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Abstract

A one-parameter family of random variables, called the Discrete Action, is

defined for a 2-dimensional Lorentzian spacetime of finite volume. The sin-

gle parameter is a discreteness scale. The expectation value of this Discrete

Action is calculated for various regions of 2D Minkowski spacetime, M2.

When a causally convex region of M2 is divided into subregions using null

lines the mean of the Discrete Action is equal to the alternating sum of the

numbers of vertices, edges and faces of the null tiling, up to corrections that

tend to zero as the discreteness scale is taken to zero. This result is used to

predict that the mean of the Discrete Action of the flat Lorentzian cylinder

is zero up to corrections, which is verified. The “topological” character

of the Discrete Action breaks down for causally convex regions of the flat

trousers spacetime that contain the singularity and for non-causally convex

rectangles.
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1 The 2-dimensional action of a causal set

The twin hypotheses that spacetime is fundamentally discrete and that, of all the

structures of classical General Relativity, it is the causal structure of spacetime that

will persist in the deep quantum regime gives rise to the idea that spacetime is a discrete

order [1, 2, 3]. Indeed the basic proposal of the causal set approach to quantum gravity

is that the sum-over-histories for quantum gravity is a sum over discrete orders or causal

sets. To define such a sum-over-histories, it will be necessary to give the amplitude for

each causal set (or pair of causal sets if the path integration is conducted in Schwinger-

Kel’dysh manner) and progress has recently been made on the question of what these

amplitudes might be: a 2-dimensional action and a 4-dimensional action for a causal

set have been proposed [4] and actions in 3, 5 and higher dimensions can also be defined

[5].

Recall that a causal set (causet for short) is a locally finite partial order, i.e. it is a

pair (C,�) where C is a set and � is a relation on C which is reflexive (x � x), acyclic

(y � x � y ⇒ y = x) and transitive (z � y � x ⇒ z � x). Local finiteness is the

condition that the cardinality of any order interval is finite, where the (inclusive) order

interval between a pair of elements y � x is defined to be I(x, y) := {z ∈ C | y � z � x}.
We call x the top element and y the bottom element of I(x, y). We write y ≺ x when

y � x and y 6= x. We define n(x, y) := |I(x, y)| and call a relation y ≺ x a link if

n(x, y) = 2. A chain is a totally ordered subset of C.

1



Sprinkling is a random process that produces a causet which is a discretisation of

a d-dimensional, causal, Lorentzian manifold (M, g) [6]. It is the Poisson process of

selecting points independently at random from the measure space (M, g) – where the

measure is the spacetime volume measure – with density ρ. For the definition of the

Poisson Process of density ρ see, for example, [7]. In the Poisson process, the expected

number of points sprinkled in a region of spacetime volume V is ρV . In quantum

gravity we expect that the density is Planckian so that ρ = l−d where l is of order the

Planck length, but in this paper we treat ρ as a parameter to be varied. This process

generates a causet whose elements are (identified with) the sprinkled points and whose

order is that induced by the manifold’s causal order restricted to the sprinkled points.

If (M, g) is of finite volume, the causet generated is almost surely finite and so the

process defines a probability distribution PM,g,ρ on the set of finite causets (aka the

set of finite partial orders). Henceforth, for ease of notation, we will drop the explicit

reference to the metric g and refer, for example, to a spacetime as M and the probability

distribution above as PM,ρ.

Sprinkling is not a physical process. It plays a purely kinematical role and ex-

presses the discrete-continuum correspondence: a causet C is well approximated by a

Lorentzian manifold M if it could have been generated, with relatively high probability,

by sprinkling into M. In other words, C is well approximated by a manifold M if there

exists an embedding i : C ↪→ M such that (i) x, y ∈ C, y � x iff i(y) ∈ J−(i(x)) and

(ii) the number of elements embedded in any sufficiently nice, large region of volume

V is approximately ρV . Strictly, this is a conjecture, the “Hauptvermutung” of the

causal set approach, but it is supported by much evidence including the result that

a distinguishing Lorentzian geometry is fully determined by its causal structure and

spacetime volume measure [8, 9, 10].

