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ABSTRACT

Lindstrém (1999) synthesized knowledge about “early development and fitness in birds
and mammals”, interesting tracks and challenges for future studies. Today there is unambiguous
evidence that Lindstrém’s tirst statement holds in long-lived birds: “It is obvious that adverse
environmental conditions might have immediate etfects [...].”” However, whether there are
“long-term fitness consequences of conditions experienced during early development”
(Lindstrém’s second statement) 1s unclear for long-lived birds. The extent to which the
disadvantage of frail individuals at independence 1s expressed predominantly in terms of higher
mortality and disappearance from the population before recruitment, or persists after
recruitment, is still an open question. Due to rarity of relevant data and the fact that most studies
are retrospective, heterogeneity in methods and time scales hampers identification of general
patterns. Nevertheless, several studies have provided evidence of a relationship between eatly
conditions and future reproductive parameters, or lifetime reproductive success. Evidence from
large mammals suggests substantial long-term individual and population ettects of early
conditions, including trans-generational maternal effects. Evidence from short-lived birds also
suggests long-term individual consequences, and maternal effects have been documented in long-
lived ones. Despite logistical and financial difficulties inherent in long-term studies, they are the
only way of addressing Lindstrém’s second statement. Existing long-term longitudinal data sets
should be re-analyzed using recently developed capture-mark-recapture models handling state
uncertainty and unobservable heterogeneity in populations. Statistical methods designed to
estimate lifetime reproductive success or incorporate pedigree information in standard situations
of studies of wild vertebrates with impertect detection offer new opportunities to assess long-

term fitness consequences of early development in long-lived birds.
Keywords: life history evolution, longitudinal studies, long-term effects, population

dynamics
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INTRODUCTION

Background. A decade ago, in a paper entitled “Early development and fitness in birds
and mammals”, Lindstrém (1999) stated that “It is obvious that adverse environmental
conditions might have immediate effects [...]. However, the long-term fitness consequences of
conditions expertenced during early development have been documented only recently”. Long-
lasting effects of early conditions are receiving growing attention because large differences in
lifetime reproductive success among individuals may result from differences in the conditions
under which growth or ontogeny from birth to recruitment take place (de Kogel 1997; Hamel et
al. 2009; Metcalf and Monaghan 2001; Newton 1989; van de Pol et al. 2006 a). In addition, it has
been shown that life history characteristics such as senescence rate may vary with conditions
during development (Nussey et al. 2007). Individuals may compensate adverse early conditions
by growing fast when conditions improve, but may incur delayed costs and reduced longevity
(Metcalfe and Monaghan 2001, 2003). Here the main question we will focus on is whether there
is evidence of long-term fitzess consequences of early conditions in long-lived birds (evidence of
morphological or physiological consequences isn’t ‘sufficient’). It 1s not our intention to provide a
tull review of the literature on the topic. We recognize that our perception of current knowledge
on the subject in the literature led us to express a subjective opinion inspired by a large number
of studies addressing small parts of the problem in a large range ot species; of course, the same

body of material may inspire different opinions in other researchers.

A flurry of traits, mechanisms and consequences. As summarized in Burness

et al. (2000), in mammals and birds, the environment experienced during ontogeny may have
morphological, behavioral and life history consequences. Individuals experiencing harsh
conditions during development (e.g., parasite load, weather, food availability) may exhibit smaller
structural size and mass at independence, lower survival probability in the first year, and lower

recruitment probability (Boag 1987; Braasch et al. 2009; de Kogel 1997; Dijkstra et al. 1990; Hall
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et al. 2001; Magrath 1991; McDonald et al. 2005; Naet-Daenzer et al. 2001; Perrins 1965; Richner
1989; Sedinger et al. 1995; Szép and Moller 1999; Tinbergen and Boerlijst 1990; van der Jeugd
and Larsson 1998; Verboven and Visser 1998). There is some indication that tledging date,
structural size or mass at independence influence the probability of acquiring a territory as well
(Both et al. 1999; Drent 1983). If they reach reproductive status, individuals may exhibit lower
reproductive fitness components (e.g., smaller egg or clutch sizes; Braasch et al. 2009; Gorman
and Nager 2004; Haywood and Perrins 1992; Potti 1999; Schluter and Gustatsson 1993).
Difterences in reproductive success may sometimes result from use of lower-quality breeding
habitat (see Verhulst et al. 1997 for an example in a long-lived bird, the Oystercatcher

(Haematopus ostralegus) or access to lower-quality mates because of lack of attractiveness of

secondary sexual characters (Blount et al. 2003; de Kogel and Prijs 1996; de Kogel 1997; but see
Walling et al. 2007 in a different taxon). Variation in the quality of the rearing environment is
assumed to result in differences in the physiological condition (Burness et al. 2000) or
morphology of individuals reared in that environment, which in turn may result in ditferences in
survival probabilities, and possibly variation in the adult physiological or morphological
phenotype (de Kogel and Prijs 1996; Haywood and Perrins 1992; Perrins 1965; Schluter and
Gustafsson 1993; but see Lendwai et al. 2009). Difterences in personalities (and correlated fitness
differences) may also arise from early environment (Dingemanse et al. 2004; Dingemanse and
Réale 2005; Krause et al. 2009; Stamps and Groothuis 2010). Alternatively, there may not be any
observable trait associated with lower survival (or at least one we know how to identity and
measure), which may result in a “cryptic” structure of populations (Fox and Kendall 2002;
Kendall and Fox 2002). Last, evidence has been found in long-lived species that offspring early

survival depends on sex under stressful conditions (e.g., Nager et al. 2000).

