + 2) and DAB is

DAB =

(
kB

R2

)

|A
−
(

kA

R2

)

|B
.

By taking a derivative of (20), using the fact that DAB is antisymmetric and combining

the result with (19), one can derive the stress-energy conservation equation:

(R2LA)|A = LL. (21)

One can show that (20) is equivalent (for l ≥ 2) to a single scalar equation
(

1

R2
(R4Ψ)|A

)

|A
− LΨ = −16πεABLA|B, (22)

where εAB is the Levi-Civita tensor on the two dimensional manifold, and the scalar Ψ

is defined, for l ≥ 2, by

Ψ = εAB(R−2kA)|B.

The gauge invariant metric perturbation kA can be recovered from

LkA = 16πR2LA − εAB(R4Ψ)|B. (23)

In what follows, we will use the Regge-Wheeler gauge, in which G = h = 0, which

implies that that the bare perturbations coincide with the gauge invariant terms. We

will henceforth assume that l ≥ 2.
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3.1. The Matter Perturbation

To proceed further, we must find a relation between the gauge invariant matter

perturbation LA and the dust density and velocity discussed in section 2.1. To do this,

we write the stress-energy of the full spacetime as a sum of the background stress-energy

and the perturbation stress-energy (where a bar indicates a background quantity):

Tµν = T µν + δTµν .

We will assume that the full stress-energy of the perturbed spacetime also represents

dust. We can write the density as ρ = ρ + δρ and the fluid velocity as uµ = uµ + δuµ.

We can therefore find an expression for the perturbed stress-energy (keeping only first

order terms):

δTµν = ρ(uµδuν + uνδuµ) + δρuµuν. (24)

The perturbation of the dust velocity can now be expanded in terms of the spherical

harmonics as δuµ = (δuAY, δuoSa) = (0, 0, U(t, r)Sa). If we set all even perturbations in

(13 - 15) to zero, then comparison of (13) and (15) to (24) produces the results:

δρ = 0, ∆t = 0.

Then comparing (14) to (24) and using (17) and (18) (remembering that Q = 0 in this

spacetime) produces

LA = ∆tOA = (ρU, 0), L = 0.

If we use these results in conjunction with (21) (noting that the relevant perturbation

Christoffel symbols all vanish for the case of odd perturbations in the Regge-Wheeler

gauge), we find that (21) becomes:

U,t +U

(
2R,t
R

+
ρ̄,t
ρ̄

+
ν,t
2

)
= 0. (25)

Conservation of stress-energy on the background spacetime results in

ρ̄,t +ρ̄

(
2R,t
R

+
ν,t
2

)
= 0. (26)

Combining (25) and (26) produces

∂U

∂t
= 0. (27)

Given this result, the matter perturbation can be completely determined by a choice

of initial profile U(z = zi, r) = y(r) on some suitable initial data surface zi ∈ (zc, zp],

where zp indicates the past null cone of the scaling origin. We now exploit these results

to find a useful form for (20).
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zc

z = zi

zpR = 0

t = t∗

b

Figure 2. The Cauchy Problem. We illustrate here the Cauchy problem associated
with the evolution of the perturbation A(z, p) from the initial surface. The support of
the initially smooth perturbation (indicated by blue stripes) spreads causally from the
initial surface z = zi up to the Cauchy horizon.

3.2. The Master Equation

Having specified the matter perturbation in terms of an initial data function, we now

consider the remaining odd parity terms. We use the coordinates (z, p) where z = −t/r

is the similarity variable introduced above and p = ln r is a useful scaling of the radial

coordinate. In terms of these coordinates, (22) can be written as

β(z)
∂2A

∂z2
+ γ(z)

∂2A

∂p2
+ ξ(z)

∂2A

∂z∂p
+ a(z)

∂A

∂z
+ b(z)

∂A

∂p
+ c(z)A = eκpΣ(z, p), (28)

where the function A(z, p) is related to the master function by

A(z, p) = eκpS4(z)Ψ(z, p).

We introduce a factor eκp = rκ, for κ ≥ 0, for reasons which will be explained later.

This means that Ψ can be non-zero at the singularity. In what follows, we will find a

positive value κ∗ such that κ ∈ [0, κ∗]. The coefficients in (28) depend only on z and are

given in appendix A. We note that the three leading coefficients are all metric functions,

see (8). The source term Σ(z, p) is

Σ(z, p) = −16πe−ν/2S2∂r(ρU). (29)

3.3. Existence and Uniqueness of Solutions

We briefly note that the choice of coordinate z = −t/r means that in the range

zc < z ≤ zp, where zc, zp are the Cauchy horizon and past null cone respectively, z
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is a time coordinate. Since the Cauchy horizon z = zc actually occurs at some negative

z-value, we should always integrate from z = zc up to z. Notice that (8) indicates that

the Cauchy horizon occurs at zc = −eν(zc)/2, while the past null cone of the scaling origin

occurs at zp = +eν(zp)/2.

We wish to prove that there exist unique solutions to the initial value problem

comprised of (28) with suitable initial conditions. We begin by showing that (28) may

be written as a first order symmetric hyperbolic system. We define a useful coordinate

transformation:

z :=

∫ zi

z

ds

β(s)
,

where zi labels the initial data surface. By inspection, we can see that z̄(zi) = 0. Also,

we can see that z̄(zc) = ∞ if we note that we can write β(z) = z−2
c (zc + z)(zc − z), so

that zc is a simple root of β(z). We now define the vector ~Φ:

~Φ =




A

A,z̄ +ξ(z)A,p
A,p


 .

Then (28) takes the form

~Φ,z̄ = X~Φ,p +W ~Φ +~j. (30)

where the matrices X and W , and the vector~j are given in appendix B. In this appendix,

we use standard hyperbolic PDE theory to put the system (30) in the form required

for the theorem 3.1. We identify the surface Si = {(zi, p)| zi = 0, p ∈ R} as our initial

data surface. Since we have writen (28) using self-similar coordinates for the region

between (zp, zc), this is a suitable choice. C∞
0 (R, R) is the space of smooth functions

with compact support.

Theorem 3.1 Let ~f and ~j ′ ∈ C∞
0 (R, R3). Then there exists a unique solution ~Ψ(z, p),

~Ψ ∈ C∞(R × (zc, zi], R3), to the initial value problem consisting of (30) with the initial

condition ~Ψ|zi
= ~f . For all z ∈ (zc, zi] the vector function ~Ψ(z, ·) : R → R3 has compact

support.

Proof See [15] for a standard proof of this theorem. �

As a corollary to this theorem, the second order master equation, (28), inherits existence

and uniqueness. We note here that z is decreasing from zi.

Corollary 3.2 Let f , g, Σ(zi) ∈ C∞
0 (R, R). Then there exists a unique solution

A ∈ C∞(R × (zc, zi], R), to the initial value problem consisting of (28) with the initial

conditions

A|zi
= f A,z |zi

= g

For all z ∈ (zc, zi] the function A(z, ·) : R → R has compact support.
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This corollary ensures existence and uniqueness for solutions to (28) in the region

between the initial data surface and the Cauchy horizon. In other words, when A(z, p)

has regular initial data, the evolution of A(z, p) remains smooth from the initial data

surface up to the Cauchy horizon. However, this does not imply smooth behaviour of

the perturbation on the Cauchy horizon.

4. Behaviour of Perturbation on Cauchy Horizon

Having given a theorem which guarantees the existence of solutions to (28), we now

outline the problem under consideration.

We insert an initial perturbation from the set of initial data C∞
0 (R, R) on the

surface z = zi. We then evolve this perturbation up to the Cauchy horizon. We aim to

determine whether or not the perturbation remains finite as it impinges on the Cauchy

horizon. See figure 2 for an illustration of this.

