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Abstract The goal of this paper is to introduce a systematic approach to spin foams. We define
operator spin foams, that is foams labelled by group representations and operators, as our main
tool. A set of moves we define in the set of the operator spin foams allows (among other operations)
to split the faces and the edges of the foams. We assign to each operator spin foam a contracted
operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The
emergence of the face amplitudes is the consequence of assuming the invariance of the contracted
operator with respect to the moves. Next, we define spin foam models and consider the class of
models assumed to be symmetric with respect to the moves we have introduced, and assuming their
partition functions (state sums) are defined by the contracted operators. Briefly speaking, those
operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive
only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we
call natural operator spin foam models. This symmetry, combined with assumed invariance with
respect to the edge splitting move, determines a complete characterization of a general natural
model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin
foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly
the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the
EPRL or FK models. That makes our framework directly applicable to those models. Specifically,
our operator spin foam framework can be translated into the language of spin foams and partition
functions. Among our natural spin foam models there are the BF spin foam model, the BC model,
and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can be
also used for more general spin foam models which are not symmetric with respect to one or more
moves we consider.

PACS numbers: 04.60.Pp

I. INTRODUCTION

The successful application of the 3d BF spin foam theory to 3d quantum gravity (see [1, 2] and
references therein) produced and still produces activity in the 4d spin foam approaches to the 4d
quantum gravity[1]-[15]. After the decade of the Barrett Crane model [3], a breakthrough has come
with the new models: the Engle-Pereira-Rovelli-Livine model [4, 5] and the Freidel-Krasnov model
[6]. For the first time, the existence of a relation between the 4d spin foam theory on the one hand,
and the kinematics of the 3+1 loop quantum gravity [16–20] has become plausible. The theory
accommodates all the states of LQG labelled by graphs embedded in an underlying 3-manifold [7]
although seems not to be sensitive on linking and knotting [8].

The spin networks and spin foams featuring in the spin foam models may be thought of as just
combinatorial tools used to extract numbers. However, they also admit their own structure and
natural operations that deserve understanding. The spin networks emerge in loop quantum gravity
as invariant elements of the tensor products of representations. Consistently, the spin foams arise
as cobordisms between the spin networks, and hence should be described in terms of operators
mapping the invariants into invariants.

The goal of this paper is to introduce a systematic approach to spin foams. We define operator
spin foams, that is foams labelled by group representations and operators, as our main tool. A
set of moves we introduce in the set of the operator spin foams allows (among other operations)
to split the faces and the edges of the foams. The moves are used to introduce an equivalence
relation. The equivalence relation is used in this paper as a symmetry of the structures we define.
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We do not consider equivalent operator spin foams to be the same operator spin foam (however
such identification is possible). We assign to each operator spin foam a contracted operator, by
using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of
the face amplitudes is the consequence of assuming the invariance of the contracted operator with
respect to the moves. Next, we define spin foam models and consider the class of models assumed
to be symmetric with respect to the moves we have introduced, and assuming their partition
functions (state sums) are defined by the contracted operators. Briefly speaking, those operator
spin foam models are invariant with respect to the cellular decomposition, and are sensitive only
to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we
call natural operator spin foam models. This symmetry, combined with assumed invariance with
respect to the edge splitting move, determines a complete characterization of a general natural
model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin
foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly
the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the
EPRL or FK models. That makes our framework directly applicable to those models. Specifically,
our operator spin foam framework can be translated into the language of spin foams and partition
functions. Among our natural spin foam models there are the BF spin foam model, the BC model,
and a model corresponding to the EPRL intertwiners. The result is that of [9], rather than the
one defined in the original EPRL paper [4]. The choice of the EPRL intertwiners and the vertex
amplitude is the same in both approaches. The ambiguity is in glueing the vertices. Of course
we do not mean to insist that the proposal of [9], which also follows from the current paper, is
better than the original EPRL one. We just find a set of natural properties that lead to the former
proposal, and the bottom line is, that the latter proposal is necessarily inconsistent with one of
the conditions we spell out (this turns out to be a certain edge splitting condition).

Our operator spin foam framework can be also used for more general spin foam models which
are not symmetric with respect to one or all the moves we consider.

II. OPERATOR SPIN FOAM

A. Definition

Let κ be a locally linear, oriented 2-complex with boundary ∂κ [1, 7] and let G be a compact Lie
group. Denote by κ(0) the set of vertices (the 0-cells), by κ(1) the set of edges (1-cells) and by κ(2)

the set of faces (2-cells) of the complex κ. For simplicity of the presentation, we will be assuming
throughout this paper that every face of κ is topologically a disc.1 Every edge e ∈ κ(1) is contained
in at least one face. If e is contained in exactly one face, we call it boundary edge. Otherwise e is
an internal edge. If a vertex v ∈ κ(0) is contained in a boundary edge, we call it boundary vertex.
Otherwise v is internal. We will be denoting the set of internal edges/vertices by intκ(1) / intκ(0).

The 1-complex set by the boundary edges and boundary vertices is denoted by ∂κ and called
the boundary of κ.

An operator spin foam we define in this paper is a triple (κ, ρ, P ), where ρ and P are colorings
by representations and, respectively, operators defined below. The first one, ρ is familiar from spin
foam theories, namely

• ρ is a coloring of the faces with irreducible representations of G (fig. 1a),

ρ : κ(2) → Irr(G), (2.1)
f 7→ ρf . (2.2)

The coloring ρ can be used to assign Hilbert spaces to the faces and the edges of κ. To every face
f , there is assigned a Hilbert space Hf

f 7→ Hf (2.3)

1 That is: no point of a face is glued to another point of a same face; below we introduce an equivalence relation
which allows to split/glue faces and edges. It will be obvious how to use those moves to relax this assumption.
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on which the representation ρf acts. To every edge e there is assigned a Hilbert space He defined
by the Hilbert spaces of the faces containing e,

He =
⊗

f incoming to e

H∗
f ⊗

⊗

f ′ outgoing from e

Hf ′ (2.4)

where, a face is called incoming to (outgoing from) an edge e if its orientation agrees with (is
opposite to) that of e, and by H∗

f we denote the algebraic dual. Given a representation H of G

(irreducible), the subspace of invariant elements is denoted by InvH.
Having in mind those Hilbert spaces we introduce the operator labelling:

