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We start from a basic version of the Hahn-Banach theorem, of which we
provide a proof based on Tychonoff’s theorem on the product of compact
intervals. Then, in the first section, we establish conditions ensuring the
existence of affine functions lying between a convex function and a concave
one in the setting of vector spaces — this directly leads to the theorems
of Hahn-Banach, Mazur-Orlicz and Fenchel. In the second section, we car-
acterize those topological vector spaces for which certain convex functions
are continuous — this is connected to the uniform boundedness theorem of
Banach-Steinhaus and to the closed graph and open mapping theorems of
Banach. Combining both types of results readily yields topological versions
of the theorems of the first section.

In all the text, X stands for a real vector space. For A ⊂ X, we denote
by cor(A) the core (algebraic interior) of A : a ∈ cor(A) if and only if
A− a is absorbing. Given a function f : X → IR ∪ {+∞}, we call domain
of f the set dom f = {x ∈ X | f(x) < +∞} and we declare f convex if
f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all x, y in dom f and 0 ≤ t ≤ 1. A
real-valued function p : X → IR is said to be sublinear if it is convex and
positively homogeneous.

We use standard abbreviations and notations: TVS for topological vec-
tor space, LCTVS for locally convex topological vector space, lcs for lower
semicontinuous, X∗ for the algebraic dual of X, X ′ for its topological dual,
σ(X∗, X) for the topology of pointwise convergence on X∗, etc.

Prologue

The following basic theorem is the starting point, and crucial part, of
the theory. It retains the essence of both the Hahn-Banach theorem —
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non-emptiness assertion — and the Banach-Alaoglu theorem — σ(X∗, X)-
compactness assertion. Its proof combines the key arguments of the proofs
of these theorems.

Basic Theorem For any sublinear function p : X → IR, the set {x∗ ∈
X∗ | x∗ ≤ p } is non-empty and σ(X∗, X)-compact.

Proof. In the space E = IRX supplied with the product topology, the set
Xν of all sublinear forms is closed and the set

K := { q ∈ Xν | q ≤ p } =
∏

x∈X

[−p(−x), p(x)] ∩Xν

is compact by Tychonoff’s theorem. For x ∈ X, put

F (x) := { q ∈ K | q(x) + q(−x) = 0 }.

Clearly
⋂

x∈X F (x) = {x∗ ∈ X∗ | x∗ ≤ p }. Since each F (x) is closed in the
compact set K, to obtain the desired result it only remains to show that
for any finite family {x0, x1, . . . , xn} in X, the intersection of the F (xi)’s
is not empty. We first observe that F (x0) is not empty; that is, we observe
that there exists q0 ∈ Xν verifying

q0 ≤ p and q0(x0) + q0(−x0) = 0.

Indeed, it suffices to take for q0 the sublinear hull of p and of the function
equal to −p(x0) at −x0 and to +∞ elsewhere, namely:

q0(x) := inf
λ≥0

(p(x+ λx0) − λp(x0)) .

We then apply the argument again, with q0 and x1 in lieu of p and x0,
to obtain q1 in F (x0) ∩ F (x1), and so forth until obtaining qn in F (x0) ∩
F (x1) ∩ . . . ∩ F (xn).

The non-emptiness assertion is Theorem 1 in Banach [2]. Its original
proof, as well as the proof given in most textbooks, relies on the axiom of
choice. The fact that it can also be derived from Tychonoff’s theorem on
the product of compact intervals was observed for the first time by  Loś and
Ryll-Nardzewski [9]. It is now well-known, after the works of Luxemburg
[10] and Pincus [12], that Banach’s theorem (and hence the Hahn-Banach
theorem) is logically weaker than Tychonoff’s theorem on the product of
compact intervals (and hence the Banach-Alaoglu theorem and the above
theorem), which itself is weaker than the axiom of choice. From this point
of view, the above statement is therefore optimal with respect to its proof.
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1. Separation of convex functions

We first extend the basic theorem to the case of convex functions. For
f : X → IR∪{+∞}, we denote by pf : x 7→ inft>0

1

t
f(tx) the homogeneous

hull of f , and we set

S(f) := {x∗ ∈ X∗ | x∗ ≤ f }

= {x∗ ∈ X∗ | 0 ≤ inf(f − x∗) }.