We define the 2D action, S, of a finite causal set C to be [4]

S[C] = N − 2N1 + 4N2 − 2N3 (1.1)

where N is the cardinality of C, and Nm is the number of inclusive order intervals in C
of cardinality m+1. N1 therefore is the number of links in C, N2 is the number of order

intervals that are 3-chains (3 element chains) and N4 is the number of order intervals

that are 4-chains plus the number that are “diamonds” (with two mutually unrelated

elements between the top and bottom elements). Note that N3 is not the number

of subcausets that are 3-chains but the number of order intervals that are 3-chains.

The form of S as an alternating sum of (weighted) numbers of things is intriguingly
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reminiscent of certain topological indices.

The action (1.1) defines an integer valued random variable, the Discrete Action SM,ρ,

for each finite volume spacetime M and density ρ via the sprinkling process: SM,ρ takes

the value S[C] with probability PM,ρ(C). We also define the random variable SM,N

which takes the value S[C] with the probability that causet C arises in the process of

selecting exactly N elements uniformly at random – according to the spacetime volume

measure – from M. We then have

〈SM,ρ〉 =
∞∑

N=0

(ρV )N

N !
e−ρV 〈SM,N〉 (1.2)

where 〈·〉 denotes the expected value, V is the spacetime volume of M, and (ρV )N

N !
e−ρV

is the probability that N elements are selected in the Poisson process of sprinkling into

M at density ρ.

The Poisson distribution gives for the mean,

〈SM,ρ〉 = ρV − 2ρ2

∫

M
ddy

√
−g(y)

∫

M∩J+(y)

ddx
√

−g(x)

(
1 − 2ρVxy +

1

2
(ρVxy)

2

)
e−ρVxy (1.3)

where Vxy is the volume of the spacetime causal interval, [x, y] := J+(y) ∩ J−(x), be-

tween x and y and d is the dimension of M. This can be understood thus: ρ ddx
√

−g(x)

is the probability that an element is sprinkled in an elemental volume at x and similarly

for y; e−ρVxy , ρVxye
−ρVxy or 1

2
(ρVxy)

2e−ρVxy is the probability that there is no element,

one element or two elements, respectively, sprinkled in [x, y].

Note that the double integration may be done in either order:

〈SM,ρ〉 = ρV − 2ρ2

∫

M
ddx

√
−g(x)

∫

M∩J−(x)

ddy
√
−g(y)

(
1 − 2ρVxy +

1

2
(ρVxy)

2

)
e−ρVxy . (1.4)

Indeed, the causet action (1.1) is invariant under reversal of the order relation on C,

and so the Discrete Action (DA) for any spacetime (M, g) is equal to the DA of its

time-orientation-reverse.

SM,ρ is defined for any finite volume (causal) spacetime of any dimension so we can

ask in what sense it is 2-dimensional. Each realisation of SM,ρ is the action S[C] of

some finite causet C and

S[C] =
∑

ei∈C

L(ei) (1.5)
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where

L(ei) = 1 − 2n1(ei) + 4n2(ei) − 2n3(ei) (1.6)

and nm(ei) is the number of inclusive order intervals in C with cardinality m + 1 and

with top element ei. L(·) itself defines a random variable, LM,ρ,y, for each spacetime

M, each point y ∈ M and each ρ in the following way. Fix y ∈ M, sprinkle into M at

density ρ and add an element at y to the sprinkled causet to form causet C ′ which has

a marked element, call it ey. The value of LM,ρ,y is then L(ey) evaluated in C ′. If M is

2-dimensional, the mean of LM,ρ,y tends to 1
4ρ

R(y), where R(y) is the Ricci scalar, as ρ

tends to infinity [4]. It approaches its limit when the discreteness length scale l := ρ− 1
2

is much smaller than the curvature scale R− 1
2 . If M is not 2-dimensional, there is no

apparent reason for LM,ρ,y to have anything to do with the continuum geometry M.