• P is a colouring of the internal edges with operators (fig. 1b)

intκ(1) 3 e 7→ Pe (2.5)
Pe : InvHe → InvHe. (2.6)

(a) Colouring of faces (b) Colouring of edges

FIG. 1: Operator form of Spin Foam

FIG. 2: The edge Hilbert space He

B. The moves and the equivalence relation they define

In the space of operator spin foams we consider a set of moves and an equivalence relation they
define. The moves allow to subdivide edges and faces, change their orientation, use colorings with
equivalent representations, add faces and edges. In the following paragraphs we describe that
equivalence relation in detail. The moves correspond to analogous moves in the space of the spin
networks except for the edge splitting move. Two equivalent operator spin foams are not literally
identified in this paper. The equivalence relation is used as a symmetry of the structures we will
define in this paper.

1. Edge reorientation

Given an operator spin foam (κ, ρ, P ), let us switch the orientation of its edge e1,

e′1 = e−1
1 , (2.7)
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FIG. 3: Invariance under the face subdivision

and leave all the other orientations unchanged. Denote the resulting 2-complex by κ′. To define
an operator spin foam (κ′, ρ′, P ′) which is equivalent to (κ, ρ, P ), suppose first that the edge e1 is
internal and

• leave the labelling ρ, namely

ρ′ = ρ. (2.8)

Now, ρ′ determines the Hilbert space He′
1

to be

He′
1

= H∗
e1

(2.9)

where the algebraic dualization ∗ is applied to each factor on in the right hand side of (2.4). The
natural choice for P ′

e′
1

is

• for the reoriented edge e′1 = e1
−1,

P ′
e′
1

= P ∗
e1

, (2.10)

• whereas for the remaining edges of κ′ we leave

P ′
e = Pe. (2.11)

The operator spin foams (κ, ρ, P ) and (κ′, ρ, P ′) are equivalent,

(κ, ρ, P ) ≡ (κ′, ρ, P ′). (2.12)

The remaining case when the reoriented edge e1 is boundary is yet simpler: both labellings ρ and P
are defined on the faces/edges unaffected by the reorientation of e1; we just leave them unchanged,
that is we set ρ′ = ρ and P ′ = P .

2. Face reorientation

Given an operator spin foam (κ, ρ, P ), let us switch the orientation of its face f1 and denote
the reoriented face f ′

1. Denote the resulting 2-complex by κ′. To define an operator spin foam
(κ′, ρ′, P ′) equivalent to (κ, ρ, P ), we modify the labelling ρ in the following way:

• for the reoriented face f ′
1 we take the dual representation,

ρ′f ′
1

= ρ∗f1
, (2.13)

• for the remaining faces, the labelling ρ′ coincides with ρ,

ρ′f = ρf , for f 6= f ′
1. (2.14)
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FIG. 4: Invariance under the face subdivision

At each edge e, the labelling ρ′ defines the same Hilbert space He as ρ in (κ, ρ, P ). Therefore, the
following definition of P ′ is possible,

• For labelling P ′ the choice is

P ′ = P. (2.15)

Again, we will consider (κ′, ρ′, P ) and (κ, ρ, P ) equivalent,

(κ, ρ, P ) ≡ (κ′, ρ′, P ). (2.16)

3. Face splitting

FIG. 5: Invariance under face subdivision

Consider an operator spin foam (κ, ρ, P ). Split one of its faces, f0 say, into f ′
1 and f ′

2 such
that a resulting new edge e′0 (oriented arbitrarily) contained in f ′

1 and in f ′
2 connects two vertices

belonging to κ(0). Choose an orientation of the new faces to be the one induced by f0. The
resulting new 2-cell complex κ′ is obtained by replacing the face f0 by the pair of faces f ′

1 and f ′
2

and by adding the edge e′0. Define a labelling ρ′ on κ′ in the following way

• ρ′ coincides with ρ on the unsplitted faces,

ρ′f ′ = ρf ′ , if f ′ 6= f ′
1, f

′
2 (2.17)
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• and ρ′ agrees with ρ on the faces f ′
1, f

′
2 resulting from the splitting

ρ′f ′ = ρf0 , if f ′ = f ′
1, f

′
2 (2.18)

For the edge e′0, the corresponding Hilbert space is one dimensional by Schur’s Lemma,

He′
0

= Inv
(
Hf0 ⊗H∗

f0

)
≡ C. (2.19)

Define a labelling P ′ of the edges of κ′

• to be the identity on the new edge e′0 resulting from the splitting,

P ′
e′ = id, if e′ = e′0 (2.20)

• and to coincide with P on the old edges

P ′
e′ = Pe′ , if e′ 6= e′0 . (2.21)

The resulting operator spin foam is equivalent to (κ, ρ, P ),

(κ, ρ, P ) ≡ (κ′, ρ′, P ′). (2.22)

4. Edge splitting

FIG. 6: Invariance under the edge subdivision

In an operator spin foam (κ, ρ, P ) split an edge e0 into e′1 and e′2

e0 = e′2 ◦ e′1 (2.23)

whose orientations are induced by e0. Denote the resulting 2-complex by κ′. An operator spin
foam (κ′, ρ′.P ′) defined on κ′ is equivalent to (κ, ρ, P ),

(κ, ρ, P ) ≡ (κ′, ρ′, P ′) , (2.24)

whenever the following conditions are satisfied by ρ′ and P ′:

• ρ is unchanged,

ρ′ = ρ, (2.25)

• P ′ coincides with P on the edges e′ 6= e′1, e
′
2,

• P ′
e′
1

and P ′
e′
2

satisfy the following constraint

P ′
e′
2
◦ P ′

e′1 = Pe0 , (2.26)

provided the edge e0 is internal.
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5. Rescaling of the operators

Every operator spin foam (κ, ρ, P ) is equivalent to any operator spin foam (κ, ρ, P ′) defined by
rescaling, for every internal edge e,

