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Hahn-Banach theorems for convex functions

We start from a basic version of the Hahn-Banach theorem, of which we provide a proof based on Tychonoff's theorem on the product of compact intervals. Then, in the first section, we establish conditions ensuring the existence of affine functions lying between a convex function and a concave one in the setting of vector spaces -this directly leads to the theorems of Hahn-Banach, Mazur-Orlicz and Fenchel. In the second section, we caracterize those topological vector spaces for which certain convex functions are continuous -this is connected to the uniform boundedness theorem of Banach-Steinhaus and to the closed graph and open mapping theorems of Banach. Combining both types of results readily yields topological versions of the theorems of the first section.

In all the text, X stands for a real vector space. For A ⊂ X, we denote by cor(A) the core (algebraic interior) of A : a ∈ cor(A) if and only if Aa is absorbing. Given a function f : X → IR ∪ {+∞}, we call domain of f the set dom f = { x ∈ X | f (x) < +∞ } and we declare f convex if f (tx + (1t)y) ≤ tf (x) + (1t)f (y) for all x, y in dom f and 0 ≤ t ≤ 1. A real-valued function p : X → IR is said to be sublinear if it is convex and positively homogeneous.

We use standard abbreviations and notations: TVS for topological vector space, LCTVS for locally convex topological vector space, lcs for lower semicontinuous, X * for the algebraic dual of X, X ′ for its topological dual, σ(X * , X) for the topology of pointwise convergence on X * , etc.

Prologue

The following basic theorem is the starting point, and crucial part, of the theory. It retains the essence of both the Hahn-Banach theorem -

non-emptiness assertion -and the Banach-Alaoglu theorem -σ(X * , X)compactness assertion. Its proof combines the key arguments of the proofs of these theorems.

Basic Theorem For any sublinear function p : X → IR, the set { x * ∈ X * | x * ≤ p } is non-empty and σ(X * , X)-compact.

Proof. In the space E = IR X supplied with the product topology, the set X ν of all sublinear forms is closed and the set

K := { q ∈ X ν | q ≤ p } = x∈X [-p(-x), p(x)] ∩ X ν
is compact by Tychonoff's theorem. For x ∈ X, put F (x) := { q ∈ K | q(x) + q(-x) = 0 }.

Clearly x∈X F (x) = { x * ∈ X * | x * ≤ p }.
Since each F (x) is closed in the compact set K, to obtain the desired result it only remains to show that for any finite family {x 0 , x 1 , . . . , x n } in X, the intersection of the F (x i )'s is not empty. We first observe that F (x 0 ) is not empty; that is, we observe that there exists q 0 ∈ X ν verifying q 0 ≤ p and q 0 (x 0 ) + q 0 (-x 0 ) = 0. Indeed, it suffices to take for q 0 the sublinear hull of p and of the function equal to -p(x 0 ) at -x 0 and to +∞ elsewhere, namely: q 0 (x) := inf λ≥0 (p(x + λx 0 )λp(x 0 )) .

We then apply the argument again, with q 0 and x 1 in lieu of p and x 0 , to obtain q 1 in F (x 0 ) ∩ F (x 1 ), and so forth until obtaining

q n in F (x 0 ) ∩ F (x 1 ) ∩ . . . ∩ F (x n ).
The non-emptiness assertion is Theorem 1 in Banach [START_REF] Banach | Sur les fonctionnelles linéaires II[END_REF]. Its original proof, as well as the proof given in most textbooks, relies on the axiom of choice. The fact that it can also be derived from Tychonoff's theorem on the product of compact intervals was observed for the first time by Loś and Ryll-Nardzewski [START_REF] Loś | On the application of Tychonoff's theorem in mathematical proofs[END_REF]. It is now well-known, after the works of Luxemburg [START_REF] Luxemburg | Reduced powers of the real number system and equivalents of the Hahn-Banach extension theorem[END_REF] and Pincus [START_REF] Pincus | Independence of the prime ideal theorem from the Hahn-Banach theorem[END_REF], that Banach's theorem (and hence the Hahn-Banach theorem) is logically weaker than Tychonoff's theorem on the product of compact intervals (and hence the Banach-Alaoglu theorem and the above theorem), which itself is weaker than the axiom of choice. From this point of view, the above statement is therefore optimal with respect to its proof.