Increased interest in physiological ‘paths’. There is currently increased interest

in physiological mechanisms (‘paths’) responsible for the long-term consequences of early
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development (e.g., Merild and Svensson 1997; Thomas et al. 2007). There 1s evidence that early
life development can directly affect the immune system and physiology through trans-
generational effects, both positively and negatively. Mller et al. (2009) have shown that maternal
hormones in bird eggs enhanced post-natal growth rate on the one hand, but decreased
asymptotic mass and reduced survival probability on the other hand. Groothuss et al. (2005) have
experimentally shown that yolk androgens suppress immune function but simultaneously
stimulate growth 1n Black-headed Gull chicks (Larus ridibundns). Thus, “mothers face a trade-oft
between these costs and benefits and may tune hormone deposition to prevailing conditions that
influence chick survival”. Maternal yolk androgens have also been shown to aftect a number of
adult or juvenile traits including social dominance, neophobia, dispersal, male sexual characters,
and male attractiveness (e.g., Eising et al. 2006; Gil 2003; Rubolint et al. 2006; Tobler and Sandell
2007; Tschirren et al. 2007). Stress, through elevated glucocorticosteroids during early life can
also impair physiological development. In a wild population of White Storks (Ciconia ciconia),
developing juveniles that released more corticosterone in response to a common stressor
experienced lower survival and recruitment a few years later in life (Blas et al. 2007). In the same
vein, pathogen exposure during the development of immunocompetence can attect an
individual’s ability to tight off pathogens later in life (Franceschi et al. 2000), which may influence
reproductive performance and survival chances throughout lite (Finch and Crimmins 2004).
Boulinier and Staszewski (2008) reviewed evidence of transfer of antibodies from mother to
oftspring, and Gasparini et al. (2007) found evidence of variation in such transfers according to
tood availability in a wild long-lived bird species, the Kitttwake (Réssa tridactyla).

Caloric restriction during the earliest stages of life (i.e., foetal development in utero) can
impair development, and is thought to increase risks ot disease later in life. In humans, reduced
tetal growth 1s strongly associated with a number of chronic conditions later in life including
coronary heart disease, stroke, diabetes, and hypertension (‘the Barker hypothesis’; Barker 1994).

Some human cohort studies support the Barker hypothesis (e.g., Doblhammer and Vaupel 2001)
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while others have found greater support for an etfect of exposure to infectious diseases in the
tirst year of life on the ability to fight pathogens later in life (1.e., the ‘inflammatory exposure
hypothesis’; Bengtsson and Lindstrém 2000; Finch and Crimmins 2004). Because of the intricate
connection between endocrine and immune systems in animals, these two hypotheses may be
difficult to disentangle (Franceshi et al. 2000), but nevertheless are likely to have simuilar

demographic consequences.

‘Population’ and ‘individual’ consequences. 1 ong-term individual consequences

of conditions during development have been extensively addressed in short-lived birds as early as
tour decades ago (Haywood and Perrins 1992; Gustafsson and Sutherland 1988; Perrins 1965;
van Noordwijk et al. 1988). Similarly, a number of long-term longitudinal studies of large
mammals have addressed the relationship between early life development and population
dynamics (Albon et al. 1987; Forchhammer et al. 2001; Saether 1997), as well as the individual
titness consequences of early life environmental conditions (Kruuk et al. 1999; Festa-Bianchet et
al. 2000; Gaillard et al. 2000; Nussey et al. 2007; Rose et al. 1999). Population phenomena
resulting from early conditions shared by individuals in a cohort are considered ‘indirect effects’
and suspected to be common (Benton et al. 2006). For example, Benton et al. (2000)
hypothesized that stages (e.g., age classes) “which are reduced in density may lead to
compensatory increases in the density ot other stages (Cameron and Benton 2004; Moe et al.
2002).” Population consequences of early conditions have probably received more attention in
large mammals than long-lived birds (Albon et al. 1987; Seather 1997; but see Votier et al. 2008).
Such consequences may result from delayed eftects of increased mortality at early stages of life in
some cohorts (individuals born in the same year), which leads to smaller (future) population size
for example. Farly conditions can also translate into lower future reproductive performance and
population productivity of young raised under poor conditions. In other words, population

consequences of early conditions sometimes imply long-term consequences of these conditions
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at the individual level, but they may result solely from early disappearance of frail individuals
trom the population before breeding (phenotypic mortality selection). Individuals from a given
cohort affected by adverse early conditions may die early, when survivors (that recruit and breed)
do not necessarily differ from other individuals in the breeding segment of the population.
Alternatively, early conditions may have long-lasting etfects on individuals without necessarily
affecting survival; such frail individuals may recruit but exhibit poorer reproductive performance

tor example. Of course, the two scenarios may hold simultaneously (Rose et al. 1999).

LONG-LIVED SPECIES

Despite increased interest in this topic because of identification ot possible causes of
population dynamics and life history phenomena (Lindstrém 1999), knowledge and
understanding of long-term consequences of early conditions 1s undoubtedly unbalanced in
short- versus long-lived birds (Meathrel and Carey 2007). There is no clear detinition of short- or
long-lived species; here long-lived species will be (loosely) referred to as species where a
substantial proportion of individuals defer breeding (beyond age one) and where mean
reproductive longevity (i.e., after recruitment) may reach 4 years or more (based on estimates
available in the literature). In long-lived bird species, the extent to which the disadvantage ot
individuals that are ‘frail’ at independence 1s expressed predominantly in terms of higher mortality
betore recruitment (Braasch et al. 2009; Nevoux et al. 2010), or persists after recruitment (Reid et
al. 2003) is still unclear. Here ‘frailty’ may concern many different phenotypic traits: structural

size, body condition, physiological state, morphology, personality, etc.