P ′
e = aePe, ae ∈ C, (2.27)

such that
∏

e

ae = 1. (2.28)

6. Face relabelling with equivalent representations

Consider an operator spin foam (κ, ρ, P ) and (κ, ρ′, P ′), where

• ρf = ρ′f for all but one face f = f0, and for f0, there exists an isomorphism I : Hf0 → H′
f0

which intertwines the representations, namely I ◦ ρf0 = ρ′f0
◦ I;

• Pe = P ′
e for every edge e not contained in the face f0;

P ′
e = id ⊗ . . . ⊗ I ⊗ id ⊗ . . . ⊗ id ◦ Pe ◦ id ⊗ . . . ⊗ I−1 ⊗ id ⊗ . . . ⊗ id, (2.29)

if the face f0 is outgoing from the edge e;

P ′
e = id ⊗ . . . ⊗ I∗−1 ⊗ id ⊗ . . . ⊗ id ◦ Pe ◦ id ⊗ . . . ⊗ I∗ ⊗ id ⊗ . . . ⊗ id, (2.30)

if the face f0 is incoming to the edge e.

The two spin foams are equivalent:

(κ, ρ, P ) ≡ (κ, ρ′, P ′). (2.31)

7. Adding a face labelled by the trivial representation

Our definition of the operator spin foams does not exclude the trivial representation from the
set of labels assigned to the faces. Every spin foam (κ, ρ, P ) will be considered equivalent to a spin
foam (κ′, ρ′, P ′) obtained by adding a face f ′

1 and labelling it by the trivial representation ρ0, that
is:

ρ′(f ′) =

{
ρ(f ′), if f ′ ∈ κ(2)

ρ0, if f ′ = f ′
1

(2.32)

provided, every edge of κ the face f ′
1 is glued to, is either internal, or a boundary edge of a face

labelled by the trivial representation ρ0. For every internal edge e′ of κ′, either: (i) it is also
internal edge of κ, the corresponding Hilbert spaces He coincide, and P ′ is defined to be,

P ′ = P, (2.33)

or (ii) P ′
e′ = 1 : C → C.

Note that condition II B3 and II B 4 relate colourings on different cellular decompositions of
foams of the same topology and are analogous to one and two-dimensional Pachner moves. In fact
if the 2-complex is finitely triangulable they exactly generate the Pachner moves, i.e. the move II B 4
generates the 1 → 2 (and 2 → 1) Pachner move, the move II B3 generates the 1 → 3 (and 3 → 1)
and 2 → 2 Pachner moves. Thus all decompositions of foams with the same topology are related
by finitely many such moves. By Schur’s Lemma all operator spin foams with non-isomorphic
representations around a bivalent edge do not poses a non-trivial labeling.
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FIG. 7: Glueing of the operator spin foams

C. Glueing the operator spin foams

In the space of the 2-complexes considered in this paper there is the obvious operation of glueing.
It admits a natural extension to an operation of glueing the operator spin foams, which, for the sake
of completeness, we describe in the following. Two oriented, locally linear 2-cell complexes κ and
κ′ can be glued along a connected component γ of the boundary ∂κ and a connected component
γ′ of ∂κ, provided γ and γ′ are isomorphic closed 1-cell complexes (unoriented graphs), and the
orientations of the glued faces and, respectively, their sites match. If φ : γ → γ′ is an isomorphism,
then the glueing amounts to glueing along each link e of γ: a face fe of κ containing e is glued with
the face f ′

φ(e) of κ′ containing the link φ(e) of γ′. In what follows we will assume that the map

γ 3 e 7→ fe, γ′ 3 e′ 7→ f ′
e′ (2.34)

is 1-1 (each e has its own fe). This can be always achieved by dividing the faces and edges.
The resulting face fe#f ′

φ(e) can be oriented either according to the orientation of fe or according
to the orientation of f ′

φ(e); coinciding of the two orientations is the matching relation we have
mentioned above. A similar matching condition applies to the oriented sides of the faces fe and
f ′

φ(e). Repeating that glueing for every link e of γ, we complete the glueing of κ and κ′ along γ.
The result can be denoted by κ#κ′ and it depends on the graphs γ, γ′ and the isomorphism φ.
If the 2-complexes above were endowed with the structures of the operator spin foams (κ, ρ, P ),
and respectively, (κ′, ρ′, P ′), the operator spin foams can be glued into an operator spin foam
(κ#κ′, ρ#ρ′, P#P ′) provided the representations agree on the boundary, and the glueing condition
is

ρ′f ′
φ(e)

= ρfe (2.35)

for every pair e and φ(e) of the identified edges.

• For every of the boundary edges e, due to the glueing condition we can set

(ρ#ρ′)fe#f ′
φ(e)

= ρfe = ρ′φ(e). (2.36)

• For the remaining faces we use either ρ or, respectively, ρ′

(ρ#ρ′)f ′′ =

{
ρf ′′ , if f ′′ ∈ κ(2),

ρ′f ′′ if f ′′ ∈ κ′(2),
. (2.37)



9

For the operator part P#P ′, the glueing consists in

• taking the composition of the operators for every pair (ẽ, ẽ′) of sides of the faces fe, and
respectively, f ′

φ(e) that are glued into a side of the face fe#f ′
φ(e), that is either

(P#P ′)ẽ◦ẽ′ = Pẽ ◦ Pẽ′ (2.38)

or

(P#P ′)ẽ′◦ẽ = Pẽ′ ◦ Pẽ (2.39)

depending on the orientations.

• For each of the remaining edges of κ#κ′ we leave the corresponding operator of either κ or
κ′,

(P#P ′)e′′ =

{
Pe′′ , if e′′ ∈ intκ
P ′

e′′ , if e′′ ∈ intκ′.
(2.40)

III. SPIN FOAM OPERATOR

A. 2-edge contraction

Wherever two internal edges of a spin foam (κ, ρ, P ) meet, the geometry of a spin foam defines
a natural contraction between the corresponding operators. The easiest way to introduce it is to
use the (abstract) index notation. It is as follows: given

w ∈ Inv


 ⊗

f incoming to e

H∗
f ⊗

⊗

f ′ outgoing from e

Hf ′


 (3.1)

we denote it in the index notation as

w = wA...
A′... (3.2)

where the lower/upper indices correspond to the spaces H∗
f / Hf ′ . The action of the operator Pe

reads

(Pew)A...
A′... = Pe

A′...B...
A...B′...wB...