Separation of convex functions

We first extend the basic theorem to the case of convex functions. For f : X → IR ∪ {+∞}, we denote by p f : x → inf t>0 1 t f (tx) the homogeneous hull of f , and we set

S(f ) := { x * ∈ X * | x * ≤ f } = { x * ∈ X * | 0 ≤ inf(f -x * ) }.
Because of the following elementary facts, the extension is a straightforward consequence of the basic theorem.

Lemma 1 If f : X → IR ∪ {+∞} is convex such that f (0) ≥ 0 and 0 ∈ cor(dom f ), then the function p f is real-valued and sublinear.

Lemma 2 For any f :

X → IR ∪ {+∞}, S(f ) = S(p f ).
Theorem 1 (Minoration of convex functions) Let f : X → IR∪{+∞} be convex such that f (0) ≥ 0. If 0 ∈ cor(dom f ), then S(f ) is non-empty and σ(X * , X)-compact.

Proof. Apply the basic theorem to p f .

Theorem 1' (ε-subdifferential) Let f : X → IR ∪ {+∞} be convex. If x 0 ∈ cor(dom f ), then for every ε ≥ 0 the set { x * ∈ X * | x * (x -x 0 ) ≤ f (x) -f (x 0 ) + ε for all x ∈ X }
is non-empty and σ(X * , X)-compact.

Proof. Apply Theorem 1 to the function f (x) := f (x + x 0 )f (x 0 ) + ε.

Corollary If in Theorem 1 we suppose further that X is a TVS and that f is continuous at some point of its domain, then S(f ) is non-empty, equicontinuous and σ(X ′ , X)-compact.

Proof. The set S(f ) is clearly equicontinuous, hence contained in X ′ , and it is also clearly σ(X ′ , X)-closed.

More generally, we now search for separating a convex function from a concave one by an affine form. For f, g : X → IR ∪ {+∞}, we denote by f + e g : x → inf y∈X (f (y) + g(xy)) the epi-sum (or inf-convolution) of f and g, and we set

S(f, g) := { x * ∈ X * | -g ≤ x * + r ≤ f for some r ∈ IR } = { x * ∈ X * | 0 ≤ inf(f -x * ) + inf(g + x * ) }.
As above, two elementary facts similarly reduce the argument to a simple invocation of the previous theorem. 0) is finite and 0 ∈ cor(dom f +dom g), then f + e g takes its values in IR∪{+∞} and is convex.

Lemma 3 If f, g : X → IR ∪ {+∞} are convex such that (f + e g)(
Lemma 4 For any f, g : X → IR ∪ {+∞}, S(f, g) = S(f + e g -), where g -: x → g(-x).

Theorem 2 (Separation of convex functions) Let f, g :

X → IR ∪ {+∞} be convex such that -g ≤ f . If 0 ∈ cor(dom f -dom g), then S(f, g) is non-empty and σ(X * , X)-compact.
Proof. Apply Theorem 1 to f + e g -.

Theorem 2' (Decomposition of the infimum of a sum) Let f, g :

X → IR ∪ {+∞} be convex such that inf(f + g) is finite. If 0 ∈ cor(dom f - dom g), then for every ε ≥ 0 the set { x * ∈ X * | inf(f + g) ≤ inf(f -x * ) + inf(g + x * ) + ε } is non-empty and σ(X * , X)-compact.
Proof. Apply Theorem 2 to the functions f := finf(f + g) + ε and g.

Corollary If in Theorem 2 we suppose further that X is a TVS and that f + e g is continuous at some point of its domain (this is the case if f is continuous at some point of its domain), then S(f, g) is non-empty, equicontinuous and σ(X ′ , X)-compact.

Proof. If f is continuous at some point of its domain, it is actually continuous on the non-empty set int(dom f ), and since 0 belongs to cor(dom fdom g) = int(dom f )dom g, we infer that f is continuous at some point of dom f ∩ dom g, which implies at once that f + e g -is continuous at 0. The result now follows from the corollary of Theorem 1 because S(f, g) = S(f + e g -).

The literature on the Hahn-Banach theorem is too broad to give any fair account in this short article. We refer to Buskes [START_REF] Buskes | The Hahn-Banach theorem surveyed[END_REF] for a comprehensive survey and an extensive bibliography, and to König [START_REF] König | On some basic theorems in convex analysis[END_REF] for a deep discussion on the theorem and its various applications. For variants of the above results, see, e.g., Holmes [6, p. 23 and p. 42], Vangeldère [START_REF] Vangeldère | Frank separation of two convex sets and the Hahn-Banach theorem[END_REF], Théra [START_REF] Théra | Subdifferential calculus for convex operators[END_REF].