Because of the following elementary facts, the extension is a straightforward
consequence of the basic theorem.

Lemma 1 If f : X → IR ∪ {+∞} is convex such that f(0) ≥ 0 and 0 ∈
cor(dom f), then the function pf is real-valued and sublinear.

Lemma 2 For any f : X → IR ∪ {+∞}, S(f) = S(pf ).

Theorem 1 (Minoration of convex functions) Let f : X → IR∪{+∞}
be convex such that f(0) ≥ 0. If 0 ∈ cor(dom f), then S(f) is non-empty
and σ(X∗, X)-compact.

Proof. Apply the basic theorem to pf .

Theorem 1’ (ε-subdifferential) Let f : X → IR ∪ {+∞} be convex. If
x0 ∈ cor(dom f), then for every ε ≥ 0 the set

{x∗ ∈ X∗ | x∗(x− x0) ≤ f(x) − f(x0) + ε for all x ∈ X }

is non-empty and σ(X∗, X)-compact.

Proof. Apply Theorem 1 to the function f̃(x) := f(x + x0) − f(x0) + ε.

Corollary If in Theorem 1 we suppose further that X is a TVS and that f
is continuous at some point of its domain, then S(f) is non-empty, equicon-
tinuous and σ(X ′, X)-compact.

Proof. The set S(f) is clearly equicontinuous, hence contained in X ′, and
it is also clearly σ(X ′, X)-closed.

More generally, we now search for separating a convex function from a
concave one by an affine form. For f, g : X → IR ∪ {+∞}, we denote by
f +e g : x 7→ infy∈X (f(y) + g(x− y)) the epi-sum (or inf-convolution) of f
and g, and we set

S(f, g) := {x∗ ∈ X∗ | − g ≤ x∗ + r ≤ f for some r ∈ IR }

= {x∗ ∈ X∗ | 0 ≤ inf(f − x∗) + inf(g + x∗) }.
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As above, two elementary facts similarly reduce the argument to a simple
invocation of the previous theorem.

Lemma 3 If f, g : X → IR ∪ {+∞} are convex such that (f +e g)(0) is
finite and 0 ∈ cor(dom f+dom g), then f+eg takes its values in IR∪{+∞}
and is convex.

Lemma 4 For any f, g : X → IR ∪ {+∞}, S(f, g) = S(f +e g
−), where

g− : x 7→ g(−x).

Theorem 2 (Separation of convex functions) Let f, g : X → IR ∪
{+∞} be convex such that −g ≤ f . If 0 ∈ cor(dom f −dom g), then S(f, g)
is non-empty and σ(X∗, X)-compact.

Proof. Apply Theorem 1 to f +e g
−.

Theorem 2’ (Decomposition of the infimum of a sum) Let f, g :
X → IR∪{+∞} be convex such that inf(f +g) is finite. If 0 ∈ cor(dom f −
dom g), then for every ε ≥ 0 the set

{x∗ ∈ X∗ | inf(f + g) ≤ inf(f − x∗) + inf(g + x∗) + ε }

is non-empty and σ(X∗, X)-compact.

Proof. Apply Theorem 2 to the functions f̃ := f − inf(f + g) + ε and g.

Corollary If in Theorem 2 we suppose further that X is a TVS and that
f+eg is continuous at some point of its domain (this is the case if f is con-
tinuous at some point of its domain), then S(f, g) is non-empty, equicon-
tinuous and σ(X ′, X)-compact.

Proof. If f is continuous at some point of its domain, it is actually contin-
uous on the non-empty set int(dom f), and since 0 belongs to cor(dom f −
dom g) = int(dom f) − dom g, we infer that f is continuous at some point
of dom f ∩ dom g, which implies at once that f +e g

− is continuous at 0.
The result now follows from the corollary of Theorem 1 because S(f, g) =
S(f +e g

−).

The literature on the Hahn-Banach theorem is too broad to give any
fair account in this short article. We refer to Buskes [5] for a comprehensive
survey and an extensive bibliography, and to König [8] for a deep discus-
sion on the theorem and its various applications. For variants of the above
results, see, e.g., Holmes [6, p. 23 and p. 42], Vangeldère [21], Théra [19].



HAHN-BANACH THEOREMS FOR CONVEX FUNCTIONS 5

Before proceeding, we mention several simple consequences.