B′.... (3.3)

Moreover, the vector wA...
A′... is associated to the beginning of the given edge e, whereas the vector

(Pew)A...
A′... lives at the end of e. In this sense, the indices B, B′ of Pe

A′...B...
A...B′... are associated with

the beginning point of e, whereas the indices A, A′ of Pe
A′...B...
A...B′... with the end point of e. Therefore,

for every edge e and for each face f containing e, there are two indices in the operator Pe: upper
one and lower one. They correspond to the Hilbert space Hf . The indices are associated with the
ends of the edge e according to the rule introduced above and presented in FIG. 8.
Now, for every pair of edges e and e′ which belong to the same face f and share a vertex v, if the
index of Pe corresponding to f and v is upper / lower, then the index of Pe′ corresponding to f
and v is lower / upper, respectively. In this way, there is defined the natural contraction Trv,f at
v (FIG. 9).

B. Contracted operator spin foam

The contraction at the vertices of the complex defines the contracted operator spin foam:

Tr(κ, ρ, P ) :=
∏

v,f

Trv,f


 ⊗

e∈Intκ(1)

Pe


 (3.4)
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FIG. 8: The rule of assigning an index of Pe to a corner v of a face f : given an edge e contained
in a face f of an operator spin foam (κ, ρ, P ), in the operator Pe, the indices corresponding to the
Hilbert space Hf of the representation ρf are assigned to the end points of e such that the lower
/ upper index is assigned to the point that is the beginning / end point of e if the orientation of e
is the same as that of f , and to the end / beginning point of e if the orientation of e is opposite.

The oriented arc only marks the orientation of the polygonal face f .

FIG. 9: 2-edge contraction of indices: The edges e and e′ are connected by the face f . Marked
indices A of Pe and, respectively Pe′ correspond to the Hilbert space Hf and get contracted by

Trv,f .

Given an edge e, one of its ends v and a face f containing e, the corresponding index in Pe is
contracted, provided there is another internal (that is contained in at least two different faces)
edge e′ contained in f and intersecting the point v. Otherwise, the index stays uncontracted. As a
consequence, the contracted operator Tr(κ, ρ, P ) is indeed an operator. Identifying each operator
Pe : He → He with an element of He ⊗H∗

e , the contracted spin foam Tr(κ, ρ, P ) is identified with
an element of the Hilbert space

H∂κ =
⊗

e incoming to ∂κ

He ⊗
⊗

e′ outgoing from ∂κ

H∗
e′ . (3.5)

C. Spin foam operator

1. Contraction and the equivalence moves

Any splitting H∂κ = Hfin⊗H∗
in makes the contracted operator spin foam Tr(κ, ρ, P ) an operator

Hin → Hfin.
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The expression (3.4) is not invariant with respect to the equivalence moves introduced in the pre-
vious subsection. Given an operator spin foam (κ, ρ, P ) suppose an operator spin foam (κ′, ρ′, P ′)
is obtained from (κ, ρ, P ) by one of the equivalence moves except for the face splitting move. Then

Tr(κ′, ρ′, P ′) = Tr(κ, ρ, P ). (3.6)

However, if an operator spin foam (κ′, ρ′, P ′) is obtained by splitting a face f0 of (κ, ρ, P ) and
defining ρ′ and P ′ as in Section II B3, then this move is not a symmetry of the trace. In that case,
the Hilbert space

Inv
(
Hf ′

1
⊗H∗

f ′
2

)
= Inv

(
Hf0 ⊗H∗

f0

)

is spanned by the element, in the index notation, δa
b , and the operator P ′

e′
0

= id reads

P ′
e′
0

ab′

a′b =
1

df0

δa
b δb′

a′ . (3.7)

It is easy to verify that

Tr(κ′, ρ′, P ) =
1

df0

Tr(κ, ρ, P ) (3.8)

where

df0 = dimHf0 . (3.9)

That shows that indeed, the move is not a symmetry.

2. Face amplitude restores the equivalence

Introducing suitable face amplitude makes the contraction Tr of operator spin foam exactly
invariant with respect to all the moves. Consider a spin foam operator defined by a formula (tilde
will be removed when we establish the final form of the operator)

Z̃(κ,ρ,P ) =


 ∏

f∈κ(1)

Af


Tr(κ, ρ, P ) (3.10)

where

f 7→ Af

is an unknown function, a face amplitude. Then, a unique solution for f 7→ Af such that for every
operator spin foam (κ, ρ, P ) and every equivalent operator spin foam (κ′, ρ′, P ′)

Z̃(κ,ρ,P ) = Z̃(κ′,ρ′,P ′), (3.11)

is

Af = dimHf . (3.12)

3. Boundary amplitude restores the compatibility with the glueing

The introduction of the face amplitude destroys the compatibility with the glueing of the oper-
ator spin foams. Consider two operator spin foams (κ, ρ, P ) and (κ′, ρ′, P ′), and their composition
(κ, ρ, P )#(κ′, ρ′, P ′) glued along a graph γ. The operator spin foam contraction induces the con-
traction of the operators Z̃(κ, ρ, P ) and Z̃(κ′, ρ′, P ′), let us denote it by Trγ . The result is

Trγ

(
Z̃(κ, ρ, P ) ⊗ Z̃(κ′, ρ′, P ′)

)
=
∏

e∈γ

A(fe)Z̃(κ#κ′, ρ#ρ′, P#P ′). (3.13)
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To restore the compatibility of Z̃ with glueing the operator spin foams we finally define the spin
foam operator to be

Z(κ, ρ, P ) :=
∏

e∈(∂κ)(1)

1√
Afe

Z̃(κ, ρ, P ), (3.14)

where fe is the face of κ containing e (and we are assuming that e 6= e′ ⇒ fe 6= fe′ that can be
always achieved by splitting faces and edges.). Now we have