We begin by noting that the abovementioned choice of initial data is not ideal. Our

choice of initial data surface is dictated by the self-similar nature of the background

spacetime, and thus, is a natural choice to make. However, this surface intersects the

singular scaling origin (t = 0, r = 0) of the spacetime. We are therefore forced to consider

initial data which is compact supported away from the naked singularity. However, by

establishing certain bounds on the behaviour of solutions to (28) with this initial data

choice, we can then exploit the nature of the space C∞
0 (R, R) to extend these bounds

to a more satisfactory choice of initial data which can be non-zero at the scaling origin.

Finally, we note that since the leading coefficient in (28), β(z) vanishes on the

Cauchy horizon, the Cauchy horizon is a singular hypersurface for this equation. This

means that the question of the behaviour of A(z, p) and its derivatives as we approach

the Cauchy horizon is nontrivial. To examine this behaviour, we use energy methods

for hyperbolic systems.

4.1. First Energy Norm

We begin our analysis of the Cauchy horizon behaviour of the perturbation by

introducing the energy integral

E1(z̄) = E1[A](z̄) =

∫

R
‖~Φ‖2dp (31)

where ‖ · ‖ indicates the Euclidean norm. The notation

‖~f‖2
2 =

∫

R
‖~f‖2dp

indicates the L2-norm (squared) of the vector function ~f(z, p). We can immediately

state a bound on this energy integral, which is a standard result for equations of the

form of (28).
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Corollary 4.1 E1[A](z̄) is differentiable on [0,∞) and satisfies the bound

E1[A](z̄) ≤ eB0 z̄

(
E1[A](0) +

∫ ∞

0

‖~j‖2
2dp

)
,

where B0 = supz̄>0 |I − 2W | < ∞, where W is the matrix appearing in (30). As a

consequence, the following results also hold:
∫

R
|A(z, p)|2dp ≤ eB0 z̄

(
E1[A](0) +

∫ ∞

0

‖~j‖2
2dp

)
, (32)

∫

R
|A,p (z, p)|2dp ≤ eB0 z̄

(
E1[A](0) +

∫ ∞

0

‖~j‖2
2dp

)
, (33)

∫

R
|A,z (z, p)|2dp ≤ C1e

C0 z̄

(
E1[A](0) +

∫ ∞

0

‖~j‖2
2dp

)
, (34)

where C0 and C1 are constants, not necessarily equal, which depend only on the angular

number l and the metric functions ν(t, r) and R(t, r).

Proof This is a standard result which follows from the definition of E1(z̄), see [15]. �

These results indicate that this energy norm is bounded by a divergent term, since eB0 z̄

diverges on the Cauchy horizon. In other words, this theorem only ensures that the

growth of the energy norm as we approach the Cauchy horizon is subexponential. In

order to proceed, we define a second energy integral, whose behaviour near the Cauchy

horizon can be more strongly controlled.

4.2. Second Energy Integral

Define

E2[A](z) :=

∫

R
β(z)A,2z −γ(z)A,2p +H(z)A2 + K(z)e2κpΣ2(z, p) dp, (35)

where H(z) = c(z) and K(z) is an arbitrary, non-negative smooth function defined on

(zc, zi] which will be fixed later. In Corollary 4.3, we will find a useful range for κ and in

Lemma 4.2, we establish that with κ in this range, H(z) ≥ 0, and thus, E2[A](z) ≥ 0.

Using these results, we can control the behaviour of dE2/dz and with this in place, we

can finally bound E2(z).

Lemma 4.2 In the region κ ∈ [0, κ∗], where κ∗ := 9
4
, H(z) ≥ 0 and Ḣ(z) ≤ 0, for all

z ∈ (zc, zi].

Proof We first note that the range κ ∈ [0, κ∗] arises from a bound in the next corollary,

Corollary 4.3. Recall

H(z) := c(z) = −e−ν(κ2 − 5κ + 4) + ze−ν

(
ν̇

2
+

2Ṡ

S

)
(κ − 4) + LS−2. (36)

From (7) and (6), we can find explicit forms for each function involved in this definition.

We note that L enters with a coefficient S−2(z), which is always positive. We can
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therefore safely set L = 4, since if H(z) is positive for L = 4, it will become larger, and

therefore more positive, for larger values of L. So, with L = 4, we find that:

H(z) =
−m(z) − n(z) + p(z)

(1 + az)4/3(3 + az)3
,

where m(z) = 9k2(3 + az)(1 + az)2, n(z) = 8az(36 + 45az + 13a2z2) and p(z) =

9k(15 + 39az + 31a2z2 + 7a3z3). The denominator is clearly positive, as can be verified

by explicitly checking the allowed ranges of a ∈ (0, a∗), z ∈ (zp, zc) and κ ∈ [0, κ∗]. We

next consider the numerator. It can easily be confirmed that for a, κ and z in their

respective ranges, the numerator above is also positive.

If we consider (36), and take a derviative with respect to z, we note that the term

containing L will be −4
3
S−3/2(z), where we used the fact that Ṡ(z) = 2

3
aS−1/2(z). In

other words, L enters with a coefficient which is always negative. So, if we set L = 4,

and can show that in this case, Ḣ(z) ≤ 0, then increasing L will result in Ḣ(z) becoming

more negative. So, calculating the derviative of H(z) and setting L = 4, we find

Ḣ(z) =
4a(o(z) − t(z) + u(z))

3(1 + az)7/3(3 + az)4
,

where o(z) = azm(z), t(z) = 9k(−9 − 3az + 27a2z2 + 28a3z3 + 7a4z4) and u(z) =

4(−162−243az−63a2z2+60a63z3+26a4z4). Again, the denominator is clearly positive,

and using the same ranges for a, κ, z and L we can verify that the numerator is negative.

So overall, for a ∈ (0, a∗), κ ∈ [0, κ∗], z ∈ (zp, zc) and L ≥ 4 (which corresponds to l ≥ 2),

we have H(z) ≥ 0 and Ḣ(z) ≤ 0. �

We can now move on to examine the behaviour of the derivative of E2(z).

Corollary 4.3 Let κ ∈ [0, κ∗], where κ∗ = 9
4
. Then there exists some z∗ with

zc < z∗ ≤ zi, a positive constant µ and a choice of function K(z) such that E2(z) ≥ 0

and the derivative of the second energy integral obeys the bound

dE2

dz
≥ −µE2(z)

in the range z ∈ (zc, z
∗].

Proof From the definition of E2(z), (35),

dE2

dz
=

∫

R
(β,z A,2z + 2βA,z A,zz −γ,z A,2p

− 2γA,p A,pz +H,z A2 + 2HA,z A + K,z e2κpΣ2 + 2Ke2κpΣΣ,z )dp.

We now take the following steps. We remove the term containing A,p A,pz by integrating

by parts; the resulting surface term will vanish due to the compact support of A. We

then replace the term containing A,zz using (28). Finally, we remove the term containing

A,z A,zp as it is a total derivative. Having followed these steps, we are left with

dE2

dz
=

∫

R
(β,z −2a(z))A,2z −γ,z A,2p +H,z A2 − 2b(z)A,z A,p +K,z e2κpΣ2

+ 2Ke2κpΣΣ,z +2A,z eκpΣ dp.
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We now use the Cauchy-Schwarz inequality, which states that
∫

R
2eκpΣA,z dp ≥ −

∫

R
e2κpΣ2 + A,2z dp,

to produce

dE2

dz
≥
∫

R
(β,z −2a(z) − 1)A,2z −γ,z A,2p + H,z A2 − 2b(z)A,z A,p

+ (K,z e2κp − e2κp)Σ2 + 2Ke2κpΣΣ,z dp.