Since L is thus related to the Ricci scalar when the causal set is a 2D sprinkling and

S is a sum of L(·) over the causal set, this implies that when M is 2-dimensional and as

ρ → ∞, 〈SM,ρ〉 will tend to something that contains a term 1
4

∫
M d2x

√
−gR plus terms

arising from boundary effects. We will investigate this and in particular the nature of

the boundary terms. In doing so we will be exploring whether the 2D Discrete Action

is topological in character. The standard gravitational action for 2D Euclidean gravity,

with its Einstein-Hilbert term and the (2D analogue of the) Gibbons-Hawking bound-

ary term, is known to be a topological invariant, due to the Gauss-Bonnet theorem.

The Gauss-Bonnet Theorem has been extended to Lorentzian manifolds [11, 12], so

for ordinary (Lorentzian) 2D gravity, the action with an appropriate boundary term

is also topological and a question arises: to what extent is the 2D causal set action

topological?

2 Intervals in M2

Consider a causal interval in 2D Minkowski spacetime, I := [p, q] ⊂ M2. For definite-

ness consider the interval to have fixed volume (area), V .

Following a conjecture of R. Sorkin, G. Brightwell proved that the mean 〈SI,N〉 = 1,

for any N 6= 0 [13]. This implies that the mean of SI,ρ is

〈SI,ρ〉 =
∑∞

N=1
(ρV )N

N !
e−ρV

= 1 − e−ρV (2.1)

where (ρV )N

N !
e−ρV is the probability, in the Poisson process, that N elements are sprin-

kled into I.
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We use (1.3) to prove this result in a different way:

〈SI〉 = ρV − 2ρ2

∫

I
d2y

∫

I∩J+(y)

d2x p(ρVxy) (2.2)

where p(ξ) = (1 − 2ξ + 1
2
ξ2) exp(−ξ) and we have suppressed the subscript ρ on the

random variable SI,ρ.

We use coordinates in which p and q lie on the time axis and q is at the origin. We

consider null coordinates ux = 1√
2
(x0 − x1), vx = 1√

2
(x0 + x1) and similarly for uy, vy.

Then the interval is defined by u, v ∈ [0, a] for a =
√

V .

〈SI〉 = ρV − 2

∫ a

0

dux

∫ a

0

dvx

∫ ux

0

duy

∫ vx

0

dvy ρ2 p(ρ ∆u ∆v) (2.3)

where ∆u = ux − uy, ∆v = vx − vy.

〈SI〉 = ρV − 2

∫ a

0

dux

∫ a

0

dvx

∫ ux

0

d∆u

∫ vx

0

d∆v ρ2 p(ρ ∆u ∆v)

= ρV − 2

∫ a

0

dux

∫ a

0

dvx

[
[integrand 1]∆v=vx

∆v=0

]∆u=ux

∆u=0

where

integrand 1 = −ρ

2
(1 − ρ ∆u ∆v) exp(−ρ ∆u ∆v)

[g(ξ)]ξ=α
ξ=β = g(α) − g(β).

Hence

〈SI〉 = 1 − exp(−ρ a2) = 1 − exp(−ρV ) . (2.4)

As ρ → ∞, 〈SI〉 → 1 and we write 〈SI〉 ≈ 1 to denote this.

Consider now splitting up the interval I into four smaller intervals Ii, i = 1, . . . 4, as

shown in Fig. 2. When computing the expected value of SI one can split the integral

up into the means of the actions of the four subintervals plus the “bilocal” contributions

when x and y lie in two different subintervals. More concretely, given any subcausets,

A and B of a causal set C, we define the bilocal action,

S[C; A, B] = N(A, B) − 2N1(A, B) + 4N2(A, B) − 2N3(A, B) (2.5)

where N(A, B) is the number of elements in A ∩ B and Nm(A, B) is the number of

inclusive order intervals in C of cardinality m + 1 with top element in A and bottom

element in B. Now let X and Y be submanifolds of spacetime M. We define the ran-

dom variable, SM;X,Y , the Discrete Bilocal Action, via the sprinkling process: sprinkle
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into M at density ρ 1 to obtain causet C with subcauset A(B) being that sprinkled

into X(Y ). For that realisation, SM;X,Y takes the value S[C; A, B].