Trγ (Z(κ, ρ, P ) ⊗Z(κ′, ρ′, P ′)) = Z(κ#κ′, ρ#ρ′, P#P ′). (3.15)

D. Relation with the spin foams and state sums

1. The spin foams

The operator spin foam formalism seem to differ from the usual formulation of spin foam ampli-
tudes, in that there are projection operators assigned to edges instead of intertwiners. However,
the projection operators Pe can be interpreted as the result of spin foam amplitudes where the sum
over the intertwiners has already been carried out, i.e. we decompose each Pe,

Pe =
∑

ιe∈Be

∑

ι′e∈B†
e′

P
ι′e
ιe ιe ⊗ ι′e (3.16)

in any basis,

Be ⊂ He, (3.17)

and the conjugate basis

B†
e = {ι†e : ιe ∈ Be} ⊂ H∗

e , (3.18)

where H 3 v 7→ v† ∈ H∗ is the canonical antilinear map (denoted by |v〉 7→ 〈v| in the Dirac
notation).

After the substitution of the right hand side of (3.16) for Pe, the tensor product
⊗

e Pe becomes
a linear combination of the tensor products

⊗

e

ιe ⊗ ι′e, (3.19)

in which to each internal edge e there is assigned a (tensor product of a) pair of the intertwiners
ιe ⊗ ι′e, where ιe ∈ Be and ι′e ∈ B†

e are independent of each other. In fact, from the point of view
of the contractions we use, ι′e is assigned to the beginning point of e whereas ιe is assigned to the
end point of e. That is the generalised case of a spin foam that was derived in [9].

2. The vertex amplitude

Given a vertex v, the application of the constructions Trvf (see Section III A) for all the faces f
which intersect v, namely

∏

f : f3v

Trvf

(⊗

e

ιe ⊗ ι′e

)
, (3.20)

produces a C number factor

Av =
∏

f : f3v

Trvf


 ⊗

e incoming

ιe ⊗
⊗

e′ outgoing

ι′e′


 , (3.21)

where e/e′ ranges the set of edges that end/begin at v and each f connects a pair of the edges
(either two unprimed, or two primed, or one primed and one unprimed). The factor Av is known
in the spin foam literature as the vertex amplitude.
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3. The state sums

FIG. 10: The operator approach is equivalent to approach in which we assign an irreducible
representations of group G to each face of the 2-complex and a pair of intertwiners ιe,ι′e together

with the complex number P
ι′e
ιe to each internal edge.

Finally, the substitution of the right hand side of (3.16) into the spin foam operator Z(κ, ρ, P )
definition (3.4,3.10,3.12,III) gives the following sum with respect to all the labellings of the internal
edges e ∈ intκ,

ι : e 7→ ιe ⊗ ι′e ∈ Be ⊗ B†
e, (3.22)

namely

Z(κ, ρ, P ) =
∑

ι

∏

e

P
ι′e
ιe

∏

f

df

∏

v

Av

∏

l̃

1√
dfl̃

⊗

ẽ

ιẽ ⊗
⊗

ẽ′

ι′ẽ′ (3.23)

where f runs through the set of faces and df is the dimension of ρf , v ranges the set of the
internal vertices, l ranges the set of the boundary edges (links) and fl is the face containing l, and
ẽ/ẽ′ ranges the set of edges which intersect ∂κ at the end/beginning point. Finally, the familiar
partition function emerges from (3.23) after summing with respect to the labellings ι which induce
a same labelling ∂ι of the nodes of the boundary graph. The result reads

Z(κ, ρ, P ) =
∑

∂ι

Z(κ, ρ, ∂ι)
⊗

ẽ

ιẽ ⊗
⊗

ẽ′

ι′ẽ′ , (3.24)

IV. OPERATOR SPIN FOAM MODELS

A. Definition, natural models

1. Definition

A G operator spin foam model, where G is a compact group, can be defined as an assignment
of an operator spin foam (κ, ρ, P ) to each locally linear 2-complex κ endowed with a labelling ρ of
the faces of κ with the irreducible representations of G (see Sec II A),

(κ, ρ) 7→ (κ, ρ, P ). (4.1)

We will be assuming throughout this paper, that all the equivalence moves of Sec II B are sym-
metries of the models we consider. That is, given an assignment (4.1), whenever (κ, ρ, P ) emerges
in (4.1) then so does any (κ′, ρ′, P ′) that can be obtained from (κ, ρ, P ) by the equivalence moves.
We will be also assuming that for every model, an operator defined by its partition function (state
sum) assigned to (κ, ρ) is the spin foam operator Z(κ, ρ, P ) constructed in Sec. III.
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2. Natural operator spin foam models

We will consider below a class of natural operator spin foam models, that is models such that,
briefly speaking,

• the assignment e 7→ Pe depends only on the unordered sequence of labels ρf such that e ⊂ f

and is independent of the other parts of a given 2-complex κ – see below for a technical definition.
We will be also assuming that the assignment P is self-adjoint, that is

• for every internal edge e ∈ intκ(1)

P †
e = Pe, (4.2)

(of course, Pe is defined only for the internal edges).
Technically, the first assumption means, that for every unordered sequence R of irreducible

representations of the group G, we fix an operator

PR : Inv
⊗

ρ∈R

Hρ → Inv
⊗

ρ∈R

Hρ. (4.3)

Next, given any (κ, ρ) on the left hand side of (4.1), we can use the equivalence relation to reorient
the faces f containing e, such that their orientations agree with that of e, and therefore an operator
Pe should be a map

Pe :
⊗

f⊃e

Hf →
⊗

f⊃e

Hf . (4.4)

Finally set

Pe = PRe (4.5)

where Re is the unordered sequence of the representations ρf , such that f ranges the set of faces
containing e.