We now wish to deal with the term containing Σ,z. To do this, we will need the

equation of motion for matter, (27). Using this equation, (5) and (29), it is possible

to show that Σ is a separable function of z and r, i.e. that Σ(z, p) = B(z)C(r),

where B(z) = −16πe−ν/2S2q(z) and C(r) = (U,r −2U)/r3. We could therefore write

Σ,z = (B,z /B(z))Σ. Incorporating this produces

dE2

dz
≥
∫

R
(β,z −2a(z) − 1)A,2z −γ,z A,2p + H,z A2 − 2b(z)A,z A,p (37)

+

(
K,z − + 2K

B,z
B(z)

)
e2κpΣ2dp.

Now set I to equal the integrand on the right hand side of (37) and define IR = I +µIE2,

where µ > 0 is a positive constant, and IE2 is the integrand such that E2(z) =
∫

R IE2dp.

If we can show that IR ≥ 0, then this corollary is proven. We have

IR = (β,z −2a(z) − 1 + µβ)A,2z +(−γ,z −µγ)A,2p +(H,z +µH)A2

+

(
K,z −1 + 2K

B,z
B(z)

+ µK

)
e2κpΣ2 − 2b(z)A,z A,p .

It is possible to pick K(z) so that the Σ2 coefficient is always positive so we make this

choice. Although H,z is negative, H(z) is positive, and therefore with a choice of large

enough µ, the A2 coefficient will also be positive. This leaves us with:

IR ≥ (β,z −2a(z) − 1 + µβ)A,2z +(−γ,z −µγ)A,2p −2b(z)A,z A,p

:= d(z)A,2z +e(z)A,2p +f(z)A,z A,p .

We define the quadratic form

Q(z, p) := d(z)X2 + e(z)Y 2 + f(z)XY. (38)

In order for this form to be positive definite, we will require d(z) > 0, e(z) > 0 and

D(z) = 4d(z)e(z)− f(z)2 > 0. We first investigate the behaviour of d(z), e(z) and f(z)

on the Cauchy horizon. Using the fact that the Cauchy horizon occurs at zc = −eν(zc)/2

we can compute d(zc) (recall β(zc) = 0):

d(zc) = −e−ν/2(−2 + eν/2(1 + ν̇) − 4(2 − κ))|z=zc
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and so d(zc) will be positive so long as κ is in the region

κ <
1

4
(10 − eν/2(1 + ν̇)) := κ̃(z).

We wish to minimize the function κ̃(z) over the interval [zc, zi]. To do so, we first find

an explicit functional form for this expression, using (3). We find

κ̃(z) =
1

4

(
10 − 9 + 12az + a2z(4 + 3z)

9(1 + az)4/3

)
.

We first set a = a∗ to minimize this function with respect to a. We can then calculate

the derivative of κ∗ and find that

dκ̃

dz
=

−eν/2

4

(
2a2(6 + (3 − 2a)z + 3az2)

9(1 + az)2(3 + az)

)
.

The term in brackets can easily be shown to be positive. Since the coefficient of this

bracket above is negative, it follows that the derivative dκ̃
dz

is everywhere negative in the

region (zc, zi]. It follows that the minimal value of κ̃ is the value at zi = 0. Inserting this

value produces κ∗ = 9
4
, which was used in the statements of this corollary and Lemma

2.

Now, e(zc) is positive, for any choice of positive µ. This follows since by (A.2),

e(z) = e−ν(z)(µ− ν̇(z)) and using (7) we can check that ν̇(z) is negative at z = zc for all

values of a ∈ (0, a∗). Finally, we must check that D(zc) = 4d(z)e(z) − b(z)2 > 0. But

d(zc) > 0 (with the above choice for κ) and since e(zc) can be made arbitrarily large

by a choice of large µ, it follows that D(zc) can always be made positive by a suitable

choice of µ. Then at the Cauchy horizon, the quadratic form is positive definite. But

for a choice of z∗ close enough to zc, the continuity of the coefficients d(z), e(z) and f(z)

ensures that the quadratic form (38) is positive definite in the range (zc, z
∗]. Therefore,

we can conclude that

dE2

dz
≥ −µE2(z)

for z ∈ (zc, z
∗]. �

Having successfully bound the derivative of E2(z), we can establish a satisfactory bound

on E2(z) itself, which does not share the defects of (31).

Theorem 4.4 Let A(z, p) be a solution to (28) which is subject to Theorem 3.1 and

Lemma 4.2. Then the energy E2(z) of A(z, p) obeys the a priori bound

E2(z) ≤ C1E1[A](0) + C2Jκ[Σ(zi)],

where Jκ[Σ(zi)] =
∫

R
e2κpΣ2(zi)dp and z ∈ (zc, zi].

Proof We can immediately construct a bound on E2 by considering the results (32 -

34) of Corollary 2. Using these results, we can construct the bound

E2(z) ≤ h(z)

(
E1[A](0) +

∫ ∞

−∞
‖~j‖2dp

)
, (39)
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where h(z) = |C1β(z)eC0 z̄| + |eB0 z̄(H(z) − γ(z))|. The function h(z) clearly diverges on

the Cauchy horizon. We now wish to convert the L2-norm of ~j into an a priori bound,

that is, a bound which depends on some quantity evaluated on the initial data surface.

To do this we note that∫ ∞

−∞
‖~j‖2dp = f(z)Jκ[Σ(zi)],

where Jκ[Σ(zi)] =
∫

R
e2κpΣ2(zi)dp and f(z) = B−2(zi)(2B

2(z)β2(z)k2(z)) and k(z) =

−1
2
(1 + z2e−ν)−1/2eν/2. By inspection, we can see that the function f(z) is finite up to

the Cauchy horizon, so we have the bound
∫ ∞

0

‖~j‖2dp ≤ C0Jκ[Σ(zi)]

for some positive and sufficiently large constant C0 that depends only on the metric

functions. Using this in (39) produces

E2(z) ≤ h(z) (E1[A](0) + C0Jκ[Σ(zi)]) .

We now integrate the bound on dE2/dz from Corollary 4.3 to find

E2(z) ≤ e−µ(z−z∗)E2(z
∗)

in the range z ∈ (zc, z
∗]. Combining these two bounds and noting that h(z∗) is finite

results in an a priori bound on E2(z):

E2(z) ≤ C1E1[A](0) + C2Jκ[Σ(zi)],

where C1 = e−µ(zc−z∗)h(z∗) and C2 = e−µ(zc−z∗)h(z∗)C0 are finite and z ∈ (zc, z
∗]. �

Having found an a priori bound on E2(z) we can immediately progress to a bound on

the function A(z, p). We pause briefly to note that the Sobolev space H1,2(R, R) is the

set of all functions f with finite H1,2-norm, that is, the set of all functions f such that∫

R
|f |2 + |f,p |2dp < ∞.

Theorem 4.5 Let A(z, p) be a solution to (28) which is subject to Theorem 3.1 and

Lemma 4.2. Then A(z, p) is uniformly bounded on (zc, zi]. That is, there exists constants

C1 > 0, C2 > 0 such that

|A(z, p)| ≤ C1E1[A](0) + C2Jκ[Σ(zi)].

Proof From the previous theorem and the fact that (in the definition of E2(z)) the

terms βA,2z +K(z)e2κpΣ2 are positive definite, we can state that
∫

R
A2 + A,2p dp ≤ C1E1(0) + C2Jκ[Σ(zi)].

So we get a bound on the H1,2(R, R) norm of A(z, p) directly from Theorem 4.4. We

now apply Sobolev’s inequality,

|A| ≤ 1

2

∫

R
|A|2 + |A,p |2dp,
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to convert this to a bound on A(z, p):

|A(z, p)|2 ≤ C1E1(0) + C2Jκ[Σ(zi)]

for all z ∈ (zc, zi]. �

Remark 4.1: This theorem shows that A(z, p) (and therefore the gauge invariant

matter scalar Ψ) is bounded in the approach to the Cauchy horizon. However, this is

not itself sufficient to prove that the limit of Ψ (for all p ∈ R) actually exists in the

approach to the Cauchy horizon. The following lemma allows us to control the behaviour

of the time derivative of A(z, p) and hence, to prove the existence and finiteness of the

limit.