Depending on the fitness component considered, studies of long-term fitness
consequences of early conditions in different species have provided some indication that fitness
consequences are either not perceptible before recruitment (post-tledging survival and

recruitment probability; Hiptner 1999; Drummond et al. 2003), not detectable after recruitment,
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or no longer detectable after recruitment even if earlier fitness consequences might have been
detected (Nevoux et al. 2010). Alternatively, Van de Pol et al. (2006 a) found evidence of long-
term consequences of the quality of the habitat experienced during growth in Oytercatchers on
both survival probability and reproductive success, through the quality of the habitat they recruit
in. Similarly, Cam et al. (2003) found evidence of long-term consequences of the length of the
rearing period on reproductive success after recruitment in Kittiwakes. Reid et al. (2003; 2008)
also found evidence of a relationship between early cohort conditions and future breeding
success in Choughs (Pyrrbocorax pyrrhocorax), or between natal location and adult survival. In other
words, there 1s substantial heterogeneity in results according to the species, study design and
methods used to collect or analyze data. Nevertheless, studies of long-lived birds share some

common challenges and features (see below).

Specific methodological challenges. Most studies of the consequences of early

conditions in long-lived birds have addressed relatively short-term fitness consequences on
fitness compared to the time scale at which reproduction takes place (e.g., survival from hatching
to fledging or survival just after fledging; Vifiuela 1999). Due to extended pre-breeding period
(sometimes longer than 10 years in seabirds; e.g., Jenouvrier et al. 2008) and ‘insutticient’
duration of research projects (relative to the mean longevity in the studied spectes), most studies
have focused on the following traits: post-tledging juvenile survival, survival from independence
to recruitment, or recruitment probability (Hario and Rintala 2009; Meathrel and Carey 2007).
Longer term consequences of conditions during development have rarely been addressed
(Nevoux et al. 2010). Naturally, a large number of studies of short-lived birds also have focused
on pre-breeding survival and age of first breeding (e.g., Lindén et al. 1992; Magrath 1991;

Verboven and Visser 1998).

Ironically, despite the specific interest of studies of stages immediately tollowing

dependence on parents (and the possible short-term influence of the quality of rearing
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environment and parental care on fitness components), survival after independence is one of the
most difficult demographic parameters to estimate in long-lived birds (especially seabirds, but not
exclusively). Indeed, many long-term studies assume or observe that yearlings (or sometimes
older) usually do not return to colonies or breeding locations that year (e.g., Croxall et al. 1990;
Jenouvrier et al. 2008), they sometimes ignore resightings of pre-breeders because they are too
tew (e.g., Nevoux et al. 2010), and recapture probability at age 1 is set to 0 in capture-mark-
recapture models (e.g., Votier et al. 2008). In addition, a common limitation is the confounding
of mortality and permanent emigration out of the study area; the latter is particularly ditticult to
assess 1n species with large distribution areas (e.g., Koenig et al. 1996; Link et al. 2002) unless
(still) expensive electronic devices are used (provided such devices can be used, depending on
size and battery life expectancy). This is particularly problematic in situations where dispersal
probability varies with individual features determined during development, e.g., body mass and
condition in juveniles (Barbraud et al. 2003; Belthoft and Dutty 1998 ). Schreiber et al. (2004) and
Hénaux et al. (2007) provided evidence of a relationship between eatly conditions at the colony

scale and natal dispersal probability in a long-lived bird.

Cobort effects as proxies’ of early conditions. Cohort studies can be helpful

when individual traits at fledging (i.e., traits assumed to reflect conditions during development;
e.g., body condition, structural size, etc.) are not measured. There is a long tradition of such
studies in long-lived birds and large mammals (e.g., Albon et al. 1987; Cam et al. 2005;
Christensen 1999; Nevoux et al. 2010; Reid et al. 2003). The long-term fitness consequences of
early conditions can be addressed by investigating whether individuals born in different years
exhibit similar fitness components at later age (age-specific survival, recruitment probability,
success probability after recruitment). ‘Early conditions’ are then defined as conditions
experienced by groups of newborns (weather, food availability, population, density, or simply

‘year’, etc.; Crespin et al. 2006). Benton et al. (2006) emphasized that “The way that traits covary
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means that individuals that experience common environmental conditions can carry the signature
of those conditions throughout life. This 1s especially true of exposure to early environments,
which can lead to marked differences in the lite histories of cohorts of organisms born at
different times (Bateson et al. 2004; Beckerman et al. 2002; Lindstrom 1999; Loison et al. 2004;
Reid et al. 2003; Solberg et al. 2004).” To determine whether cohort effects reflect the influence
of conditions in the year of birth on a later fitness component (e.g., recruitment probability), or a
relationship between the fitness component addressed and the conditions in the year it 1s
assessed (e.g., food availability in the year of recruitment; Spear et al. 1993), accounting tor year

effects is necessary. However, cohort, age, and year effects cannot be completely separated.