Before proceeding, we mention several simple consequences.

Banach-Alaoglu Theorem -algebraic version

If C ⊂ X is convex and absorbing, then the set { x * ∈ X * | x * (x) ≤ 1 for all x ∈ C } is σ(X * , X)- compact.
Proof. Apply Theorem 1 to the function equal to 1 on C and to +∞ elsewhere.

When X is a TVS and C a convex neighborhood of 0, we recover the classical Banach-Alaoglu Theorem.

Hahn-Banach Theorem -sandwich version Let p : X → IR be sublinear, C ⊂ X be convex and τ : C → IR be concave. If τ ≤ p|C, then there exists x * ∈ X * such that τ ≤ x * |C and x * ≤ p.

Proof. Apply Theorem 2, with f = p and g equal to -τ on C and to +∞ elsewhere, to obtain x * ∈ X * et r ∈ IR such that τ ≤ x * |C + r and x * + r ≤ p.

The second inequality implies r ≤ 0, so that τ ≤ x * |C. Since on the other hand p is positively homogeneous, we also have x * ≤ p.

The result above is Theorem 1.7 in König [START_REF] König | On some basic theorems in convex analysis[END_REF]. Of course, if C is a vector subspace and if τ is linear, we get the classical Hahn-Banach Theorem.

Mazur-Orlicz Theorem -convex version Let f : X → IR ∪ {+∞} be convex, A ⊂ X and β : A → IR. If 0 ∈ cor(dom fconv A), then the following two statements are equivalent :

(1) There exist x * ∈ X * and r ∈ IR such that β(a) ≤ x * (a) + r, for all a ∈ A, and x * + r ≤ f ;

(2) There exists γ : conv A → IR such that

n k=1 λ k β(a k ) ≤ γ( n k=1 λ k a k ) ≤ f ( n k=1 λ k a k ), whenever {a 1 , . . . , a n } ⊂ A, λ 1 ≥ 0, . . . , λ n ≥ 0, n k=1 λ k = 1.
Proof. Clearly, (1) implies (2). Conversely, let g be the convex hull of -β,

namely : if x / ∈ conv A, g(x) := +∞, while if x ∈ conv A, g(x) := inf{ - n k=1 λ k β(a k ) | x = n k=1 λ k a k , a k ∈ A, λ k ≥ 0, n k=1 λ k = 1 }.
We derive from (2) that g(x) ≥ -γ(x) for every x ∈ conv A, hence g takes its values in IR ∪ {+∞} and dom g = conv A; moreover, -g ≤ f . We then deduce from Theorem 2 that S(f, g) is non-empty, which is equivalent to statement (1).

In the classical Mazur-Orlicz Theorem, f is sublinear (with finite values), so we can take r = 0 in statement (1) and γ(x) = f (x) in statement [START_REF] Banach | Sur les fonctionnelles linéaires II[END_REF]. See also Sikorski [18] and Pták [START_REF] Pták | On a theorem of Mazur and Orlicz[END_REF] for other simple proofs of Mazur-Orlicz's theorem starting from Banach's theorem. Note that the above theorem immediately yields Theorem 2: if g is as in Theorem 2, put A = dom g and β = -g|A.

Fenchel Theorem -algebraic version Let f, g : X → IR ∪ {+∞} be convex. If 0 ∈ cor(dom fdom g), then there exists x * ∈ X * such that

inf(f + g) = inf(f -x * ) + inf(g + x * ).
Proof. We always have inf(f + g) ≥ inf(fx * ) + inf(g + x * ). If inf(f + g) = -∞, the result is obvious; otherwise, it suffices to invoke Theorem 2' with ε = 0.

The Fenchel Duality Theorem corresponds to the case X = IR n . On the other hand, when X is a TVS and f is continuous at some point of its domain, we obtain the theorem of Moreau [START_REF] Moreau | Fonctionnelles convexes, Séminaire " Équations aux dérivées partielles[END_REF] and Rockafellar [START_REF] Rockafellar | Extension of Fenchel's duality theorem for convex functions[END_REF].