Lemma 4.6 Let A(z, p) be a solution to (28) which is subject to Theorem 3.1 and

Lemma 4.2. Then A,z (z, p) is uniformly bounded on (zc, zi]. That is, there exist

constants {Ci}, i = 1, .., 5 such that

|A,z (z, p)| ≤ C0E1[A](0) + C1E1[A,p ](0) + C2E1[A,pp ](0) + C3Jκ[Σ(zi)] (40)

+ C4Jκ[Σ,p (zi)] + C5Jκ[Σ,pp (zi)].

Proof We wish to find a bound on the behaviour of A,z (z, p). To achieve this, we first

rewrite (28) as a first order transport equation for A,z (z, p). If we label χ := A,z then

β(z)χ,z +ξ(z)χ,p +aχ = f(z, p), (41)

where f(z, p) = eκpΣ − c(z)A(z, p) − b(z)A,p −γ(z)A,pp. By inspection, we see that the

function f(z, p) is smooth and has compact support on each z = constant surface. If

we define the differential operator L to be

L := β(z)
d2

dz2
+ γ(z)

d2

dp2
+ ξ(z)

d2

dzdp
+ a(z)

d

dz
+ b(z)

d

dp
+ c(z)

then (28) would read

L[A] = a0(p)Σ(z, p),

where a0(p) = eκp. Now since every coefficient in the above differential operator has

only z-dependence, we could differentiate (28) with respect to p and write the result as

L[A,p ] = b0(p)Σ + a0(p)Σ,p ,

where b0(p) = da0/dp = κa0(p). Similarly,

L[A,pp ] = c0(p)Σ + 2b0(p)Σ,p +a0(p)Σ,pp ,

where c0(p) = db0/dp = κ2a0(p). So we see that A,p and A,pp satisfy similar differential

equations to A(z, p), with different source terms. We can therefore apply Theorem 4.5

to A,p and A,pp so long as we modify the bounding terms to take account of the modified

source terms:

|A,p | ≤ C3Jκ[Σ(zi)] + C4Jκ[Σ,p (zi)] + C5E[A,p ](0) (42)
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|A,pp | ≤ C6Jκ[Σ(zi)] + C7Jκ[Σ,p (zi)] + C8Jκ[Σ,pp (zi)] + C9E[A,pp ](0)(43)

We must now integrate the first order transport equation (41) and use the above results

to bound A,z (z, p). The charateristics of (41) are dp/dz = ξ(z)/β(z), which integrates

to give

p = α +

∫ zi

z

ξ(s)

β(s)
ds = α + ω(z).

α labels each characteristic, and at z = zi, it gives the value of p where the characteristic

intersects the initial data surface. With this result, the transport equation becomes

β(z)
d

dz
{χ(z, α + ω(z))} + a(z)χ(z, α + ω(z)) = f(z, α + ω(z)),

where the derivative is taken along characteristics. Now define

J(z) := exp

[∫ zi

z

a(s)

β(s)
ds

]
.

It can easily be verified that a solution of the ordinary differential equation (41) can be

written as

J(z)χ(z, α + ω(z)) = χ(zi, α) +

∫ zi

z

J(s)

β(s)
f(s, α + ω(s))ds. (44)

Now recall that ω(z) =
∫ zi

z
ξ(s)
β(s)

ds which tends to infinity as z → zc. For z close enough

to zc the characteristic at (z, p) will hit z = zi at some very large negative p value.

Therefore, since A(z, p) has compact support, χ(zi, α) = 0. We now apply the mean

value theorem for integrals to find that
∫ zi

z

J(s)

β(s)
f(s, α + ω(s))ds = f(z∗, α + ω(z∗))

∫ zi

z

J(s)

β(s)
ds

for some z∗ in the interval (zc, zi]. Then from (44) we can conclude that

χ(z, α + ω(z)) =
f(z∗, α + ω(z∗))

J(z)

∫ zi

z

J(s)

β(s)
ds.

The coefficient of f(z∗, α + ω(z∗)) above is clearly finite away from the Cauchy horizon,

and could therefore be bound by some suitably large constant C∗, so

χ(z, α + ω(z)) ≤ f(z∗, α + ω(z∗))C∗.

Now from (41), (42) and (43), we know that f(z, p) is bounded, so we may finally state

the bound on χ:

|χ(z, p)| := |A,z (z, p)| ≤ C0E1[A](0) + C1E1[A,p ](0) + C2E1[A,pp ](0)

+ C3Jκ[Σ(zi)] + C4Jκ[Σ,p (zi)] + C5Jκ[Σ,pp (zi)]

in the range z ∈ (zc, zi]. �

Having bounded the derivative of A(z, p), we are now in a position to bound the

perturbation on the Cauchy horizon.
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Theorem 4.7 Let A(z, p) be a solution of (28) subject to Theorem 3.1 and Lemma 4.2.

Then AH+ := limz→zc A(z, ·) ∈ C∞(R, R) obeys the bound

|AH+(z, p)| ≤ C1E1[A](0) + C2Jκ[Σ(zi)].

Proof We wish to show that limz→zc |A(z, p)| is bounded. We begin by fixing p and

introducing a sequence of z-values that converge to zc, {z(n)}∞n=0 ⊂ (zc, zi]. For all

m, n ≥ 1, we can use the mean value to show that

|A(z(m), p) − A(z(n), p)| = |A,z (z∗, p)||z(m) − z(n)|

for some z∗ ∈ (z(m), z(n)). Then Lemma 4.6 tells us that A,z is bounded, so |A,z (z∗, p)|
will be a real number. Then since the sequence {z(n)}∞n=0 ⊂ (zc, zi] tends towards zc, it

follows that for large enough n, m, |z(m) − z(n)| < ε for all ε > 0. Therefore A(z(m), p) is

a Cauchy sequence of real numbers. Then for each p ∈ R, limz→zc A(z, p) exists. Define

AH+ := lim
z→zc

A(z, ·).

We now wish to take the limit z → zc in Theorem 4.5, which bounds |A(z, p)|. In order

to do this, we will need to know that the limits of A,p and A,pp exist. But this follows by

a similar argument to the above (recall that we know that all p- derivatives of A(z, p)

to arbitrary order can be bound, using an argument similar to that of Lemma 4.6).

Finally, we must show that

d

dp
AH+ = lim

z→zc

A,p .

But we know that the sequence A(z(n), p) converges uniformly to A(z, p), so the above

result follows. Using these results, we can take the limit z → zc in Theorem 4.5 to find

that

|AH+(z, p)| ≤ C1E1[A](0) + C2Jκ[Σ(zi)].

�

We now wish to generalize our choice of initial data. Recall that we chose an initial

data surface which intersected the axis at r = 0. We therefore had to require that

the initial data for the perturbation be supported away from this point, which is an

undesirable feature of our analysis so far. We pause briefly to note that the Sobolev

spaces H2,2(R, R) and H3,2(R, R) are the set of all functions f with finite H1,2 and finite

H3,2-norms respectively, that is, the set of all functions f such that
∫

R
|f |2 + |f,p |2 + |f,pp |2 dp < ∞,

for f ∈ H2,2 and
∫

R
|f |2 + |f,p |2 + |f,pp |2 + |f,ppp |2 dp < ∞,

for f ∈ H3,2 respectively.
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Theorem 4.8 Let κ ∈ [0, κ∗).