Extreme beterogeneity in traits affected by early development and

fitness components. Many hypotheses have been put forward concerning traits that may be

affected by early conditions, most of which relate to pathogens and energetic stress assocrated
with breeding phenology and tood abundance, the etticiency of parental care, or the number of
siblings competing for parental care. However, we won’t venture to describe any ‘general
relationship’ between early conditions and traits in long lived birds, or any ‘universal’ pool of
traits influenced by early development. Ludwigs and Becker (2006) reviewed 22 studies of post-
tledging survival in long-lived seabirds and found that 10 pre-tledging traits potentially covary
with survival (“clutch size, hatching order, hatching date, fledglings per brood, growth rate, body
size, chick peak mass, fledging mass, body condition, fledging age”). Additional papers (including
on geese) confirm the profusion of traits, fitness components, and relationships between such
traits and fitness. A relationship between tledging date and fledging survival in Guillemots (Ura
aalge, Harris et al. 2008) and Sooty Terns (Onychoprion fuscatus, tormelly Sterna Fuscata, Fear 2002),
but not body condition (Harris et al. 2008). A relationship between fledging size (wing length),
and marginally mass, survival up to recruitment, and age of first return in Tufted Puftins

(Eratecnla cirrhata; Morrison et al. (2009). A relationship between body mass, structural size at

10
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tledging (tarsus length) and pre-breeding survival in Barnacle Geese (Branta leucopsis; van der
Jeugd and Larsson 1998), but not date of birth. A relationship between body mass at fledging and
recruitment probability in Common Terns (S7erna hirundo; Ludwigs and Becker 2006), but not
clutch size, hatching order, number of fledglings per brood, or recruitment of fledged young. In
Western Gulls (Larus occidentalis), neither hatching order, hatching date, brood size had
consequences on age-specific survival from independence to recruitment, nor recruitment
probability (Spear et al. 1993). Simuilar results were found concerning body mass in Black Brant
(Branta bernicla, Sedinger et al. 2004). In contrast, Cam et al. (2003) concluded that there was a
relationship between the length of the rearing period in Kittiwakes, pre-breeding survival and
recruitment probability. In the Short-tailed Shearwaters (Puffinus tenuirostris), Meathrel and Carey
(2007) concluded that none of the intrinsic factors (parental quality, the size and weight of the
egg) “seemed to explain why some chicks returned to prospect and breed, while others did not.
[...] analyses were unable to detect which intrinsic factors could be important to recruitment in
this species.” They suggested that “factors operating outside the breeding season and away trom

the Bass Strait islands may determine whether or not a chick survives to return to breed”.

Heterogeneity across life bistories. 1.udwigs and Becker (2006), and Meathrel

and Carey (2007) hypothesized that specific differences in life histories explain why some
phenotypic traits betore tledging intluence post-tledging survival or recruitment probability in
some seabird species, but not in others. In some species, tledglings experience the transition from
breeding site to the open sea alone, when parents still provide care in some others. Meathrel and
Carey (2007) emphasized that in tube-nosed seabirds “all species for which a relationship
between fledging weight and post-fledging survival or recruitment has been documented, become
independent of their parents just before fledging, such as the Short-tailed Shearwaters who desert
their young up to a month betore tledging (Serventy 1967), so whether or not they return as

adults 1s independent of direct parental investment after fledging”. Along this line, Ludwigs and

11
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Becker (20006) highlighted that “Terns benefit from prolonged parental guidance after tledging
(Burger, 1980; pers. obs.). In this respect, they could be described as intermediate between auks,
which leave the colony under parental care at a pre-tledging stage (Harris et al., 1992; Hedgren,
1981; Lloyd, 1979), and Shearwaters, which are all but independent at fledging (Mougin et al.
2000; Perrins et al. 1973; Sagar and Horning 1998). Chicks of Common Murres (Harris et al.
1992; Hedgren 1981)) and Razorbills (Aka torda) (Lloyd, 1979) leave the colony long before
independence, and are fed by their parents for a long period at sea before reaching their
‘independence’ mass. That may well be one reason why, in the Alcidae, no evidence has been
tound for any influence by pre-tledging body mass on survival after fledging” (but see Harris et
al. 2008). Similarly, Stienen and Brenninkmeiter (2002) hypothesized that parental provisioning
after fledging butters juvenile against growth disadvantages that they experienced prior to leaving
their colony (see also Fear 2002). Parents can butfer environmental variation to some extent (e.g.
increase foraging effort when resource availability decreases; Ertkstad et al. 1998). As emphasized
by Ludwigs and Becker (2006) and Meathrel and Carey (2007), relevant measurable traits are
likely to be species-specitic, or at least specific to classes of species sharing common ecological

and lifestyle characteristics.

Metbodological beterogeneity. The difficulty in identifying ‘general patterns’ in the
literature partly retlects methodological ditferences across studies in data collection and analysis.
For example, in a study of Barnacle Geese, van der Jeugd and Larsson (1998) hypothesized that
they did not tind evidence of hatching date on post-tledging survival because of the time of
capture: hatching dates in the sample of young birds that survived to the age of capture wasn’t
representative of the whole population. Indeed, many other studies have documented a
relationship between hatching date and post-tledging survival (e.g., Harris et al. 1994; 2008;
Korpimiki and Lagerstrém 1988). Concerning data analysis, analytical methods to estimate age-

and state-specific survival probability (e.g., pre-breeders versus breeders), recruitment probability,

12
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and breeding probability after recruitment, have drastically changed over the past three decades:
current methods allow investigators to account for imperfect detection of individuals iz natura
(Williams et al. 2002), or to base their study on a local detection rate close to one (new techniques
of remote and electronic recording of individuals, e.g. Dittmann et al. 2003, Becker et al. 2008,
Braasch et al. 2009, Limmer and Becker 2010). Some studies of fitness consequences of early
conditions have used such approaches, have estimated detection probability and provided
estimates of fithess components not confounded with detection rate (e.g., Cooch 2002; Nevoux
etal. 2010; Reed et al. 2003; Voter et al. 2008; van der Jeugd and Larsson 1998; Votier et al.
2008;), whereas some others haven’t (mostly relatively old studies that could not yet benefit tfrom
those approaches; e.g., Croxall et al. 1990; Spear and Nur 1994), making comparisons among

studies difficult.