Banach-Alaoglu Theorem – algebraic version If C ⊂ X is convex and
absorbing, then the set {x∗ ∈ X∗ | x∗(x) ≤ 1 for all x ∈ C } is σ(X∗, X)-
compact.

Proof. Apply Theorem 1 to the function equal to 1 on C and to +∞
elsewhere.

When X is a TVS and C a convex neighborhood of 0, we recover the
classical Banach-Alaoglu Theorem.

Hahn-Banach Theorem – sandwich version Let p : X → IR be
sublinear, C ⊂ X be convex and τ : C → IR be concave. If τ ≤ p|C, then
there exists x∗ ∈ X∗ such that τ ≤ x∗|C and x∗ ≤ p.

Proof. Apply Theorem 2, with f = p and g equal to −τ on C and to +∞
elsewhere, to obtain x∗ ∈ X∗ et r ∈ IR such that

τ ≤ x∗|C + r and x∗ + r ≤ p.

The second inequality implies r ≤ 0, so that τ ≤ x∗|C. Since on the other
hand p is positively homogeneous, we also have x∗ ≤ p.

The result above is Theorem 1.7 in König [8]. Of course, if C is a vector
subspace and if τ is linear, we get the classical Hahn-Banach Theorem.

Mazur-Orlicz Theorem – convex version Let f : X → IR ∪ {+∞}
be convex, A ⊂ X and β : A → IR. If 0 ∈ cor(dom f − convA), then the
following two statements are equivalent :

(1) There exist x∗ ∈ X∗ and r ∈ IR such that

β(a) ≤ x∗(a) + r, for all a ∈ A, and x∗ + r ≤ f ;

(2) There exists γ : convA→ IR such that

n∑

k=1

λkβ(ak) ≤ γ(
n∑

k=1

λkak) ≤ f(
n∑

k=1

λkak),

whenever {a1, . . . , an} ⊂ A, λ1 ≥ 0, . . . , λn ≥ 0,
∑n

k=1 λk = 1.

Proof. Clearly, (1) implies (2). Conversely, let g be the convex hull of −β,
namely : if x /∈ convA, g(x) := +∞, while if x ∈ convA,

g(x) := inf{−
n∑

k=1

λkβ(ak) | x =
n∑

k=1

λkak, ak ∈ A, λk ≥ 0,
n∑

k=1

λk = 1 }.
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We derive from (2) that g(x) ≥ −γ(x) for every x ∈ convA, hence g takes
its values in IR ∪ {+∞} and dom g = convA; moreover, −g ≤ f . We then
deduce from Theorem 2 that S(f, g) is non-empty, which is equivalent to
statement (1).

In the classical Mazur-Orlicz Theorem, f is sublinear (with finite val-
ues), so we can take r = 0 in statement (1) and γ(x) = f(x) in statement
(2). See also Sikorski [18] and Pták [13] for other simple proofs of Mazur-
Orlicz’s theorem starting from Banach’s theorem. Note that the above the-
orem immediately yields Theorem 2: if g is as in Theorem 2, put A = dom g
and β = −g|A.

Fenchel Theorem – algebraic version Let f, g : X → IR ∪ {+∞} be
convex. If 0 ∈ cor(dom f − dom g), then there exists x∗ ∈ X∗ such that

inf(f + g) = inf(f − x∗) + inf(g + x∗).

Proof. We always have inf(f+g) ≥ inf(f−x∗)+inf(g+x∗). If inf(f+g) =
−∞, the result is obvious; otherwise, it suffices to invoke Theorem 2’ with
ε = 0.

The Fenchel Duality Theorem corresponds to the case X = IRn. On
the other hand, when X is a TVS and f is continuous at some point of its
domain, we obtain the theorem of Moreau [11] and Rockafellar [16].

2. Continuity of convex functions

From now on, X denotes a TVS. It follows from the corollary of Theorem 1
(Theorem 2, resp.) that the continuity of f (f +e g, resp.) on the core of
its domain is a sufficient condition for the set S(f) (S(f, g), resp.) to be
non-empty and equicontinuous. In general this is also a necessary condition:
if f : X → IR ∪ {+∞} is lsc convex and if S(f) is non-empty and equicon-
tinuous, then f is continuous at 0 (see Moreau [11, Proposition 8.d]). It is
therefore interesting to determine those TVS for which the continuity of
certain classes of convex functions is automatic.