(1) Let f ∈ H1,2(R, R), g ∈ L2(R, R) and Σ ∈ L2(R, R) for each fixed z. Then there

exists a unique solution A ∈ C((zc, zi], H1,2(R)) of the initial value problem consisting of

(28) with the initial data A|zi
= f , A,z |zi

= g. This solution satisfies the a priori bound

|A(z, p)| ≤ C0E1[A](0) + C2Jκ[Σ(zi)]

for z ∈ (zc, zi] and p ∈ R.

(2) Let f ∈ H3,2(R, R), g ∈ H2,2(R, R) and Σ ∈ H2,2(R, R) for each fixed z. Then

there exists a unique solution A ∈ C([zc, zi], H1,2(R)) of the initial value problem con-

sisting of (28) with the initial data A|zi
= f , A,z |zi

= g. This solution satisfies the a

priori bound

|A(z, p)| ≤ C0E1[A](0) + C2Jκ[Σ(zi)]

for z ∈ (zc, zi] and p ∈ R, and its time derivative satisfies

|A,z (z, p)| ≤ C0E1[A](0) + C1E1[A,p ](0) + C2E1[A,pp ](0) + C3Jκ[Σ(zi)]

+ C4Jκ[Σ,p (zi)] + C5Jκ[Σ,pp (zi)]

for z ∈ (zc, zi] and p ∈ R.

Proof The proof of this theorem is standard, and uses the density of the space C∞
0 (R, R)

in the Banach spaces H1,2(R, R), H2,2(R, R), H3,2(R, R) and L2(R, R). The proof is

essentially identical to that of theorem 5 in [8].

�

Remark 4.2: The choice of which Sobolev space to take our initial data functions from

in the above proofs is dictated by the nature of the bounds required. For example, to use

a bound involving E1[A,pp ] as in (136), we will require the function f to be in H3,2(R)

so that it and its p-derivatives up to third order are in L2(R). This is required for the

integral involved in E1[A,pp ] to be well defined. All other choices of Sobolev spaces used

above can be understood in a similar fashion.

Remark 4.3 This theorem successfully generalizes the choice of initial data function

for (28). This generalisation involves choosing initial data which need not vanish at the

scaling centre of the spacetime, which is crucial as it allows for a perturbation which

need not vanish at the past endpoint of the naked singularity. Similar finiteness results

go through for this general choice of initial data.

5. Physical Interpretation of Results

In order to physically interpret the results obtained thus far, we turn to the perturbed

Weyl scalars. These scalars are related to the gauge invariant scalar Ψ and can be
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interpreted in terms of in- and outgoing gravitational radiation. In the case of odd parity

perturbations, they are both tetrad and identification gauge invariant. This means that

if we make a change of null tetrad, or a change of our background coordinate system,

we will find that these terms are invariant under such changes.

Following [16] and [17], we note that δΨ0 and δΨ4 represent transverse gravitational

waves propagating radially inwards and outwards, and δΨ2 represents the perturbation

of the Coulomb part of the gravitational field‡.
The perturbed Weyl scalars are given by

δΨ0 =
Q0

2R2
l̄A l̄BkA|B,

δΨ1 =
Q1

R

(
(R2Ψ)|Al̄A − 4

R2
kAl̄A

)
,

δΨ2 = Q2Ψ,

δΨ3 =
Q∗

1

R

(
(R2Ψ)|An̄A − 4

R2
kAn̄A

)
,

δΨ4 =
Q∗

0

2R2
n̄An̄BkA|B,

where Ψ is the gauge invariant scalar appearing in (28), kA is the gauge invariant vector

describing the metric perturbation, (16), and l̄A and n̄A are the in- and outgoing null

vectors given in (10). Q0, Q1 and Q2 are angular coefficients depending on the other

vectors in the null tetrad, and on the basis constructed from the spherical harmonics.

We have made a gauge choice such that the perturbation of the real members of the

null tetrad vanishes, that is, δlµ = δnµ = 0. See [16] for further details.

We note that the quantities δP−1, δP0 and δP+1, which are defined as follows,

δP−1 = |δΨ0δΨ4|1/2, (45)

δP0 = δΨ2, (46)

δP+1 = |δΨ1δΨ3|1/2, (47)

are fully gauge invariant (in that they are invariant under a change in the background

null tetrad, as well as being invariant under transformations in the perturbed null tetrad

and identification gauge transformations) and have physically meaningful magnitudes.

Although we could write these scalars in terms of the coordinates (z, p) used in

the previous section, it is advantageous to use null coordinates (u, v) instead, as this

simplifies matters considerably. We will therefore consider the master equation in null

coordinates, and establish a series of results indicating the boundedness of various of

the derivatives of A(u, v) in null coordinates. These results will allow us to show that

the perturbed Weyl scalars are bounded as the Cauchy horizon is approached.

‡ We note that [17] refers to δΨ1 and δΨ3 as “longitudinal gravitational waves” propagating radially
inwards and outwards.
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uc

z = zi

upR = 0

u0

v0

v

Ω

b

Figure 3. The characteristic diamond. We integrate over the characteristic diamond
labelled Ω, where u and v are the retarded and advanced null coordinates. uc labels
the Cauchy horizon, up labels the past null cone of the naked singularity and zi is the
initial data surface.

5.1. Master Equation in Null Coordinates

We first rewrite the master equation (28) in terms of the in and out-going null

coordinates (9). The master equation takes the form

α1(u, v) A,uv +α2(u, v)u A,u +α3(u, v)v A,v +α4(u, v)A = eκpΣ(u, v), (48)

where in terms of the coefficients (A.1 -A.6), the above coefficients are given by

α1(u, v) = 2z
β(z) + ξ(z)

f+(z)f−(z)
+ 2γ(z), α2(u, v) =

a(z)

f+(z)
+ b(z), (49)

α3(u, v) =
a(z)

f−(z)
+ b(z), α4(u, v) = c(z), (50)

where f±(z) are factors coming from (9). We can formally solve (48) by integrating

across the characteristic diamond Ω = {(ū, v̄) : u0 < ū ≤ u, vo ≤ v̄ ≤ v} (see figure 3).

We find

A(u, v) = A(u0, v) + A(u, v0) + A(u0, v0) +

∫ u

u0

∫ v

v0

F (ū, v̄)dūdv̄,

where F (u, v) = (α1)
−1 (−α2(u, v)u A,u −α3(u, v)v A,v −α4(u, v)A + eκpΣ(u, v)).

Now in section 5.2, in order to control the perturbed Weyl scalars, we will need

to know that A, A,u, A,v, A,uu and A,vv are bounded in the approach to the Cauchy

horizon.
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Lemma 5.1 With a choice of initial data A(zi, p) = f(p), A,z (zi, p) = j(p) and

Σ(zi, p) = h(p), with f(p), j(p) and h(p) ∈ C∞
0 (R, R), the first order derivatives of

A(u, v) with respect to u and v are bounded by a priori terms in the approach to the

Cauchy horizon.

See appendix C for the proof of this lemma. We can use this result, together with results

from section 4.2, to establish that the second order derivatives of A with respect to u

and v are also bounded.

Lemma 5.2 With a choice of initial data A(zi, p) = f(p), A,z (zi, p) = j(p) and

Σ(zi, p) = h(p), with f(p), j(p) and h(p) ∈ C∞
0 (R, R), the second order derivatives

A,vv, A,uu and A,uv of A are bounded by a priori terms in the approach to the Cauchy

horizon.

See appendix C for the proof of this lemma. The results so far establish the boundedness

of all first and second order derivatives of A with respect to u and v, with a choice of

initial data from the space C∞
0 (R, R). As discussed in section 4, this choice of initial

data does not interact with the past endpoint of the naked singularity. As in Theorem

4.8, we can extend this choice of initial data so that the perturbation need not vanish

at the Cauchy horizon.