3. A general solution for the conditions defining natural models

It is not hard to see, that the set of conditions defining the class of the natural operator spin
foam models has a general solution. First, the assumed symmetry with respect to the face splitting
move of Sec II B 3 implies that

PR = id (4.6)

for every unordered sequence R given by the pair of elements ρ and ρ∗. Secondly, the consequence
of the symmetry with respect to the edge splitting move of Sec II B 4 is, that for every unordered
sequence R of irreducible representations, the operator PR (4.3) satisfies

PRPR = PR. (4.7)

Hence, each operator Pe is an orthogonal projection onto a subspace

Hs
R ⊂ HR. (4.8)

The subspaces Hs
R are subject to the isomorphisms following from (2.29),(2.30). They give rise to

subspaces Hs
e assigned to the internal edges e of the 2-complexes
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B. Examples

In the following, we will show how different choices of the operator labelling P , defining different
operator spin foam models, reproduce different state-sum models. All the examples we discuss
below, fall into the class of the natural operator spin foam models. Hence, by construction, each
operator (2.5) is a projection. The freedom consists in fixing a subspace (4.8),

Hs
R ⊂ HR = Inv

⊗

ρ∈R

Hρ (4.9)

for every unordered sequence R of the equivalence classes of irreducible representations of G (see
the conditions (2.29),(2.30)).

1. Surjective P : BF theory

The easiest nontrivial choice is, of course, choosing Pe to be the identity, for every edge e,

Pe = id : He → He, (4.10)

that is, the fixed Hilbert subspace for each unordered sequence R of the irreducible representations
is the full Hilbert space of invariants,

Hs
R = HR. (4.11)

Within this model, consider all the possible operator spin foams (κ, ρ, P ) defined on a fixed
2-complex κ without boundary. Notice, that in the boundary free case, the operator spin foam
operator Z(κ, ρ, P ) of (Sec. III) is a C-number. It was shown in [21] that in this case2 for any set
of square-integrable functions

{Sf : G → C : f ∈ κ(2)} (4.12)

one has that

∫

GE

(∏

e

dhe

)∏

f

Sf (gf ) =
∑

ρ


∏

f

Ŝf (ρf )


Z(κ, ρ, P ) (4.13)

where e ranges through the set of edges κ(1), E = |κ(1)|, f runs through the set of faces κ(2),

gf :=
−−→∏

e∈∂f

he (4.14)

is the holonomy around a face f , and

Ŝf (ρ) =
1

dim ρ

∫

G

dg Sf (g)χρ(g) (4.15)

is the Fourier coefficient of Sf as provided by the Peter-Weyl theorem. In the formal limit of all Sf

approaching the delta function on G, one has Ŝf ≡ 1, and the right hand side of (4.13) approaches
the (unregularized) discretized BF-theory amplitude, e.g. when G = SU(2) and κ is dual to a
triangulation of a 3D manifold one obtains the Ponzano-Regge amplitude. One therefore recovers
BF theory as the most basic example for the spin foam operator formalism.

2 Strictly speaking, [21] only considered the two-complex of a hypercubical lattice – however, the results can easily
be generalized to the case of arbitrary two-complexes.
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It should be noted that, due to (4.13), there are two dual ways of viewing the spin foam operator
(which, in the case of a two-complex without boundary is just a C-number) as the vacuum-to-
vacuum amplitude of a path integral for discretized BF-theory3. One of them focuses on the
assignment of different amplitudes to the cells in κ and summation over all assigned representations
{ρf} (as well as over an orthonormal basis in the decomposition (3.16) of the Pe). This is close to
the state-sum language, and is the usual way in which spin foam models are written down. The
dual (in the sense of Fourier transform) way of describing the amplitude is given by the left hand
side of (4.13), and can be interpreted as path integral for a lattice theory, with some gauge-invariant
action functional determined by the Sf [25, 27, 28], depending on finitely many holonomies. In
this formulation there is a direct connection to an action functional which is determined by the
Sf . The fact that different actions lead to different face amplitudes Ŝf have been used to define
generalizations to BF theory [23].

The step to (four-dimensional) gravity is usually obtained by changing Pe to be a projector on a
smaller subspace of Inv(H∗

ρf
⊗ . . .⊗Hρf′ ), being interpreted as the solution space of (a discretiza-

tion of) the simplicity constraint, which turns topological BF theory into general relativity. The
correct choice for this subspace, motivated by correct semiclassical limit of the theory, has been
the subject of extensive research, leading to the different generalizations of BF theory: Barrett-
Crane model, Engle-Pereira-Rovelli-Livine model (whose limiting case is Barrett-Crane model)
and Freidel-Krasnov model [3–6]. The holonomy representation similar to (4.13) exists for Barrett-
Crane model [26] and it has been recently defined also for the EPRL model [29]. 4. It should be
noted, however, that for all current quantizations of the discretized simplicity constraint it is still
an open question whether the degrees of freedom of general relativity are captured in the correct
manner, and doubts have been spelled out both from the geometrical point of view [30], as well as
with respect to the question whether diffeomorphism symmetry is implemented correctly [31].

All interpretational issues aside, in the following we will give two further examples of (Eu-
clidean) spin foam models which correspond to operators Pe with non-surjective Pe, namely the
Barret-Crane model and the EPRL model (we will also comment on the possible extensions to the
Lorentzian case).

2. Rank-one-Pe: The Barrett-Crane model

The next model on the list of easy nontrivial examples is the case when for every edge e of each
operator spin foam (κ, ρ, P ) of a model, the rank of the projection operator Pe is either 0 or 1. In
fact, an example of a model of this type has been introduced by Barrett-Crane. In terms of our
framework it is a G = Spin(4) ∼ SU(2) × SU(2) operator spin foam model. The representations
associated to the faces of (κ, ρ, P ) are therefore

ρf = (ρj+
f
, ρj−f

),

where j±f are half-integers labelling the SU(2) representations, which – in the picture of Euclidean
4D gravity – constitute the self-dual and anti-self-dual part of the Spin(4)-connection. The pro-
jector Pe assigned to each edge e is zero,

Pe = 0, (4.16)

unless every representation associated to a face f hinging on the edge e is balanced, i.e. satisfies

j+
f = j−f ≡ jf .

In the latter case, there is defined a unique element ιBC ∈ He, called the ”Barrett-Crane-
intertwiner”, and Pe is set to be

Pe = ιeBC ⊗ ι†eBC . (4.17)

3 More generally, when κ has a boundary, the spin foam amplitudes are give by the matrix entries of the spin foam
operator, describing the transition amplitudes between different in- and out-states.