For example, for the finest locally convex topology, any convex function
is continuous on the core of its domain: this topology is such that the core
of any convex set is equal to its interior. Let us consider the following less
drastic properties:

(T) For any closed convex set C ⊂ X, cor(C) = int(C).

(T+) For any closed convex sets C,D ⊂ X, cor(C+D) = int(C +D).
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Property (T) is well known: a Hausdorff locally convex TVS verifying (T)
is said to be tonnelé (barrelled).

Proposition 1 Let X be a TVS. Then:

(1) X verifies (T) if and only if every lsc convex function on X is
continuous on the core of its domain.

(2) X verifies (T+) if and only if every epi-sum of lsc convex functions
on X is continuous on the core of its domain.

Proof. Let us show (2) for example. Suppose first that X verifies (T+).
If the core of the domain of f +e g is empty, there is nothing to prove. If
f +e g takes the value −∞ at some point of this core, it is equal to −∞
everywhere on it and so continuous. Otherwise we may assume that 0 lies in
cor(dom f+dom g) and that f+eg is finite at 0. We have to show that f+eg
is continuous at 0. We first easily see that 0 lies in cor(f≤r + g≤r) for some
r ∈ IR, where f≤r := {x ∈ X | f(x) ≤ r} and g≤r := {x ∈ X | g(x) ≤ r}
are closed convex sets. We therefore derive from (T+) that 0 belongs to
int(f≤r + g≤r). Now, the convex function f +e g being bounded above on
this neighborhood of 0, we conclude that it is continuous at that point.

The converse is evident for property (T+) precisely expresses that the
epi-sum of indicator functions of closed convex sets is continuous on the
core of its domain.

The next proposition provides examples of spaces enjoying these prop-
erties:

Proposition 2 (1) Every Baire TVS verifies (T).

(2) Every metrizable complete TVS verifies (T+).

Proof. (1) is a classical result. We briefly show (2) in the particular case of
Fréchet spaces, the adaptations for the non locally convex case being left
to the reader. As usual, we may assume 0 ∈ cor(C + D) and 0 ∈ C ∩ D.
We must show that 0 belongs to int(C +D). Denote by (Un) a countable
basis of closed convex neighborhoods of 0 such that Un+1 ⊂ Un. From
Baire’s theorem, we rapidly obtain that 0 belongs to int(C ∩ Un +D ∩ Un)
for every n. Let then (Ukn

) be a subsequence of (Un) such that

2Ukn
⊂ C ∩ Un +D ∩ Un + Ukn+1

,

from which follows

Uk1
⊂

n∑

i=1

1

2i
(C ∩ Ui +D ∩ Ui) +

1

2n
Ukn+1

.
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Any point x0 in Uk1
can therefore be written as

x0 =
∞∑

i=1

1

2i
(ci + di)

where ci ∈ C ∩ Ui and di ∈ D ∩ Ui. Since the Ui’s are convex, we have

q∑

i=p

ci
2i

∈ Up,

so, from the completeness of X we derive that the point

c :=
∞∑

i=1

ci
2i

exists and belongs to U1. In the same manner we have

d :=
∞∑

i=1

di

2i
∈ U1.

Now, C and D being closed convex, we also have c ∈ C and d ∈ D. Finally,
x0 = c + d belongs to C ∩ U1 + D ∩ U1. We thus have shown that Uk1

is
contained in C ∩ U1 +D ∩ U1, which proves that 0 belongs to int(C +D).

The above proof is an adaptation of the original proof of Banach’s open
mapping theorem.

Before concluding, let us show how the theorem of Banach-Steinhaus
and the closed graph and open mapping theorems of Banach can be derived
from Propositions 1 and 2.

Banach-Steinhaus Theorem Let X be a TVS verifying (T), Y be a
Hausdorff LCTVS, and H be a set of continuous linear mappings from X
into Y . If for every x ∈ X and every continuous seminorm p on Y we have

sup
h∈H

p (h(x)) <∞,

then H is equicontinuous.