Lemma 5.3 With a choice of initial data A(zi, p) = f(p), A,z (zi, p) = j(p) and

Σ(zi, p) = h(p), with f(p) ∈ H3,2(R, R), j(p) ∈ H1,2(R, R) and h(p) ∈ H3,2(R, R),

the first and second order derivatives A,u, A,v, A,vv, A,uu and A,uv of A are bounded by

a priori terms in the approach to the Cauchy horizon.

See appendix C for the proof of this lemma. Having bounded the first and second order

derivatives of A with a satisfactory choice of initial data, we are now in a position to

consider the perturbed Weyl scalars.

5.2. Gauge Invariant Curvature Scalars

The in- and outgoing background null vectors l̄µ and n̄µ are given in (10). We note that

a factor of B−1(u, v) appears in the definition of l̄µ, and that this factor involves a power

of r−2.

In (u, v) coordinates, the perturbed Weyl scalars take the form

δΨ0 =
Q0B

−2

2LS2

(
16π((S2L0),u −γ0S

2L0) +
r2

B

(
(S4Ψ),uu −γ0(S

4Ψ),u
))

, (51)

δΨ1 =
Q1

SB

(
r(S2Ψ),u −

4

LBr

(
16πS2L0 −

r2(S4Ψ),u
B

))
, (52)

δΨ2 = Q2Ψ, (53)

δΨ3 =
Q∗

1

S

(
r(S2Ψ),v −

4

Lr

(
16πS2L1 −

r2(S4Ψ),v
B

))
, (54)
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δΨ4 =
Q∗

0

2LS2

(
16π((S2L0),v −γ1S

2L1) +
r2

B

(
(S4Ψ),vv −γ1(S

4Ψ),v
))

, (55)

where we used (23) to write δΨ0 and δΨ4 in terms of Ψ. Here, γ0(u, v) and γ1(u, v) are

Christoffel symbols, L = (l − 1)(l + 2) and LA = (L0, L1) is the gauge invariant matter

vector (17).

Theorem 5.4 With a choice of initial data Ψ(zi, p) = f(p), Ψ,z (zi, p) = j(p) and

Σ(zi, p) = h(p), with f(p) ∈ H3,2(R, R), j(p) ∈ H1,2(R, R) and h(p) ∈ H3,2(R, R),

the perturbed Weyl scalars, as well as δP−1, δP0 and δP+1, remain finite on the Cauchy

horizon, barring a possible divergence at the past endpoint of the naked singularity, where

r = 0. They are bounded by a priori terms arising from the bounds on A, A,z, A,p, A,pp,

A,zp and Σ.

Proof If we consider (51 - 55), we see that the perturbed Weyl scalars depend on the

gauge invariant scalar Ψ, its first derivatives Ψ,u and Ψ,v, its second derivatives Ψ,uu

and Ψ,vv, and on the gauge invariant vector LA. By letting κ = 0 in Lemma 5.3 we

can immediately state that Ψ, Ψ,u, Ψ,v, Ψ,uu and Ψvv remain finite up to and on the

Cauchy horizon. They are bounded by a priori terms arising from the bounds on A,

A,z, A,p, A,pp, A,zp and Σ.

Thus, the perturbed Weyl scalars remain finite on the Cauchy horizon, and are

bounded by the same a priori terms, except for a possible divergence at r = 0. The

terms involving LA depend on the function U(r), and these may also diverge at r = 0,

depending on the details of U(r).

From (45 - 47), δP−1, δP0 and δP+1 are given by products of the perturbed Weyl

scalars, and therefore are bounded in the same way, with a similar proviso about a

possible divergence at r = 0. �

This theorem establishes that the perturbed Weyl scalars remain finite in the approach

to the Cauchy horizon, and we can conclude that the various gravitational waves and the

perturbation of the Coulomb potential represented by these scalars also remain finite

up to and on the Cauchy horizon.

Having studied the behaviour of the perturbed Weyl scalars, it is reasonable to ask

whether there are any scalars arising from the perturbed Ricci tensor which we should

also consider. We are not aware of any gauge invariant scalars which can be constructed

from the perturbed Ricci tensor, but we expect that any such scalars would be related

via the Einstein equations to gauge invariant matter scalars. In section 3.1, we showed

that the matter perturbation depends only on an initial data function, and therefore,

we expect any such scalars to be trivial in this sense.

6. The l = 1 Perturbation

We now consider separately the behaviour of the l = 1 perturbation. When l = 1,

kA is no longer gauge invariant. Instead, we find that under a change of coordinates
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~x → ~x′ = ~x + ~ξ, where ~ξ = ξSadxa,

kA → kA − r2(r−2ξ),A .

Additionally, (19) no longer holds.

However, Ψ is still gauge invariant, and obeys (23). When l = 1, L = 0, so that

(23) reduces to

16πr2LA − εAB(r4Ψ)|B = 0. (56)

Now, the stress-energy conservation equation, (21) reduces to (r2LA)|A = 0 when l = 1.

This indicates that there exists a potential for LA, which we write as

r2LA = ε B
A λ,B . (57)

As before, in (t, r) coordinates, LA = (ρ̄(t, r)U(r), 0), so (57) implies that λ′(t, r) =

r2ρ̄(t, r)U(r), where in this section, we revert to the notation · = ∂
∂t

and ′ = ∂
∂r

.

Combining (56) and (57) produces

ε B
A (16πλ − r4Ψ),B = 0,

which implies that

r4Ψ(t, r) = 16πλ(t, r) + c,

where c ∈ R is a constant. This result indicates that Ψ remains finite up to and on the

Cauchy horizon, barring a possible divergence at r = 0; whether or not this divergence

occurs depends on the choice of the initial velocity perturbation U(r).

7. Conclusion

We have considered here odd parity perturbations of the self-similar Lemâıtre-Tolman-

Bondi spacetime. More precisely, we have considered the multipoles of the perturbation,

that is, the coefficents of the scalar, vector and tensor bases constructed from the

spherical harmonics into which the perturbation may be decomposed. We have

examined the evolution of a gauge invariant scalar Ψ which completely determines

the perturbation. This scalar acts as a potential for the metric perturbation, the

matter perturbation having been fully determined by a specification of initial data.

Additionally, Ψ is related to the perturbed Weyl scalars which represent transverse

gravitational waves moving radially inwards and outwards along null directions and the

perturbation of the Coulomb component of the gravitational field [16].

We have found that the scalar Ψ remains finite as it impinges on the Cauchy

horizon of the naked singularity. Finiteness refers to certain natural integral energy

measures (as well as pointwise values thereof) which arise in this spacetime, whose value

bounds the growth of this scalar. For the analysis of the Cauchy horizon behaviour, we

used a foliation of this spacetime which consists of hypersurfaces that are generated

by the homothetic Killing vector field. This is a natural choice to make, as it exploits

the self-similarity of the background spacetime. If we use this foliation, we find that
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the coefficients of the master equation are independent of the radial coordinate. This

foliation also dictates our choice of initial data surface for the Cauchy problem.

A disadvantage of this choice of foliation is that these hypersurfaces intersect the

singular scaling origin of the spacetime, rather than meeting the regular centre R = 0.

This forced us to begin our analysis by considering initial data taken from the space

C∞
0 (R, R) which were compactly supported away from the singular point. We then

established Theorems 3.1-4.7 using this data. We finally extended these results to

a more general choice of initial data, taken from various Sobolev spaces, which were

capable of having non-zero values at the singular origin. This extension is crucial, as

it shows that a perturbation which interacts with the naked singularity still remains

bounded at the Cauchy horizon.

Using the perturbed Weyl scalars, one can give a physical interpretation of these

results; the gauge invariant scalar Ψ enters into the definition of the perturbed Weyl

scalars, which in turn represent ingoing and outgoing gravitational radiation and the

perturbation of the Coulomb part of the gravitational field. Now since Ψ remains finite

up to and on the Cauchy horizon, this indicates that this radiation will also remain

finite on the Cauchy horizon (with the exception of a possible divergence at the past

endpoint of the naked singularity).