4 Though in the latter case G = SU(2) × SU(2), in [29] the properties of the EPRL amplitude are used to write
the left hand side of (4.13) as integrals over only one copy of SU(2), in order to make the connection to the loop
quantum gravity Hilbert space more apparent.
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In the balanced case (below InvSU(2) . . . stands for the subspace of the SU(2) invariants; the
subscript appears because we are dealing also with the Spin(4) group),

He = InvSU(2)


⊗

f :e⊂f

Hjf


 ⊗ InvSU(2)


⊗

f :e⊂f

Hjf


 (4.18)

where Hjf
is the carrier Hilbert space of the corresponding SU(2) representation. The Barrett-

Crane intertwiner is the bilinear form defined in the Hilbert space InvSU(2)

(⊗
f :e⊂f Hjf

)∗
by the

restriction of the canonical invariant bilinear form defined in
⊗

f :e⊂f H∗
jf

.
It can be constructed as follows: denote by εj ∈ Hj ⊗ Hj the unique up to rescaling SU(2)

invariant. Furthermore, denote by

π :
⊗

f :e⊂f

Hf → He

the orthogonal projector. The Barrett-Crane intertwiner is then given by

ιBC = c π(
⊗

f :e∈f

εjf
) (4.19)

where c is a constant chosen such that ιBC is normalised.
In a slightly different language the edge and face splitting condition in the case of the Barrett-

Crane model was also discussed in [24].

3. Lessons from the previous two examples

The previous two examples give us an interpretation of the natural operator spin foam models.
Each natural G operator spin foam model can be thought of as the G BF theory with constraints.
Given an operator spin foam (κ, ρ, P ) of a given model, elements of the Hilbert subspaces Hs

e

(4.8) assigned to the edges are quantum solutions to the constraints. In the case of the Barrett-
Crane model, the constraint is intertwining the operators defined in

⊗
f Hj+

f
, and, respectively,

in
⊗

f Hj−f
, and the Barrett-Crane solution is the identity map, provided the representations are

balanced.

4. The natural operator spin foam model for the EPRL intertwiners

The EPRL model [4] was developed to overcome some of the difficulties one was encountering
with the attempt to interpret the Barrett-Crane model as a state-sum model for 4D Euclidean
gravity. The fact that the operator labelling for the Barrett-Crane model assigns to the edges of
the foams (at most) rank one operators lead to the argument that the theory does not capture
enough degrees of freedom (and in particular is not compatible with an LQG boundary Hilbert
space) [11].

In the Euclidean EPRL model, again G = SU(2) × SU(2).5 Similarly, the projector Pe, for
every edge e of an operator spin foam (κ, ρ, P ), is defined by specifying its image, that is the
corresponding subspace Hs

R of (4.8). The Euclidean EPRL model relies on the so-called ”Barbero-
Immirzi parameter” γ, which needs to be a rational number γ 6= 0,±1. The EPRL model subspace
Hs

e denoted here by Hs,EPRL
e is nonempty only if, for every face, there is a half-integer kf such that

j±f =
1
2
|1 ± γ|kf (4.20)

5 There is – as well as for the Barrett-Crane model – a Lorentzian version available [22, 34], which uses different
symmetry groups, but which are not discussed in this article.
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are also half-integers. The elements of this space Hs,EPRL
e are called ”EPRL intertwiners”. In [4]

the EPRL map

ιEPRL
γ : InvSU(2) (ρk1 ⊗ . . . ⊗ ρkn) −→ Inv

(
ρ(j+

1 ,j−1 ) ⊗ . . . ⊗ ρ(j+
n ,j−n )

)
(4.21)

is defined for any unordered sequences of admissible half integers

R̃ = (k1, ..., kn), R = ((j−1 , j+
1 ), ..., (j−n , j+

n ))

which maps SU(2)-intertwiners η to EPRL intertwiners ιEPRL
γ (η). The space Hs,EPRL

R of the EPRL
intertwiners is therefore the image of the map ιEPRL

γ , which can be shown to be one-to-one [7], but
not an isometry, i.e. it does not preserve the Hilbert space inner product [9]. Using this map, one
maps a (typically orthonormal) basis

B̃ ⊂ InvSU(2) (ρk1 ⊗ . . . ⊗ ρkn)

into a basis

BEPRL ⊂ Hs,EPRL
R

(typically not orthonormal). In this way, for every edge e, the corresponding subspace Hs,EPRL
e ⊂

He is equipped with a basis BEPRL
e ⊂ Hs,EPRL

e , elements of which are ιEPRL
e (ηe), where ηe ranges

through a basis B̃e of the corresponding space (via (4.20)) HSU(2)
e of the SU(2) intertwiners. We

can expand the operator Pe in the basis BEPRL
e :

Pe =
∑

ηe,η′
e

P ηe

η′
e
ιEPRL
γ (ηe) ⊗

(
ιEPRL
γ (η′

e)
)†

, (4.22)

where the coefficients P ηe

η′
e

are defined by the Hilbert product (·|·)e in He, namely
∑

η′
e

P ηe

η′
e

(
ιEPRL
γ (η′

e)|ιEPRL
γ (η′′

e )
)
e

= δηe

η′′
e

. (4.23)

As a result, given an operator spin foam (κ, ρ, P ), instead of assigning an operator Pe to each

FIG. 11: Two SU(2) intertwiners ηe, η
′
e are assigned to the end and, respectively, the beginning
point of each edge e

edge e, one considers a set of assignments η of two SU(2) intertwiners ηe, η
′
e ∈ HSU(2)

e , to the end
and, respectively, the beginning point of each edge e (FIG. 11). Following the derivation of the
amplitude form of the partition function done in [9] we obtain for the case of a oriented 2-complex
with boundary:

Z(κ, ρ, P ) =
∑

η

∏

e

P ηe

η′
e

∏

f

(2j+
f + 1)(2j−f + 1)

∏

v

Av

∏

l̃

1√
(2j+

fl̃
+ 1)(2j−fl̃

+ 1)