Proof. For every continuous seminorm p on Y , the function f : X →
IR ∪ {+∞} given by

f(x) := sup
h∈H

p (h(x))
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is everywhere finite, lsc, and convex, hence, by Proposition 1 (1), it is
everywhere continuous, which exactly means that H is equicontinuous.

We recall that a relation A ⊂ X × Y between two topological spaces
X and Y is said to be lower semicontinuous (LSC) at x0 ∈ domA :=
{x ∈ X | Ax 6= ∅ } if for every open set U ⊂ Y which meets Ax0 the set
A−1(U) := {x ∈ X | Ax ∩ U 6= ∅ } is a neighborhood of x0. It is clear that
A is LSC at every point of domA if and only if for every open set U ⊂ Y ,
the set A−1(U) is open in X.

Example : Let T : X → Y be a mapping. Then T is continuous at
x0 ∈ X if and only if T , considered as a relation T ⊂ X × Y , is LSC at x0;
T is open if and only if T−1, considered as a relation T−1 ⊂ Y ×X, is LSC
at every point of domT−1 = ImT .

Theorem 3 Let X, Y be Hausdorff LCTVS such that X×Y verifies (T+).

(1) If h : X ×Y → IR∪{+∞} is lsc convex, then the marginal function
ϕ : x ∈ X 7→ infy∈Y h(x, y) is continuous on the core of its domain.

(2) If A ⊂ X × Y is a relation with closed convex graph, then A is LSC
on the core of its domain.

Proof. (1) By Proposition 1 (2), the epi-sum of h and of the indicator
function ψ of the closed convex set {0} × Y is continuous on the core of
its domain. But ϕ(x) = (h+e ψ)(x, 0), so ϕ is continuous at every point x
such that (x, 0) ∈ cor(dom (h+e ψ)), that is, at every point of cor(domϕ).

(2) Let x0 ∈ cor(domA) and let y0 ∈ U ∩Ax0 where U is open in Y . We
must show that x0 belongs to int(A−1(U)). We may assume that x0 = 0
and y0 = 0. Let V ⊂ U be a closed convex neighborhood of 0 in Y and let h
be the indicator function of the closed convex set A∩ (X × V ). By (1), the
marginal function ϕ is continuous on cor(domϕ). But domϕ = A−1(V )
and it is immediat that 0 belongs to cor(A−1(V )). Whence 0 belongs to
int(A−1(V )) ⊂ int(A−1(U)).

When X and Y are Banach spaces, the above theorem is due to Robin-
son [15]; see also Jameson [7], Ursescu [20], Borwein [3]. For a converse of
(2), see Ricceri [14].

Banach Theorems Let X and Y be Fréchet spaces, T : X → Y be a
linear mapping with closed graph. Then T is continuous and, if it is onto,
it is open.

Proof. By the preceding theorem applied to T ⊂ X × Y , the relation T
is LSC on cor(domT ) = X, which amounts to saying that the mapping T



10 MARC LASSONDE

is continuous. By the same theorem applied to T−1 ⊂ Y ×X, the relation
T−1 is LSC on cor(domT−1) = Y , hence T is open.

Epilogue

By combining Proposition 1 with the algebraic theorems of Section 1 we
immediatly obtain topological versions of these theorems. For instance:

Theorem 1 – topological version If X verifies (T), then for any lsc
convex function f : X → IR∪{+∞} such that f(0) ≥ 0 and 0 ∈ cor(dom f)
the set

S(f) = {x∗ ∈ X∗ | x∗ ≤ f }

is non-empty and equicontinuous.

Theorem 2 – topological version If X verifie (T+), then for any
lsc convex functions f, g : X → IR ∪ {+∞} such that −g ≤ f and 0 ∈
cor(dom f − dom g) the set

S(f, g) = {x∗ ∈ X∗ | − g ≤ x∗ + r ≤ f for some r ∈ IR }

is non-empty and equicontinuous.

Fenchel Theorem – topological version If X verifies (T+), then for
any lsc convex functions f, g : X → IR ∪ {+∞} such that 0 ∈ cor(dom f −
dom g) there exists x′ ∈ X ′ such that

inf(f + g) = inf(f − x′) + inf(g + x′).

For X a Banach space, the above theorem is due to Attouch-Brezis
[1] (see also Borwein [4, p. 421]); for X a Fréchet space, it is proved in
Rodrigues-Simons [17].
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