One deficiency of the current work is the choice of initial data surface. The surface

zi = 0 intersects the past end point of the naked singularity; it would be preferable to

have a surface t = t1 which intersects the regular centre of the spacetime prior to the

formation of the naked singularity. Given the results already shown, the challenge here

would be to show that regular initial data on such a surface evolves to regular data on

the surface z = zi. The results already proven then show that this data remains finite

on the Cauchy horizon. We are currently considering this problem.

The results in this paper do not support the hypothesis of cosmic censorship, which

might have encouraged an expectation that such perturbations would diverge on the

Cauchy horizon associated with the naked singularity. The finiteness of the perturbation

also suggests that it may be possible to continue the spacetime evolution past the Cauchy

horizon. However, we note that a full study of the behaviour of linear perturbations of

this spacetime would include the even parity perturbations, which were set to zero here.

The question of stability of the Cauchy horizon to linear perturbations therefore cannot

be fully answered here.

The even parity perturbations of this spacetime obey a much more complex system

of differential equations, which can be studied using energy methods broadly similar to

those employed here, as well as methods for systems of ODEs. The results of our study

of the even parity perturbations of this spacetime will be presented in a future paper.

As noted in the introduction, the dust spacetime is not an entirely accurate model of

gravitational collapse, as it neglects pressure and pressure gradients. Another interesting

extension would be to examine perturbations of the self-similar perfect fluid model, in

which the fluid has a non-zero pressure.
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Appendix A.

The coefficients of the master equation (28) are given by

β(z) = 1 − z2e−ν, (A.1)

γ(z) = −e−ν , (A.2)

ξ(z) = 2ze−ν , (A.3)

a(z) = 2ze−ν(2 − κ) +
ν̇

2
(1 + z2e−ν) − 2Ṡ

S
β(z), (A.4)

b(z) = e−ν(2κ − 5) − e−νz

(
ν̇

2
+

2Ṡ

S

)
, (A.5)

c(z) = −e−ν(κ2 − 5κ + 4) + ze−ν

(
ν̇

2
+

2Ṡ

S

)
(κ − 4) + LS−2. (A.6)

Appendix B.

The matrices X(z) and W (z) appearing in (30) are given by

X =




0 0 0

0 0 −γ(z)

0 1 −ξ(z)


 ,

W =




0 1 −ξ(z)

−c(z)
(
− β,z̄

β(z)
+ a(z)

)
−ξ(z)

(
− β,z̄

β(z)
+ a(z)

)
+ (ξ,z̄ (z) − b(z))

0 0 0


 .

The source vector ~j is given by ~j = (0, eκpΣ(z, p), 0)T .

In order to use the standard theorem which proves existence and uniqueness

of solutions to systems sych as (30), we require X and W to be smooth, matrix-

valued bounded functions of z̄ on [0,∞), such that X is symmetric with real, distinct

eigenvalues. The matrix X given above is not symmetric, however, it is easy to check

that it is symmetrizable, and therefore a first order symmetric hyperbolic form of (28)

does exist. The matrix which symmetrizes X is

N =




1 0 0

0 eν(z − eν/2(1 + z2e−ν)1/2) e−ν(z + eν/2(1 + z2e−ν)1/2)

0 1 1


 ,
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so that X̃ = N−1XN is a symmetric matrix. X̃(z) and W̃ (z) = N−1WN are given by

X̃ =




0 0 0

0 x+(z) 0

0 0 x−(z)


 ,

where

x±(z) =
±4γ(z) ∓ ξ(z)(ξ(z) +

√
−4γ(z) + ξ2(z))

2
√
−4γ(z) + ξ2(z)

,

and

W̃ =




0 y+
1 (z) y−

1 (z)
c(z)√

−4γ(z)+ξ2(z)
y+

2 (z) y−
2 (z)

− c(z)√
−4γ(z)+ξ2(z)

y+
3 (z) y−

3 (z)


 . (B.1)

The components of the W̃ matrix are given by

y±
1 (z) =

1

2

(
−ξ ∓

√
−4γ(z) + ξ2(z)

)
,

y±
2 (z) =

ζ(z)

2β(z)
√
−4γ(z) + ξ2(z)

,

y±
3 (z) =

w(z)

2
√
−4γ(z) + ξ(z)2

,

where

ζ(z) = 3ξ(z) ±
√

−4γ(z) + ξ2(z)β̇(z)

+β(z)(2b(z) − 3a(z)ξ(z) + a(z)
√

−4γ(z) + ξ2(z) − 2ξ̇(z)),

and

w(z) = (ξ(z) ∓
√
−4γ(z) + ξ2(z))

(
a − β̇(z)/β(z)

)

−2b(z) − 2ξ(z)
(
−a(z) + β̇(z)/β(z)

)
+ 2ξ̇(z).

The symmetric hyperbolic form of (28) is given by

~Ψ,z̄ = X̃~Ψ,p +(N−1
z̄ N + Ỹ )~Ψ +~j ′ (B.2)

where ~Ψ := N−1~Φ, and ~j ′ = N−1~j is given by

~j ′ =




0

−1
2
eν/2eκpΣ

1
2
eν/2eκpΣ


 .
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Appendix C.

In this appendix we provide the proofs of lemmas 5.1, 5.2 and 5.3 which were omitted

in the main text.

Proof of Lemma 5.1: That A(u, v) is bounded follows immediately from the re-

sults in section 4. To bound A,u (u, v) and A,v (u, v), we write them in terms of A,z and

A,p. We find that

A,u (u, v) =
f+(z)

u

(
f−(z)

f−(z) − f+(z)

)[
∂A

∂z
− 1

f−(z)

∂A

∂p

]
,

A,v (u, v) =
1

v

(
f−(z)

f+(z) − f−(z)

)[
f+(z)

∂A

∂z
− ∂A

∂p

]
. (C.1)

We note that by using (9), one can show that f+(z)
u

tends to a finite value as z → zc.

Then since A,z and A,p can be bounded by a priori initial data (see (40) and (42)), it

follows that A,u (u, v) can be bounded by similar a priori terms. By an exactly similar

argument, we can show that A,v is bounded. �

Proof of Lemma 5.2: We can write (48) as A,uv = F (u, v) and by noting the form of

the coefficients (49) and that A,u and A,v are bounded, it follows that A,uv is bounded

in the approach to the Cauchy horizon.

To deal with A,vv, we first write (C.1) as A,v = H(z,p)
v

, where

H(z, p) =
f−

f+ − f−
(f+A,z −A,p ).

Taking a derivative with respect to v and converting to (z, p) coordinates produces a

set of terms which depend on H, H,p and H,z,

A,vv = − 1

v2
H(z, p) +

1

v2

(
f−

∂H

∂z
+

∂H

∂p

)
. (C.2)

The partial derivatives of H(z, p) with respect to z and p are given by

∂H

∂p
=

f−
f+ − f−

(f+A,zp −A,pp ),

and

∂H

∂z
=

(
f−

f+ − f−

)
,z (f+A,z −A,p )+

f−
f+ − f−

(f+,z A,z +f+A,zz −A,zp ).(C.3)

Now in (C.2), the terms involving H and H,p remain finite in the approach to the

Cauchy horizon. This follows since these terms involve A,z, A,p, A,pp and A,zp, which

Theorem 4.5 and Lemma 4.6 show to be bounded by a priori terms (recall that we can

take p-derivatives in these results to show that A,p, A,pp and A,zp are bounded).