Due to relative rarity of relevant data sets to address long-term consequences of eatly
conditions in long-lived bird species and to the fact that many studies are retrospective (i.e., @
posteriori use of data not necessarily collected for that purpose), heterogeneity in methods used
and time scales considered hampers identitication of general patterns. The first statement in
Lindstrém (1999) clearly holds: “It is obvious that adverse environmental conditions might have
immediate effects [...].” Evidence has been found of etfects lasting up to recruitment in species
delaying recruitment for several years. However, whether there are “long-term fitness
consequences of conditions expertenced during early development” (Lindstrém’s second
statement) 1s still an open question 1n the vast majority of long-lived bird species. In a review
tocusing on humans, Ulijaszek (1996) detined ‘early conditions’ as follows: “what constitutes an
eatly environmental influence is anything that happens before full developmental maturity is
achieved”. Humans have extended childhood and in most societies extended parental care, a

teature suggested as creating substantial differences between mammals and birds in long-term

13
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consequences of conditions during development (see Reinhold 2002 concerning maternal effects
for example). However, at least some recent results from wild long-lived bird species have
provided evidence that conditions during the rearing period (e.g., length of the rearing period,
habitat quality), and possibly the efficiency of parental care, both have long-term consequences
on fitness components (e.g., Cam et al. 2003; Van de Pol et al. 2006 a). Importantly, assessment
of lifetime consequences of early conditions in long-lived birds is still extremely rare (e.g., Reid et
al. 2003). In a study of lifetime reproductive success in Oystercatchers, Van de Pol et al. (2006 a)
provided evidence that “long-term etfects of early conditions contributed more to overall fitness
differences than short-term consequences, contrary to common conceptions on this issue. Short-

term effects of early conditions lead to the large underestimation of fitness consequences”.

WHERE TO NEXT?

New analytical metbods. Future studies should gain insight into whether early
conditions have long-lasting effects on fitness in long-lived birds by re-analyzing available long-
term data sets using homogeneous analytical approaches. In the 1990’s, statisticians started
developing methods to estimate ‘state-specific’ titness components (survival probability,
recruitment probability, breeding probability and success after recruitment) from individually
marked individuals in situations where not all individuals alive and present in the study area were
observed (multistate capture-recapture models; Arnason 1973; Hestbeck et al. 1991; Nichols and
Kendall 1995; Schwarz et al. 1993). Such models are required to estimate survival probability in
pre-breeders and breeders of the same age for example, 1.e., individuals in different reproductive
‘states’, where individuals change state in a stochastic manner. In species with delayed maturity,
tailure to observe, contact or capture individuals for several years raises substantial difficulties in
studies of consequences of early conditions on fitness. To handle such situations, several authors
treated the pre-breeding stage as an unobservable state (e.g., Crespin et al. 20006; Jenouvrier et al.

2008; Nevoux et al. 2010). Simultaneously, statisticians started developing approaches to handle

14



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

Cam and Aubry 15

uncertainty in state assignment (Kendall 2004). Such approaches are relevant when observers
cannot assess with certainty whether individuals breed, or not, a common situation in bird studies
where individuals breed unsuccesstully and no longer attend breeding sites for example; they may

be considered as non-breeders (possibly pre-breeders), or floaters.

A recent extension of multistate models developed by Pradel (2005; see also Choquet et
al. 2009), ‘Multievent models’ are especially designed to handle state uncertainty. Importantly,
Rouan et al. (2009) developed a method (derived from Multievent models) to estimate lifetime
reproductive success when breeding status cannot always be assessed. Other approaches to
construct sequences of discrete states using hidden Markov chains have been applied in
molecular ecology or weather forecasting for example (Cappé et al. 2005) and can be used in the
capture-mark-recapture setting (see Dupuis 1995 for one of the tirst applications not extended
yet to inferences about lifetime reproductive success). This development should prove
particularly useful to re-investigate long-term consequences of early conditions in long-lived birds
using available data sets. Indeed, the method handles a major feature of capture-mark-recapture
studies of wild vertebrates (imperfect detection), and doesn’t require that all individuals are

monitored over their entire life (i.e., right censored data can be used).

Another recent development of capture-mark-recapture models may prove usetul to
assess long-term fitness consequences of early conditions. A ditticulty inherent in longitudinal
studies of fitness components is disentangling within-cohort phenotypic mortality selection and
genuine variation of these components throughout life (Vaupel and Yashin 1985). To address this
question, accounting for unobserved heterogeneity in populations (Jones et al. 2010) 1s common
in human demography (see Vaupel et al. 1979 for one of the first papers on the topic). Recently,
Gimenez and Choquet (2010), Marzolin et al. (2011), and Royle (2008) have combined capture-
mark-recapture models with models accounting for such heterogeneity and re-analyzed a

‘famous’ data set collected by Marzolin (2002; European Dipper Cinclus cinclus; cited in virtually
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any textbook on capture-mark-recapture modeling). This approach will help investigators re-
analyze existing long-term data sets (including ones continuing at present) and assess whether the
consequences of early conditions persist throughout life, or if early conditions mostly aftect
survival in younger age classes, with frail individuals progressively disappearing from populations
via within-cohort phenotypic mortality selection. In addition, this approach can be used to
address whether models incorporating measurable covariates (describing early conditions)
perform better than models also accounting for unobserved heterogeneity, and thus assess the
contribution of early conditions to differences in titness components among individuals (Aubry
etal. 2011; Cam et al. 2002 a; Jones et al. 2010). Although very data hungry, statistical models
accounting for the stochastic change in individuals ‘state’ and individual covariates may allow
disentangling long-term effects of early conditions and short-term carry over effects (Harrison et

al. 2011).