⊗

ẽ

ιEPRL
γ (ηe) ⊗

⊗

ẽ′

(
ιEPRL
γ (η′

e′)
)† (4.24)

where f runs through the set of faces, v ranges the set of the internal vertices, l ranges the set of
the boundary edges (links) and fl is the (unique) face containing l, and ẽ/ẽ′ ranges the set of edges
which intersect ∂κ at the end/beginning point, and Av is the vertex amplitude (3.21).
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Note that the P ηe

η′
e

matrix is not appearing in the original definition of the EPRL state sum in
[4]. It has to be included if Pe is supposed to be an orthogonal projection, since the EPRL map
ιEPRL
γ is not an isometry. The P ηeη(w,e) can be interpreted as measure factor appearing when

summing over intertwiners. If the P ηe

η′
e

factors are not included in the partition function, then
the EPRL-intertwiners are summed over with a different measure, and lead to Pe not being an
orthogonal projection – in particular, the operator Z(κ, ρ, P ) is no longer invariant under trivially
subdividing an edge.

The case of Lorentzian EPRL model is more subtle and complicated. It deserves further inves-
tigation. Let us mention here only important difficulties one encounters trying to translate our
formalism into SL(2, C) case:

• First of all, SL(2, C) invariants are not anymore normalisable vectors in the tensor product of
irreducible representations. Procedures like Group Averaging are necessary to define Hilbert
space structure on the space of invariants.

• Contractions of the invariants in vertices need additional regularisation. Such a regularisation
is well defined for 3-edge connected vertices [10]. However, separate treatment is needed for
vertices that are not 3-edge connected.

• Having Hilbert space structure and the EPRL map, we can check whether this map is injective
or unitary. It is plausible that as in the case of EPRL SO(4) case injectivity holds but
unitarity fails. Then we can use SU(2) invariants to parametrize SL(2, C) ones.

• The problem with non-3-edge-connected vertices leads to an ambiguity in the face splitting
moves due to the fact that these vertices necessary appear in such a move; however, edge
splitting move still leads to the conclusion of projectivity of the edge operator.

C. Further examples

1. Natural models for monoidal categories

Instead of considering operators and vector spaces one can more generally consider morphisms
in a monoidal category. The models defined by Oeckl in [23] are then the most natural spin foam
models. For the case of symmetric monoidal categories Oeckl defines these models by considering
cables and wires that correspond to edges and faces of our foam. The cable or edges carry mor-
phisms, the wires carry labels and determine the combinatorics of contraction, just as the faces
do in our discussion. For semi-simple symmetric monoidal categories Oeckl defines an operator T 6

depending only on an unordered set of objects. In the case of the category of representations of a
group G the operator T defined by Oeckl coincides with the projection on the invariant subspace
of the tensor product of representations that we considered for BF theory. Oeckl generalises this
not by changing the operator T , as in the EPRL model, but by changing the face amplitudes.

It should also be noted that our edge and face splitting conditions are special cases of the fusion
moves of Oeckl.

2. Simplicial group field theory

Group field theories generate spin foam amplitudes in their Feynman expansion. If the GFT
is simplicial in the sense of [32] it’s expansion naturally leads to operator spin foam models with
the edge operator given by the propagator of the theory. This is discussed in detail in [33]. The
amplitudes defined there in terms of the “EPRL/FK propagator”7 is of the form of an operator spin
foam with all faces labeled by L2(G, dh). As this is an infinite dimensional Hilbert space the trace
will not in general be finite. Note that from the perspective of GFTs the edge splitting condition,

6 Proposition 2.12 of [23]
7 Defined in equation 20 of [33]
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which forces the edge operators to be projectors, is not desirable, as it implies propagators with a
trivial spectrum in the quantum field theory.

V. SUMMARY

The operator spin foams we have introduced are linear combinations of the usual spin foams,
therefore they should be robust in any spin foam context. In our paper we list the moves naturally
defined in the space the operator spin foams. The moves are used in our paper to define an
equivalence relation – we would like to emphasise that “equivalent” operator spin foams are not
identical. Whenever we construct a model, the question we address is, whether or not all those
moves are symmetries of our model. In the paper we considered the class of models which do
admit all those symmetries. And we derived the consequences of that assumption. A spin foam
model may not have the symmetries defined by our equivalence relation. One may restrict the set
of spin foams that are allowed by a given model. In particular, the vertices obtained by splitting
an internal edge can be just forbidden. However, we seem to agree that we would like to be able to
identify an operator spin foam with a refined operator spin foam. So the allowed spin foams should
admit at least sufficiently refined spin foams. Given an operator spin foam, there is the naturally
defined operator denoted by Z in our paper. Nonetheless, an operator Z’ constructed within a
given model from an operator spin foam may be different than the operator Z. For example one
can introduce some extra structure at the vertices and use it to define Z’. The first three “moves”
defining the equivalence relation we have constructed: reorientation of faces, edges, and splitting
a face are consequence of analogous moves and equivalence of the spin networks. The equivalence
upon splitting an edge and the suitable relation between the operators is a choice natural for the
consistency between combining the operator spin foams and combining the corresponding operators.
Together with splitting a face it also ensures independence from the cellular decomposition chosen
for the 2-complex. As a result the natural spin foams depend only on the topology of the 2-
complex and a labeling of maximal faces. Also the contraction as well as the operator spin foam
operator are naturally defined operations that exist independently on our believes and can be used
as tools of any spin foam theory. The family of natural spin foam models we derived from assumed
symmetry took appearance of constrained BF spin foam models. Each of the models is defined by
the restriction of a proper spin foam model to a subspace in the space of intertwiners. Since gravity
is often viewed in that way, one of the natural Spin(4) operator spin foam model characterised by
suitable subspace of solutions to the simplicity constraints could be the proper quantum gravity
model. The most important example is given by the EPRL subspace of the Spin(4) intertwiners.
In that case, the corresponding natural operator spin foam model coincides with the proposal of
[9], whereas it is different than the EPRL proposal [4]. That difference was already emphasised in
[9]. The new conclusion coming from the current work is the set of rules governing operator spin
foams that is satisfied in one case and is not satisfied by the other one. If experiment shows that
nature favours the less natural model, we should still understand better its operator structure.
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