It remains to show that the H,z term remains finite as the Cauchy horizon is

approached. If we examine (C.3), we see that we have terms involving A,z, A,p, A,zp
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and f+A,zz. The first three of these remain finite in the approach to the Cauchy horizon

as discussed above. Now by solving (28) for A,zz, we find that we can write f+A,zz as

f+A,zz = − f+

β(z)
(γ(z)A,pp +ξ(z)A,zp +a(z)A,z +b(z)A,p +c(z)A − eκpΣ(z, p)). (C.4)

The term (γ(z)A,pp +ξ(z)A,zp +a(z)A,z +b(z)A,p +c(z)A − eκpΣ(z, p)) remains finite in

the approach to the Cauchy horizon. This follows immediately from the boundedness

of A,pp, A,zp, A,z, A,p and A, and from the boundedness of the coefficients γ(z), ξ(z),

a(z), b(z) and c(z). The source term eκpΣ(z, p) is bounded everywhere, assuming a finite

perturbation of the dust velocity, see (29).

To deal with the factor of f+β−1 in (C.4), we note that β(z) can be written as

β(z) = e−ν(eν/2 − z)(eν/2 + z) (see A.1), so that f+β−1 = eν(eν/2 − z)−1. This remains

finite as the Cauchy horizon is approached. We can therefore conclude that the term

f+A,zz remains finite, and indeed, is bounded by a priori terms. It follows that (C.3)

also remains finite, and finally A,vv, given by (C.2) also remains finite as the Cauchy

horizon is approached, and is bounded by a priori terms inherited from the bounds on

A, A,z, A,p, A,pp, A,zp and Σ.

Finally, we must show that A,uu is bounded in the approach to the Cauchy horizon.

This proof involves two steps. Firstly, by following a procedure similar to that given

above, we can establish a bound on uA,uu. We write A,u as A,u = G(z,p)
u

where

G(z, p) =
f+f−

f− − f+

(
A,z −

A,p
f−

)
.

Taking a u derivative of A,u results in

A,uu = − 1

u2
G(z, p) +

1

u2

(
f+

∂G

∂z
+

∂G

∂p

)
. (C.5)

G,z and G,p are given by

∂G

∂p
=

f+f−
f− − f+

(
A,zp −

A,pp

f−

)
, (C.6)

and

∂G

∂z
=

(
f+f−

f− − f+

)
,u

(
A,z −

A,p
f−

)
+

f+f−
f− − f+

(
A,zz −

A,zp

f−
+

f−,z
f 2
−

A,p

)
.(C.7)

By the same argument as that given above, we can conclude that f+A,zz remains finite

as the Cauchy horizon is approached, so that G,z and G,p both remain finite in this

limit. If we combine (C.5), (C.6) and (C.7), we find that we can write A,uu as

A,uu =
f+

u2
G̃(z, p),

where

G̃(z, p) =
∂G

∂z
+

f−
f− − f+

(
A,zp −A,z +

A,p −A,pp

f−

)
,

and this term is bounded by a priori terms as the Cauchy horizon is approached. Now

since f+

u
tends to a finite constant as z → zc, it follows that uA,uu is bounded by a priori



Odd Parity Perturbations of the Self-Similar LTB Spacetime 34

terms inherited from the bounds on A, A,z, A,p, A,pp, A,zp and Σ . This result is not

sufficient for our requirements in section 5.2, but we can use it to establish a stronger

bound on A,uu.

We return to the wave equation, in the form A,uv = F (u, v). By integrating with

respect to v, we find

A,u (u, v) − A,u (u, v0) =

∫ v

v0

F (u, v̄)dv̄. (C.8)

where F (u, v) = (α1)
−1 (−α2(u, v)u A,u −α3(u, v)v A,v −α4(u, v)A + eκpΣ(u, v)). Now

we can make a choice of v0 such that v0 does not intersect the compact support of the

perturbation (see figure 3). With this choice, A,u (u, v0) = 0. Then taking a u derivative

of (C.8) results in

A,uu =

∫ v

v0

∂F

∂u
(u, v̄)dv̄. (C.9)

We can write ∂F
∂u

as

∂F

∂u
=

α1,u
α2

1

(−α2(u, v)u A,u −α3(u, v)v A,v −α4(u, v)A + eκpΣ(u, v)) (C.10)

− 1

α1
(α2,u uA,u +α2A,u +α2uA,uu +α3,u vA,v +α3vA,uv +α4,u A + α4A,u −(eκpΣ),u ) .

Now, if we consider (49), we see that we can write α1 = α̃1

f+
, where α̃1 = 2z(β + ξ)f−1

− +

2γf+. Then we can show that

α1,u
α2

1

=
f+

u

1

α̃2
1

(−α̃1f+,z +α̃1,z f+), (C.11)

which remains finite as the Cauchy horizon is approached (since f+

u
tends to a finite

constant as z → zc, and by inspection, so do α̃1, α̃1,z and f+,z). From (C.11), and the

results of Lemma 5.1, we can conclude that the first term in (C.10) remains finite as

the Cauchy horizon is approached.

Similarly, by writing α2 = α̃2

f+
, where α̃2 = a(z) + b(z)f+, we can show that

α2,u
α1

u =
1

α̃1
(−α̃2f+,z +f+α̃2,z ), (C.12)

and
α2

α1
=

α̃2

α̃1
, (C.13)

which remain bounded as the Cauchy horizon is approached, since by inspection, α̃1,

α̃2, f+,z and α̃2,z tend to finite constants as the Cauchy horizon is approached. Now the

terms α3,u vA,v +α4,u A + α4A,u −(eκpΣ),u which appear in the second term in (C.10)

are bounded as the Cauchy horizon is approached. This follows from Lemma 5.1 and

from the boundedness of the coefficients α3,u, α4,u, α4 (which can be easily seen by

converting to (z, p) coordinates and using 49). (eκpΣ),u reduces to z and p derivatives

of Σ when we switch to (z, p) coordinates, and these are bounded in the approach to

the Cauchy horizon.
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The remaining terms from (C.10) which must be dealt with are α2,u uA,u α−1
1 ,

α2A,u α−1
1 , α2uA,uu α−1

1 , α3vA,uv α−1
1 . Now combining (C.12), (C.13) and the results of

Lemma 5.1, as well as our result for the boundedness of uA,uu, we see that these terms

remain bounded as the Cauchy horizon is approached. We can therefore conclude that
∂F
∂u

remains finite, and therefore, from (C.9), A,uu also remains bounded as the Cauchy

horizon is approached. In particular, A,uu is bounded by a priori terms arising from

the bounds on A, A,z, A,p, A,pp, A,zp and Σ. �

Proof of Lemma 5.3: That A itself is bounded with this choice of initial data follows

immediately from the second part of Theorem 4.8. To show the boundedness of the

derivatives, we follow a procedure similar to that used to prove Theorem 4.8.

The space C∞
0 (R, R) is dense in each of H3,2(R, R) and H1,2(R, R). It follows

that there exist sequences {f(m)}∞m=0, {j(m)}∞m=0 and {h(m)}∞m=0, with f(m), j(m) and

h(m) ∈ C∞
0 (R, R), such that f(m) → f , j(m) → j and h(m) → h as m → ∞, with

convergence in the H3,2(R, R) and H1,2(R, R) norms respectively.

Then for all m ≥ 0, we take f(m), j(m) and h(m) as initial data for A and A,z, and

apply Theorems 3.1, 4.4 and 4.5 to find a sequence of solutions A(m) which obeys at each

m the a priori bounds from Theorem 4.5 and Lemma 4.6. By taking p-derivatives in

these results as required, we can establish similar bounds on A(m),p, A(m),pp and A(m),zp.

We can then take the m → ∞ limit and will find a solution A ∈ C([zc, z], H3,2(R, R)).

Finally, we apply lemmas 5.1 and 5.2 to establish bounds on the required u and

v derivatives of A. These terms will be bounded by a priori terms inherited from the

bounds on A, A,z, A,p, A,pp, A,zp and Σ. The order of derivatives of A and Σ required

for these bounds dictates the choice of Sobolev spaces for the initial data specified in

this lemma. �
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