Individual ‘quality’. 'The concept of ‘quality’ (of parents, eggs, offspring) is pervasive

in studies of conditions during growth and their consequences on ottspring titness (e.g., Bize et
al. 2002; Vergara et al. 2010). In birds, early conditions start at the egg stage. Meathrel et al.
(1993), and Meathrel and Carey (2007) illustrated the importance of the ‘quality” hypothesis in
studies of consequences of conditions during development: “egg size in seabirds 1s commonly
held to be an important index of egg quality because it 1s thought to retlect the quantity of
nutrient reserves available to the chick during embryonic development and at hatching (Boersma
1982).” “High rates ot survival for chicks hatching from large eggs may be a consequence of egg
size per se, or of the ability of high quality parents to lay eggs and to subsequently provide
superior care to nestlings (Meathrel et al. 1993). Both egg size and offspring survival are likely to
be affected by parental attributes, in particular those of the maternal parent (Nager et al. 2006).”
Maternal expenditure (egg size) 1s logically assumed to be related to traits (morphological,

physiological) of the young at birth (hatching), but there 1s unambiguous evidence that offspring
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traits at independence also depend on parental care in long-lived birds, which may have long-
lasting effects on offspring fitness. For example, in an experimental study of Oystercatchers, Van
de Pol et al. (2006 b) found evidence that there was a relationship between rearing conditions

(environmental or parental quality), but not egg size, and offspring survival over 50 days.

Despite the difficulty inherent in definition and measurement of ‘individual quality’
(Bergeron et al. 2010; Lailvaux and Kasumovic 2011; Wilson and Nussey 2009), the hypothesis
that parents ditfer in ‘quality’ plays such a large part in studies of conditions during growth and
their consequences on oftspring (e.g., Bize et al. 2002; Vergara et al. 2010; Wendeln and Becker
1999) that investigators should attempt to be specific about the way they use this concept. It may
not always be possible to ‘measure’ quality: 1n studies of primates, Hawkes (2010) and Jones ef a/
(2010) recently re-emphasized that investigators may not always be able to define measurable
criteria a priori to rank individuals according to the quality of care they may provide to oftspring,
and then model-based inference should be used to account for heterogeneity in fitness among
parents. In addition, ‘quality’ rarely comes down to morphology and physiology (but see e.g.,
Wendeln and Becker 1999). When the conditions are met, behavioral traits that may partly retlect
parental experience and the pair common experience (e.g., coordination) should be considered.
In Common Guillemots, Lewts et al. (2006) used detailed behavioral data from parents to
characterize pair quality based on time spent together at the site and chick feeding rates. They
also used trip duration at the individual level to assess the quality of care provided by the
individual parent. They concluded that the pair effect on breeding success was larger than the one
of each parent alone. Using a longitudinal approach, Limmer and Becker (2009) found that chick
provisioning improves with parental experience in Common Terns. In Kestrels (Fako tinnunculns),

Vergara et al. (2010) used the duration of the post-tledging dependence period to assess parental

quality.
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Timing of trait measurement. When tledglings’ traits are measured, studies should
consider carefully the questions of the time scale considered, timing of measurement of traits,
and consistency (or correlation through life) in individual traits over time (e.g., Carere et al. 2005;
van Oers et al. 2004 a). Festa-Bianchet et al. (2000) addressed this issue thoroughly 1n a study of
Bighorn Sheep (Ovis canadensis). They did not tind evidence of a relationship between mass in 3-
week old lambs and adult mass or lifetime reproductive success in ewes. However, “mass gain
during lactation, possibly but not necessarily related to the amount of maternal care recetved,
aftects adult mass and reproductive success. Mass gain over several years and the number of ewes
in the population strongly affects adult mass in both sexes and therefore can have profound
eftects on reproductive success in this long lived species with a multi-year growth period”.
Detailed behavioral observations are necessary to address post tledging parental care in birds and
its role in transition to independence (Ashmole and Humberto 1968; Heinsohn 1991). In the
Short-tailed Shearwater , Meathrel and Carey (2007) concluded that “there were only weak
relationships between parental quality, the size and weight ot the egg and the chick at 2 months
of age”. Similarly, in Common Terns, Braasch et al. (2009) found that “neither the date of
hatching nor the departure age was tound to attect survival. The only predictor of survival was
last post-tledging body mass whereas fledging mass itself was of minor importance.” In Lesser
Snow Geese (a niditugous species, Anser caernlescens caernlescens), there was a correlation between
gosling size and adult size (Cooch et al. 1991). Sedinger et al. (1995) found similar results in Black
Brant, as well as Larsson and Forslund (1987) in Barnacle Geese (Branta lencopsis). Geese select
mates assortatively (Choudbury et al. 1992), so size 1s likely to influence the probability of finding

a mate and breeding,

Ontogeny. As highlighted earlier, Ulijaszek (1996) defined ‘early conditions’ as follows:
“what constitutes an early environmental influence is [...] anything that happens before full