Note that SM;X,X = SX if X is a causally convex subset of M.2

Now, consider I and its subintervals. If we adopt Sij as simplified notation for the

bilocal action SI;Ii,Ij
, then we have

〈SI〉 =
4∑

i=1

〈SIi
〉 +

4∑

i,j=1
j<i

〈Sij〉 . (2.6)

The bilocal summands can be computed using the integral in Eq. (2.3) and adjusting

[a and c (b and d) are the v-coordinate (u-coordinate) lengths of the sides of the

subintervals] []

Figure 1: Splitting up a causal interval in 2D Minkowski to compute the action

the boundaries. This yields

〈S21〉 = −2

∫ a

0

dvx

∫ b+d

b

dux

∫ vx

0

dvy

∫ b

0

duy ρ2 p(ρ ∆u ∆v)

= −2

∫ a

0

dvx

∫ b+d

b

dux

[
[integrand 1]∆u=ux

∆u=ux−b

]∆v=vx

∆v=0

= −1 + exp(−a b ρ) + exp(−a d ρ) − exp(−a (b + d) ρ) (2.7)

≈ −1

1To simplify notation, we don’t make the dependence on the density explicit.
2A causally convex region, X , of M is one such that x, y ∈ X implies that the causal interval in

M between x and y is a subset of X .
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and

〈S41〉 = −2

∫ a+c

a

dvx

∫ b+d

b

dux

∫ a

0

dvy

∫ b

0

duy ρ2 p(ρ ∆u ∆v)

= −2

∫ a+c

a

dvx

∫ b+d

b

dux

[
[integrand 1]∆u=ux

∆u=ux−b

]∆v=vx

∆v=vx−a

= 1 − exp(−(a + c) (b + d) ρ)

+ exp(−a (b + d) ρ) + exp(−c (b + d) ρ))

+ exp(−(a + c) b ρ) + exp(−(a + c) d ρ)

− exp(−a b ρ) − exp(−a d ρ) − exp(−c b ρ) − exp(−c d ρ) (2.8)

≈ 1 .

The three other bilocal contributions 〈Sij〉 can be obtained from 〈S21〉 by changing the

parameters appropriately. Putting together all parts of Eq. (2.6) one exactly recovers

Eq. (2.1).

Now, one can continue this game and split up the interval even further as in Fig. 2.

To compute the mean of the action one must again calculate

〈SI〉 =
9∑

i=1

〈SIi
〉 +

9∑

i,j=1
j<i

〈Sij〉 . (2.9)

We already know the contributions 〈SIi
〉 ≈ 1 and the bilocal contributions from two

intervals that either share an edge or lie above and below a shared vertex (e.g. 〈S21〉 and

〈S51〉 in Fig. 2). It remains to compute the bilocal contributions from pairs of intervals

such as (4,1),(7,1) and (9,1) in Fig. 2. It turns out they consist only of exponential

terms that are small when intervening intervals are large on the discreteness scale. In

the limit of large density, we are left with a contribution of 1 for every subinterval, −1

for every edge and 1 for every vertex. One could write

〈S〉 ≈ F − E + V (2.10)

where F denotes the number of faces i.e. intervals, E the number of edges and V the

number of vertices. F−E+V is the formula for the Euler character of a polyhedron and

motivates the question: Is the expected action (to some extent) a topological invariant?

It is obvious that the formula can be applied to arbitrary causally convex regions of

M2 that can be tiled by causal intervals as long as each interval is large enough for the

corrections to be negligible. It is not hard to verify that any such region will have a

mean Discrete Action 〈S〉 ≈ 1. So for example the region shown in Fig. 2 will give

〈S〉 ≈ 1 but the region in Fig. 2 will not.
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[causally convex] [not causally convex]

Figure 2: Different regions constructed from causal intervals in M2

3 Causally convex regions in M2

The boundary of a causally convex region of M2 can be spacelike in parts, but never

timelike. If the region’s boundary comprises straight line segments, such as the hexagon

shown in Fig. 3, then it can be divided up by null lines into a collection of intervals

and causally convex triangles such as Fig. 3. Then the formula (2.10) will apply if the

mean of the Discrete Action for a causally convex triangle tends to 1 in the infinite

density limit.

[causally convex triangle] [causally convex hexagon]

Figure 3: Causally convex regions with boundaries formed from null and spacelike line
segments

First note that by Poincaré invariance we can choose coordinates so that the spacelike

edge of the triangle is at t =constant, and the apex lies at the origin.