Continuity of convex functions

From now on, X denotes a TVS. It follows from the corollary of Theorem 1 (Theorem 2, resp.) that the continuity of f (f + e g, resp.) on the core of its domain is a sufficient condition for the set S(f ) (S(f, g), resp.) to be non-empty and equicontinuous. In general this is also a necessary condition: if f : X → IR ∪ {+∞} is lsc convex and if S(f ) is non-empty and equicontinuous, then f is continuous at 0 (see Moreau [START_REF] Moreau | Fonctionnelles convexes, Séminaire " Équations aux dérivées partielles[END_REF]Proposition 8.d]). It is therefore interesting to determine those TVS for which the continuity of certain classes of convex functions is automatic.

For example, for the finest locally convex topology, any convex function is continuous on the core of its domain: this topology is such that the core of any convex set is equal to its interior. Let us consider the following less drastic properties:

(T) For any closed convex set C ⊂ X, cor(C) = int(C). (T+) For any closed convex sets C, D ⊂ X, cor(C + D) = int(C + D).

Property (T) is well known: a Hausdorff locally convex TVS verifying (T) is said to be tonnelé (barrelled).

Proposition 1 Let X be a TVS. Then:

(1) X verifies (T) if and only if every lsc convex function on X is continuous on the core of its domain.

(2) X verifies (T+) if and only if every epi-sum of lsc convex functions on X is continuous on the core of its domain.

Proof. Let us show (2) for example. Suppose first that X verifies (T+). If the core of the domain of f + e g is empty, there is nothing to prove. If f + e g takes the value -∞ at some point of this core, it is equal to -∞ everywhere on it and so continuous. Otherwise we may assume that 0 lies in cor(dom f +dom g) and that f + e g is finite at 0. We have to show that f + e g is continuous at 0. We first easily see that 0 lies in cor(f ≤r + g ≤r ) for some r ∈ IR, where f ≤r := {x ∈ X | f (x) ≤ r} and g ≤r := {x ∈ X | g(x) ≤ r} are closed convex sets. We therefore derive from (T+) that 0 belongs to int(f ≤r + g ≤r ). Now, the convex function f + e g being bounded above on this neighborhood of 0, we conclude that it is continuous at that point.

The converse is evident for property (T+) precisely expresses that the epi-sum of indicator functions of closed convex sets is continuous on the core of its domain.

The next proposition provides examples of spaces enjoying these properties:

Proposition 2 (1) Every Baire TVS verifies (T).

(2) Every metrizable complete TVS verifies (T+).

Proof. (1) is a classical result. We briefly show (2) in the particular case of Fréchet spaces, the adaptations for the non locally convex case being left to the reader. As usual, we may assume 0 ∈ cor(C + D) and 0 ∈ C ∩ D. We must show that 0 belongs to int(C + D). Denote by (U n ) a countable basis of closed convex neighborhoods of 0 such that U n+1 ⊂ U n . From Baire's theorem, we rapidly obtain that 0 belongs to int(C ∩ U n + D ∩ U n ) for every n. Let then (U kn ) be a subsequence of (U n ) such that

2U kn ⊂ C ∩ U n + D ∩ U n + U k n+1 , from which follows U k 1 ⊂ n i=1 1 2 i (C ∩ U i + D ∩ U i ) + 1 2 n U k n+1 .
Any point x 0 in U k 1 can therefore be written as

x 0 = ∞ i=1 1 2 i (c i + d i )
where c i ∈ C ∩ U i and d i ∈ D ∩ U i . Since the U i 's are convex, we have q i=p c i 2 i ∈ U p , so, from the completeness of X we derive that the point

c := ∞ i=1 c i 2 i
exists and belongs to U 1 . In the same manner we have

d := ∞ i=1 d i 2 i ∈ U 1 .
Now, C and D being closed convex, we also have c ∈ C and d ∈ D. Finally, is everywhere finite, lsc, and convex, hence, by Proposition 1 (1), it is everywhere continuous, which exactly means that H is equicontinuous.

x 0 = c + d belongs to C ∩ U 1 + D ∩ U 1 . We thus have shown that U k 1 is contained in C ∩ U 1 + D ∩ U 1 ,
We recall that a relation A ⊂ X × Y between two topological spaces X and Y is said to be lower semicontinuous (LSC) at x 0 ∈ dom A :

= { x ∈ X | Ax = ∅ } if for every open set U ⊂ Y which meets Ax 0 the set A -1 (U ) := { x ∈ X | Ax ∩ U = ∅ } is a neighborhood of x 0 . It is clear that A is LSC at every point of dom A if and only if for every open set U ⊂ Y , the set A -1 (U ) is open in X.
Example : Let T : X → Y be a mapping. Then T is continuous at

x 0 ∈ X if and only if T , considered as a relation T ⊂ X × Y , is LSC at x 0 ; T is open if and only if T -1 , considered as a relation T -1 ⊂ Y × X, is LSC at every point of dom T -1 = Im T .
Theorem 3 Let X, Y be Hausdorff LCTVS such that X ×Y verifies (T+).