developmental maturity 1s achieved”. This definition of ‘early conditions’ in humans includes
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ontogeny and development during adolescence. Ontogeny may concern the entire life but here
we focus on conditions before recruitment in birds. In a study of Eurasian Dippers (Cinclus
cinelns) Yoerg (1997) addressed the relationship between acquisition of adult foraging skills and
age at independence and concluded that transition to independence did not require full maturity.
This highlights the importance of learning after independence (e.g., Watson and Hatch 1999) for
survival and future recruitment. A common difficulty in studies of long-term consequences of
early conditions 1s that development in long-lived species encompasses several years, and
conditions during development also include adolescence and behavioral development betore
sexual maturity and recruitment. This raises the question of ontogeny and learning, a biological
teature acknowledged as potentially important for life history evolution in vertebrates for
example (Charlesworth 1994). In species with delayed breeding, environmental conditions
experienced during the pre-breeding stage (e.g., weather conditions at sea for seabirds) may
override the influence of conditions during early development before independence. Individual
behavior during this stage may have strong consequences on fitness (survival and recruitment

probability for example), and may also override the influence of early conditions.

As emphasized by Jenouvrier et al. (2008), “recruitment to a breeding population is a
gradual, complex process for long-lived species with delayed maturity”. It has long been known
that in many bird species immatures return to colonies several years betore breeding (e.g., Cadiou
et al. 1994; Cadiou 1999; Chabrzyk and Coulon 1976; Danchin et al. 1991; Dittmann and Becker
2003; Dittmann et al. 2005; 2007; Halley et al. 1995; Klomp and Furness 1992; Nelson 1987;
Pickering 1989). The behavior, arrival dates, and activities of young birds before recruitment (i.e.,
in pre-breeders) may have a substantial influence on age of first breeding, and the quality of the
recruitment habitat (Bruinzeel and V an de Pol 2002). For example, familiarity with sites and
potential neighbors may facilitate accesston to breeding status and successtul reproduction by

reducing aggression (Cadiou et al. 1994; Cadiou 1999; Dittmann and Becker 2003; Dittmann et al.
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2005; 2007; Halley et al. 1995;). In the Kitttwake Cam et al. (2002 b) addressed age-specific
survival, recruitment probability, and reproductive success over life as a function of behavior
during the pre-breeding period (activities assumed to play a part in territory acquisition and
integration into the local social web), and found evidence of a relationship between both
covariates and fitness components up to recruitment. There is indication that pre-breeders
attending breeding locations, involved in nest building activities or coordination activities with a
mate have a higher probability of recruiting than others, and of breeding successtully in the first
breeding attempt (Cam et al. 2002 b). There may not be any detectable direct relationship
between pre-breeding behavior and breeding success other than in the first attempt, but there 1s
one between age of recruitment and subsequence breeding success (i.e., some indirect
consequences of behavior during the pre-breeding period; Aubry et al. 2009 a b; Cam et al. 2002
b; Limmer and Becker 2010). Investigating ontogeny requires detailed behavioral studies; such
data are likely to be missing in retrospective analysis of existing long-term studies. However,
depending on the importance of the part played by conditions (including social conditions,
competition, etc.) and pre-breeding activities in the recruitment process, behavioral observations
during the pre-breeding stage may substantially help explain future reproductive trajectory (e.g.,
van de Pol et al. 2007). This should help address whether conditions between independence and
recruitment override the influence of eatly conditions on fitness after recruitment. In addition,
improvement of remote tracking techniques based on electronic devices may contribute to
investigate pre-breeders’ activities such as prospection, involvement in soctal activities before
breeding, and conditions experienced at that stage (Becker et al. 2008; Bogdanova et al. 2011;

Dittman and Becker 2003).

Heritability and parental effects. A question currently receiving growing attention

1s the extent to which morphological (e.g., structural size), physiological (e.g., body condition) and

personality traits are determined genetically and are heritable (e.g., Authier et al. 2011;
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Dingemanse et al. 2004; Dingemanse and Réale 2005; Drent et al. 2003; Garnett 1981; Kontainen
et al. 2008; Larsson and Forslund 1992; Larsson 1993; Merild et al. 2001; Réale and Festa-
Bianchet 2003; Schluter and Gustatsson 1993; Stamps and Groothuis 2010; Téplitsky et al. 2008;
van Noordwijk et al. 1988; van Oers et al. 2005). Similarly, titness components themselves may
be heritable (e.g., Charmantier 2006 a b; Kontiainen et al. 2007). In addition, Lindstréom (1999)
identitied maternal and paternal effects as “important sources of individual varation in early
development”. The recent development of quantitative genetics modeling tools has triggered
research on the genetic and environmental determinism of traits, and on parental effects on
various phenotypic traits, including fitness components (Kruuk and Hill 2008; Kruuk et al. 2008;
Wilson et al. 2008; 2010). Quantitative genetics approaches will be useful to assess the extent to
which offspring traits can be attributed to their genetic background and position in the pedigree,
to environmental conditions, to non-nuclear genetic maternal effects, and to non-genetic parental
teatures (Clutton-Brock and Sheldon 2010; Lynch and Walsh 1998). For example, in the Lesser
Snow Goose, a species with substantial variation in gosling size according to teeding conditions
in the rearing habitat (Cooch et al. 1991; 1993), Cooch (2002) hypothesized that “selection may
operate on the environmental component of body size, not on additive genetic variance of body
size”. Future studies will benefit from recent methodological development of statistical models
combining the quantitative genetics ‘animal model” (Postma and Charmantier 2006) and capture-
mark-recapture models (1.e., model designed to handle missing data resulting from non-detection

of animals that are alive and present in the study area; Papaix et al. 2010).