Using null coordinates, as before, we have

〈S4〉 = ρV − 2ρ2

∫ L

0

dvx

∫ vx

0

dux

∫ vx

0

dvy

∫ ux

0

duy p(ρ∆u∆v) (3.1)
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where L =
√

2V and V is the area of the triangle. This gives

〈S4〉 = 1 +
1

ρV
+ O

(
(ρV )−2

)
≈ 1 . (3.2)

We see that the mean DA of the triangle does indeed tend to 1 as ρ → ∞, though the

corrections are not exponentially small.

Now, consider a general causally convex region with a boundary whose spacelike

portion is curved. So long as the discreteness scale is small enough – small compared

to the radius of curvature of the boundary – we can tile the region with intervals and

with causally convex approximate triangles along the spacelike boundary, all of which

are large enough compared to the discreteness scale for the Formula (2.10) to hold

approximately. We conclude that the mean of the DA for any causally convex region

of M2 will tend to 1 in the limit of infinite density.

Is causal convexity necessary for the mean of the DA to be approximately 1? When

a region, R ⊂ M2, is not causally convex, there will exist pairs of points x, y ∈ R

such that the causal interval in R between x and y is smaller than the causal interval

between them in M2 (the “diamond”). Since it is the volume of the causal interval in

R which appears in the expression for the mean of the DA, one might expect this to

disrupt the result and indeed it does.

Consider the Discrete Action, S@ of a rectangle with edges parallel to the t and

x axes. Analytic computation of the expectation value 〈S@〉 is hard exactly because

of the lack of causal convexity: the integral (1.3) breaks up into several subintegrals

depending on the positions of x and y relative to the boundary. Therefore we use

simulations to estimate the value. A sprinkling into a rectangle has three independent

parameters that fully characterise the problem. One choice is the spatial width w,

the height along the time-axis h and the sprinkling density ρ.3 The expectation value

〈S@,w,h,ρ〉 must be invariant under rescaling

w → λ · w
h → λ · h
ρ → λ−2 · ρ.

(3.3)

Fig. 4 shows simulation data for two different setups with power-law fits. Fig. 3 shows

〈S〉 for constant w and h and varying ρ, Fig. 3 for constant w and ρ and for varying h.

Given the small relative error bars the power-law fits look quite convincing and we will

3Width w, height h and expected number of sprinkled elements N would be another choice.

9



[Simulation data for the action of a rectangle in M2 for w = h = 1, varying
density ρ with a power-law fit. Data averaged over 106 to 107 runs. Fit function:

ρa · b.]
[Simulation data for the action of a rectangle in M2 for w = 1, ρ = 100, varying height

h with a power-law fit. Data averaged over 106 to 107 runs. Fit function: ha · b.]

Figure 4: Numerical results for the action of a rectangle in M2.

assume that 〈S@〉 can, at least in the regime covered by the simulations, be written in

the form

〈S@〉 = const · hαwβργ. (3.4)

The scale invariance (3.3) demands α + β − 2γ = 0. From simulation 1 (Fig. 3) one

is tempted to deduce γ = 1/2 and from simulation 2 (Fig. 3) that α = 1. It follows

β = 0.

The fact that for constant ρ the width does not affect the value of the action whereas

〈S@〉 ∝ h suggests that in general 〈S@〉 contains boundary terms from timelike bound-

aries only. We return to this question in the discussion section.

4 The flat cylinder

In order to apply formula Eq. (2.10) to a causal interval, Ic, of height T on a cylin-

der with circumference L with L ≤ T ≤ 2L one might come up with a tiling into

subintervals, Ii, i = 1, . . . 8, as shown in Fig. 5. Taking into account the topological

identification, we have F = 8, E = 12, V = 4 thus yielding a predicted high-density

expectation value of 〈SIc〉 ≈ 0. However we have not shown yet that formula Eq.