(1) If h : X × Y → IR ∪ {+∞} is lsc convex, then the marginal function ϕ : x ∈ X → inf y∈Y h(x, y) is continuous on the core of its domain.

(2) If A ⊂ X × Y is a relation with closed convex graph, then A is LSC on the core of its domain.

Proof. (1) By Proposition 1 (2), the epi-sum of h and of the indicator function ψ of the closed convex set {0} × Y is continuous on the core of its domain. But ϕ(x) = (h + e ψ)(x, 0), so ϕ is continuous at every point x such that (x, 0) ∈ cor(dom (h + e ψ)), that is, at every point of cor(dom ϕ).

(2) Let x 0 ∈ cor(dom A) and let y 0 ∈ U ∩ Ax 0 where U is open in Y . We must show that x 0 belongs to int(A -1 (U )). We may assume that x 0 = 0 and y 0 = 0. Let V ⊂ U be a closed convex neighborhood of 0 in Y and let h be the indicator function of the closed convex set A ∩ (X × V ). By (1), the marginal function ϕ is continuous on cor(dom ϕ). But dom ϕ = A -1 (V ) and it is immediat that 0 belongs to cor(A -1 (V )). Whence 0 belongs to int(A -1 (V )) ⊂ int(A -1 (U )).

When X and Y are Banach spaces, the above theorem is due to Robinson [START_REF] Robinson | Regularity and stability for convex multivalued functions[END_REF]; see also Jameson [START_REF] Jameson | Convex series[END_REF], Ursescu [START_REF] Ursescu | Multifunctions with convex closed graph[END_REF], Borwein [START_REF] Borwein | Convex relations in analysis and optimization[END_REF]. For a converse of (2), see Ricceri [START_REF] Ricceri | Remarks on multifunctions with convex graph[END_REF].

Banach Theorems Let X and Y be Fréchet spaces, T : X → Y be a linear mapping with closed graph. Then T is continuous and, if it is onto, it is open.

Proof. By the preceding theorem applied to T ⊂ X × Y , the relation T is LSC on cor(dom T ) = X, which amounts to saying that the mapping T

  which proves that 0 belongs to int(C + D). The above proof is an adaptation of the original proof of Banach's open mapping theorem. Before concluding, let us show how the theorem of Banach-Steinhaus and the closed graph and open mapping theorems of Banach can be derived from Propositions 1 and 2. Banach-Steinhaus Theorem Let X be a TVS verifying (T), Y be a Hausdorff LCTVS, and H be a set of continuous linear mappings from X into Y . If for every x ∈ X and every continuous seminorm p on Y we have sup h∈H p (h(x)) < ∞, then H is equicontinuous. Proof. For every continuous seminorm p on Y , the function f : X → IR ∪ {+∞} given by f (x) := sup h∈H p (h(x))

is continuous. By the same theorem applied to T -1 ⊂ Y × X, the relation

Epilogue

By combining Proposition 1 with the algebraic theorems of Section 1 we immediatly obtain topological versions of these theorems. For instance:

is non-empty and equicontinuous.

Theorem 2 -topological version If X verifie (T+), then for any lsc convex functions f, g : X → IR ∪ {+∞} such that -g ≤ f and 0 ∈ cor(dom fdom g) the set

is non-empty and equicontinuous.

Fenchel Theorem -topological version If X verifies (T+), then for any lsc convex functions f, g :

For X a Banach space, the above theorem is due to Attouch-Brezis [START_REF] Attouch | Duality for the sum of convex functions in general Banach spaces[END_REF] (see also Borwein [4,p. 421]); for X a Fréchet space, it is proved in Rodrigues-Simons [START_REF] Rodrigues | Conjugate functions and subdifferentials in nonnormed situations for operators with complete graphs[END_REF].