The growing interest in evolutionary ecology and quantitative genetics is drawing
attention to maternal effects (e.g., Potti 1999; Reinhold 2002). If early conditions are commonly
detined as depending on the habitat and the parents, data are missing on maternal (or parental)
effects in long-lived birds except in physiological studies of transfers from mother to offspring

via egg composition (Boulinier and Staszewski 2008; Gasparint et al. 2007). Nevertheless, as
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shown by Lewts et al. (2006), some measurable behavioral criteria can be used to assess the
‘quality’ of parental care and its relationship with parental fitness. It should be possible to address
its repeatability during the parent’s life, and its long-term consequences on fitness of young raised

to independence.

The scarcity of long-term studies of parental eftects in long-lived birds may be explained
by the ‘age’ of studies of wild birds: still insuttficient to work with the pedigree of population in
most cases (how long does it take to have data from at least two generations of animals whose
mean longevity 1s 10, 15 years, or more?). Nevertheless, maternal effects have been suggested to
play a central part in the dynamics of small mammal populations (including non-cycling
populations; Inchausti and Ginzburg 2009; Plaistow and Benton 2009; Rossiter 1994). They have
been documented in several wild large mammals (Wilson and Festa-Bianchet 2009). As explained
by Benton et al. (2005) “Differential provisioning of offspring 1s a widespread phenomenon that
has important consequences for offspring fitness [...]. The transmission of maternal quality to
ottspring probably also has population dynamical consequences, because it leads to a time lag
between the environment and the population response. In the presence of environmental
tluctuations, the lag created by the delayed life-history ettect typically also increases population
variability and decreases its predictability”. This type of lagged dynamical phenomenon exists in

long-lived birds (Thomson and Ollason 2001), but whether it is common is still unknown.

CONCLUSION

There 1s growing interest in long-lasting effects of early development in a variety of taxa,
encouraged by conclusive results obtained in humans (the ‘Barker Hypothesis” in 1994, or
hypotheses based on long-term effects of exposure to infectious diseases; Bengtsson and
Lindstrém 2000). However, as emphasized by Festa-Bianchet et al. (2000) concerning large

mammals “it 1s often assumed but seldom quantified that early conditions have long-term eftects
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on fitness. The underlying assumption is that there is a relatively strong correlation between
morphological, physiological, or behavioral characteristics of otfspring and lifetime reproductive
success”. Due to rarity of relevant data sets, too tew studies of long-lived birds have addressed
the consequences of conditions during early development on fitness components over the
reproductive life, and lifetime reproductive success (but see Van de Pol et al. 2006 a). Whether
these conditions have long-term fitness consequences 1s still ambiguous: some studies have
shown that initially disadvantaged individuals do not incur long-term costs of energetic stress for
example (Drummond et al. 2003), or that early mortality 1n such individuals leads to rapid
disappearance from the population (Braash et al. 2009; Nevoux et al. 2010). In contrast some
others have found substantial lifetime reproductive success consequences of conditions during
development (Cam et al. 2003), including via access to higher-quality territories (Van de Pol et al.
2006 2). Evidence from large mammals suggests substantial long-term individual and population
effects of early conditions (Saether 1997; Kruuk et al. 1999), including trans-generational
maternal effects. Evidence from short-lived birds also suggests long-term individual
consequences (e.g., Gorman and Nager 2004), and maternal eftects have been documented in
long-lived ones. Despite logistical and tinancial difficulties inherent in long-term studies, they are

the only way of addressing Lindstrém’s second statement.

Existing long-term longitudinal data sets should be re-analyzed using recently developed
capture-mark-recapture models handling state uncertainty and unobservable heterogeneity in
populations (e.g., Gimenez and Choquet 2010; Pradel 2005). For example, it may be worth
evaluating whether some of the unique studies of reproductive success included in books edited
by Tim Clutton-Brock (1988) and litetime reproduction in birds by Ian Newton (1989) have
continued and can provide new insight into the fate of the offspring of the individuals studied at
that time. One of the most difticult challenges for future studies will be determining whether

ontogeny and conditions experienced between independence and recruitment override the
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influence of conditions during early development, or if individuals growing under unfavorable
conditions disappear from the population before recruitment, or both. Although demanding,
when possible ongoing studies of long-lived species should use a large number of criteria to
characterize ‘early conditions’, 1.e., not restricted to physical conditions (weather), food
availability, morphological, physiological or phenological criteria; data characterizing the ‘quality’
of parental care should also be collected (experience, dominance status, pair coordination, e.g.,
Lewss et al. 2000). To assess the full range of conditions experienced before full developmental
maturity, when possible, they should use a multi-disciplinary approach and address changes in
individual behavior during the pre-breeding stages (prospection, habitat choice, dominance, pair
tormation), and characterize the soctal context (e.g., Van de Pol et al. 2007). In the near future
electronic devices may also help collect information from individuals during the extended pre-
breeding stage in a larger range of species (Bogdanova et al. 2011; Dittman and Becker 2003).
Last, statistical methods designed to estimate lifetime reproductive success or incorporate
pedigree information in standard situations of studies of wild vertebrates with impertect
detection probability (Papaix et al. 2010; Rouan et al. 2009) otfer new opportunities to assess

long-term fitness consequences of early development in long-lived birds.
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