(2.10) is applicable to the cylinder. The division of the causal interval in Fig. 5 has

been chosen such that formula Eq. (2.1) for the faces and formulae Eq. (2.7) and (2.8)
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Figure 5: Tiling of the interval Ic with L ≤ T ≤ 2L. a and b are the u and v coordinate
lengths of the sides of the subintervals shown.

for the bilocal contributions of two intervals that share an edge or lie above and below

a vertex can still be applied as the cylinder topology does not affect these cases. But

the computation of contributions like (5,1),(6,1) and (8,1) differs from the Minkowski

setup due to the nontrivial topology.

Recall

〈SIc〉 = ρV − 2K (4.1)

where

K = ρ2

∫

Ic

d2y

∫

Ic∩J+(y)

d2x p(ρVxy) . (4.2)

In general, K can be split into a sum of terms, K =
∑∞

α=1 Kα depending on how many

homotopy classes of causal curves there are from y to x:

Kα := ρ2

∫

Ic

d2y

∫

Ic∩J+
α (y)

d2x p(ρVxy) (4.3)

where

J+
α (y) := {x ∈ J+(y) | ∃ exactly α homotopy classes of causal curves from y to x} .

(4.4)

This split is motivated by the fact that Vxy strongly depends on the number of homotopy

classes of causal paths between x and y. For our interval, Kα = 0 for α > 3.

From Fig. 5 we see the relation between a, b, T and L is:

a = (T − L)/
√

2

b = (2L − T )/
√

2 (4.5)

The causal volume Vxy for x ∈ J+
α (y) for α ≥ 3 is at least (a + b)2 so K3 is suppressed

by at least exp(−ρ(a + b)2) and can thus be neglected as L =
√

2(a + b) is assumed to

be large in discreteness units of ρ− 1
2 .

11



The values for K1 and K2 are [14]

K1 =
ρV

2
+

1

2
exp(−ρa2) − (1 + ρab) exp(−ρa(a + b)) + corr.

K2 = − 2

(a + b)2ρ
+ exp(−ρa(a + b)) [1 + ρab

+
1

(a + b)4ρ2

(
(6 + 2ρ(a + b)(2a + b) − ρ2(a + b)2b2 + ρ3(a + b)3ab2)

−2 exp(−ρa(a + b))(3 + 4ρa(a + b) + 2ρ2a2(a + b)2)
)]

+ corr. (4.6)

where “+ corr.” stands for neglected terms suppressed by exp(−ρ(a+b)2). However we

will keep terms with factors exp(−ρ a2) and exp(−ρ a (a + b)) since for T only slightly

larger than L the value of a will be very small and these terms are then significant.

The overall action is

〈SIc〉 = − exp(−ρa2) + 2(1 + ρab) exp(−ρa(a + b))

+
4

(a + b)2ρ
+ exp(−ρa(a + b)) [1 + ρab

+
1

(a + b)4ρ2

(
(6 + 2ρ(a + b)(2a + b) − ρ2(a + b)2b2 + ρ3(a + b)3ab2)

−2 exp(−ρa(a + b))(3 + 4ρa(a + b) + 2ρ2a2(a + b)2)
)]

+ corr. . (4.7)

For T > 2L consider a division of the interval into regions 1 and 2 as shown in Fig.

6. The expected DA is the sum of the expected actions for regions 1 and 2 and the

bilocal contribution 〈S21〉.

Figure 6: Division of interval when T > 2L.

It can be shown [14] that the expected action for region 1 and the bilocal contribution

cancel (up to exponentially small terms) and the result is just given by the expected

action of region 2 which can be obtained from Eq.(4.7) by setting a = L/
√

2, b = 0

(and now neglecting all exponentials as a is no longer close to 0):

〈SIc〉 =
8

L2ρ
+ corr. . (4.8)
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Fig. 7 shows a plot of the analytic expectation value for the cylinder action compared

to simulation results. For T → L the action approaches the Minkowskian limit 1. For

T only slightly greater than L the exponential terms dominate and cause a downwards

spike. As T → 2L the non-exponential correction, 8
ρL2 (which comes from K2) dom-

inates. However this also tends to zero in the limit ρ → ∞ so 〈SIc〉 ≈ 0 as initially

predicted. Indeed it can be shown explicitly that the bilocal contributions from pairs

of intervals that do not share and edge or vertex tend to zero as ρ → ∞ and so the

formula F − E + V can be applied to intervals of the cylinder. More generally, the

previous argument regarding null tilings of causally convex regions of M2 can be given

here, and we conclude that 〈S〉 ≈ 0 for general topologically non-trivial causally convex

regions of the cylinder.

Figure 7: The expected action of a cylinder-interval for L = 1, 〈N〉 = 100 and 〈N〉 =
200 compared with simulation results.

5 The flat trousers

We investigate now a causally convex neighbourhood of the flat 1+1 trousers spacetime

in which two S1’s join to form a single S1. The trousers spacetime is a piece of M2 with

cuts and identifications as shown in Fig. 8. Although the singularity, P , at which the

topology changes is by some definitions not strictly in the spacetime since the metric

degenerates there, nevertheless the causal order is well defined at the singularity: it is

clear what the causal past and causal future of P are. Therefore we will consider P as

a point of the manifold. Note that in any sprinkling into the trousers almost surely no

element will be sprinkled at P .

Let N denote the neighbourhood of P shown as the shaded region in Fig. 8. It

consists of two flat intervals each with P as their midpoint, identified across “branch

cuts” from P to their past tips. N is topologically a disc if P is in included the manifold

and if the formula (2.10) holds then the expected DA of N would be equal to 1 in the

limit of large density.
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Figure 8: The trousers spacetime. P is the singularity – all three instances of P are
identified – and the shaded region is a neighbourhood of P . There is a vertical cut
down from the central copy of P with the two legs identified as shown.

Let the volume (area) of each of the two intervals be 4a2 and consider the null tiling

into 8 intervals, Ii, i = 1, . . . , 8, shown in Fig. 9. The interval I1 comprises the two

triangles labelled 1′ and 1′′ and the interval I2 comprises the triangles labelled 2′ and

2′′. Adopting the same notation for the bilocal discrete action of two intervals used in

(2.6) we have

〈SN 〉 =

8∑

i=1

〈SIi
〉 +

8∑

i,j=1
j<i

〈Sij〉 . (5.1)

Figure 9: Null tiling of N into 8 intervals.

For each i, 〈SIi
〉 ≈ 1. The bilocal terms are nonzero when the intervals Ii and Ij

share an edge and in that case 〈Sij〉 ≈ −1. There are 8 edges so these contributions

cancel the contributions of the 8 individual intervals. The only other nonzero bilocal

terms are 〈Sij〉 where i = 5, 8 and j = 1, 2 and their sum is the contribution of the vertex

at the singularity. These 4 terms are equal by symmetry so we have 〈SN 〉 = 4〈S51〉.
The causal interval between x ∈ I5 and y ∈ I1 is shown in Fig. 10 and we deduce

that

〈S51〉 = −2

∫ 2a

a

dux

∫ 2a

a

dvx

∫ a

0

duy

∫ a

0

dvy ρ2 p(ρVxy) . (5.2)

where

Vxy = ∆u∆v − (vx − a)(a − uy) . (5.3)
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Figure 10: The causal interval between x ∈ I5 and y ∈ I1 is depicted in grey.

This gives

〈SN 〉 = 4 ln(ρa2) + 4(γ − 1) + O

(
1

ρa2

)
(5.4)

where γ is Euler’s constant. We see that the expected DA of the neighbourhood of

the singularity does not tend to 1 or any constant but grows logarithmically with the

density.

6 Discussion

We have shown that in the limit of infinite density, the mean of the Discrete Action

will be 1 for any causally convex region of M2 including regions whose past and/or

future boundaries contain spacelike segments. Since these spacelike segments may

have nonzero geodesic curvature, the constancy of the mean of the DA suggests that

it contains no contribution from the past or future boundaries.

Indeed a handwaving argument can be given as to why this should be so, even when

M is curved. The boundary of a causally convex region U ⊂ M consists of a future

boundary and a past boundary intersecting in a co-dimension 2 spacelike surface. There

is no timelike portion of the boundary. The mean of the DA is a double integral over

U which can be done in either order. The integrand is a retarded 2-point function,

ρL(x, y) =
ρ√
−g

δ(2)(x, y) − 2ρ2 p(ρVxy)C(x, y) (6.1)

where C(x, y) = 1 if y ∈ J−(x) and 0 otherwise. Let us assume the density is high

enough that a sprinkled causal set can capture the curvature of M, i.e. at each point

y ∈ M there is a local inertial frame in which the curvature components are small

compared to the density. If we do the x integration first, at fixed y, then the resulting

function ρL(y) is approximately 1
4
R(y) unless y is too close to the future boundary. If

it is within length ρ− 1
2 of the boundary then the range of the x integration will not
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be large enough for the approximation to hold [4]. Then we do the integration over

y to get approximately the usual Einstein-Hilbert bulk term together possibly with

some contribution from the integral over the points y close to the future boundary, i.e.

possibly some kind of future boundary term. But there is no contribution from the

past boundary at all. Now reverse the order of integration: do y first and then x. Now

there appears to be no contribution from the future boundary. This can only happen

if neither boundary contributes. So the only points where some boundary contribution

can come in, is from the points which are close to both past and future boundaries

i.e. from the spacelike co-dimension 2 “corners” where the past and future boundaries

intersect. The argument holds when the past and future boundaries are partly spacelike

as well as when they are wholly null. There is no reason, from this argument, that

timelike boundaries could not contribute however and we saw evidence that they do

from the results for the rectangle.

This heuristic reasoning would have to be backed up with further evidence from

simulations of the Discrete Action but it suggests that there is no Gauss-Bonnet formula

for the 2D Discrete Action. The 2D Gauss-Bonnet Theorem can hold because, as the

geometry of the bulk surface is varied, the extrinsic curvature of the boundary changes

and the right combination of bulk and boundary terms can remain constant. In 2D the

co-dimension 2 “corner” is an S0, i.e. 2 points, and if the only boundary contributions

are from these 2 points, these couldn’t compensate for the changing bulk term. Another

reason not to expect the DA to satisfy a Gauss-Bonnet formula is that it appears that

the appropriate Lorentzian analogue of the Euclidean formula is of the form “bulk

term + boundary term + corner terms” = 2πiχ rather than 2πχ [15, 16] (see also

[17, 18]). Both the bulk and boundary terms are real but the formula can hold because

the corner contributions are Lorentzian angles which can be complex. However, the

Discrete Action is real.

This putative lack of boundary terms could explain why the expected DA for any

causally convex region of M2 is the same. The continuum bulk term is zero. If the mean

of the DA is indeed close to the continuum bulk term plus only a contribution from the

S0 corners then that should be the same for all causally convex regions. Presumably,

the difference for the neighbourhood of the singularity of the trousers comes from a

boundary effect of the non-standard causal structure around the singularity which has

a double lobed past and future. These issues all remain to be investigated.

There are a large number of open questions. What does happen in 2D curved space-

times? Will the results bear out the conjecture that the expected DA is approximately
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the Einstein-Hilbert term plus a constant from the S0 corner? What happens in higher

dimensions? There are analogues of the 2D Discrete Action in 4D [4] and 3,5,6,7D and

higher [5]. One would expect, for example, that the mean of the DA of an interval in

Md would be proportional to the volume of the Sd−2 corner.

Although one need not take any position on quantum gravity to find interest in the

Discrete Action as a random variable defined for a continuum spacetime – one need not

consider the discreteness of the causal sets that arise in the definition of the Discrete

Action to have any physical basis – its main application is likely to be in the causal set

approach to quantum gravity. So, what is the significance in quantum gravity of the

results for the interval, trousers and rectangle? For example, the result for the rectangle

suggests that the expected DA contains boundary contributions proportional to the

length of any timelike boundary. Can we use the DA to give an argument against the

appearance of “holes” and “edges” in spacetime? Or for or against topology changing

processes such as the trousers?

A major open question is how the fluctuations in the DA behave as the density gets

large: we should stress that the results reported here are all concerning the mean of

the DA. For a typical sprinkled causet, how far is the DA from the mean? Preliminary

results show the fluctuations grow as the density gets large [14], contrary to the hope

expressed in [4] and this needs to be studied further. To tame the fluctations it may be

necessary to introduce a mesoscale between the discreteness scale and the observation

scale [19, 4]. Further work is needed to illuminate these issues.
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