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Abstract 
 
Cellular materials have applications for impact and blast protection. Under 

impact/impulsive loading the response of the cellular solid can be controlled by 

compaction (or shock, see [3, 4]) waves. Different analytical and computational 

solutions have been produced to model this behaviour but these solutions provide 

conflicting predictions for the response of the material in certain loading scenarios.  

The different analytical approaches are discussed using two simple examples for 

clarity. The differences between apparently similar “models” are clarified. In 

particular, it is argued that mass-spring models are not capable of modelling the 

discontinuities that exist in a compaction wave in a cellular material. 

 
Keywords: Cellular material; Compaction wave; Shock wave. 
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1. Introduction 

Cellular materials (e.g. foams, honeycombs etc.) are employed in many applications 

due to their multi-functional properties, including insulation and low weight, 

especially for packaging and in light-weight sandwich panels.  One of their 

applications is as an energy absorbing layer for impact and blast protection.  The 

cellular materials considered here are those that are characterised by a relatively flat 

plateau stress until densification.  As such, they are often considered to be ideal 

energy absorbers because of their low weight and their ability to deform over a long 

stroke at an almost constant load (see Fig. 1).  During quasi-static compression the 

energy absorbed per unit volume is equal to the area under the nominal stress-strain 

curve, i.e. the cellular material is considered as a continuum, not a material 

comprising the edges and faces of the actual cell structure. However, under intense 

dynamic loads the cellular structure plays a key role and compaction waves 

propagating through the cellular array play an important role in the response of 

cellular solids.  The compression is localized at discontinuity (shock) fronts and 

deformations propagate through the cells in a progressive manner.  Various methods 

have been proposed to model “shock wave” (more precisely “compaction front”) 

propagation in cellular solids, e.g. one-dimensional shock wave models (e.g. [1-9]), 

spring–mass models [10, 11] and FE modelling (e.g. [7-9]).  In addition one-

dimensional ‘shock wave’ models have been applied to certain loading scenarios but 

with different formulations [12-14] of the “shock theory”.  The different analytical 

approaches have led to some debate, e.g. [15-17]. 

 

The aim of this article is not to present a new method.  Rather it is to provide clarity in 

a very confused area by comparing three existing methods for the analysis of dynamic 
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compaction of cellular materials.  These methods are: (i) “shock theory”; (ii) “energy 

conservation”; (iii) mass-spring models.  The comparison is carried out by 

considering the solutions to two idealised loading scenarios (Examples 1 and 2 

defined later).  The different assumptions inherent to each method are shown to lead 

to large differences between the predictions. 

 

Reid and Peng [1] provided the first “shock wave” predictions for cellular solids to 

explain certain experimental results, focusing on the enhancement of the crushing 

strength of wood specimens.  For simplicity, the cellular solid was idealized as a rigid, 

perfectly-plastic, locking (R-P-P-L) material. Developments of the same simple shock 

theory have been applied with more accurate material models in order to predict better 

the stresses during direct impact testing of cellular solids.  For example, an elastic, 

plastic, hardening material model was used in [5, 6].  Lopatnikov et al. [8, 9] used an 

‘‘elastic–perfectly–plastic–rigid’’ model and shock-wave analysis to predict the 

deformation of aluminium foam in both foam projectile [8] and target [9] tests. For 

the simple “shock” wave analysis used in [1-4] the strain is equal to one of two 

possible values, viz. zero or a value associated with the fully locked material. In [8, 9] 

the effect of elasticity is incorporated but the strain within the compacted material is 

again given a value associated with the fully locked material, although the locking 

strain is defined in a different way.  However the basic assumptions in the analysis 

remain and provide good agreement with FE predictions [8, 9].  The predictions in [1-

9] differ only in detail (see [17]) and will be grouped together as “shock wave” 

models.   
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FE modelling of the dynamic compaction of cellular solids has been carried out in two 

ways.  In certain investigations the material has been treated as a continuum [7-9].  In 

other simulations approximations to the actual structure of either two-dimensional [4, 

20-21] or three-dimensional [22] cellular solids are modelled.  As continuum-based 

FE predictions have been shown to agree with “shock wave” theory, they are 

discussed only briefly here. 

 
An alternative solution to dynamic loading of foams wherein the deformation is 

governed by a compaction wave was reported in [12] giving the equation of motion 

and energy absorption for the case of a rigid mass striking a foam column. This 

formulation has since been repeated or used in [13, 14, 18], and discussed in [15, 16].  

In [12, 13] the case of a rigid mass striking a foam layer with the distal face fixed 

rigidly was considered.  In [14] the analysis was extended to that of a sandwich panel 

by considering the overall motion of both face-sheets and the compression of the 

internal foam layer when the panel is subjected to blast. The procedure used in [14] 

was then applied to a clamped, circular sandwich plate in [18] to predict the energy 

absorbed and timescales associated with the core compression stage.   

 

Tan et al [4] argued that the equations of motion derived in [12] are incorrect.  The 

“steady-state shock” equations in [4] were derived from a thermo-mechanical 

approach.  Whilst providing useful insights, this approach clouds the simplicity of a 

derivation based on a purely mechanical approach using conservation of mass and 

momentum only.  In this paper, this simpler approach is used in order to illustrate the 

essence of the ‘shock’ model for impact/blast loading and to clarify certain features of 

the solution of such problems that have appeared in the recent literature, two 

examples are presented. In Example 1, conservation of momentum is applied to 
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predict the compaction of an energy absorbing foam column which is struck by a rigid 

mass as shown in Fig. 2, i.e. the same example as in [12].  In doing so, it will be made 

clear that the solutions based on “shock wave” models [1-9] are fundamentally 

different to those based on the formulations in [12-14, 18].  The R-P-P-L idealisation 

is used for Example 1.  The aim is to derive the governing equations in a simpler way 

than in [4] as well as to illustrate the differences between the “shock wave” theory 

and the predictions in either [10, 11] or [12], rather than to predict more accurately 

experimental data, which will be the subject of a future paper.  In the R-P-P-L model 

quasi-static material behaviour is characterised by two parameters, i.e. the plateau 

stress σP and the locking (densification) strain εD.  

 

Example 2 builds on the theory developed in Example 1 to explain the large 

differences between the predictions of mass-spring models described in [10, 11] and 

“shock theory”.  In Example 2, the boundary condition corresponding to the impact of 

a rigid mass on the foam column (example 1) is replaced by a constant pressure 

applied over a short duration.  The intensive pressure pulse load from a blast is 

another possible source for shock propagation in a cellular material. Li and Meng [10] 

studied the “compressive shock wave propagation in the solid phase of a cellular 

material” using a one-dimensional mass-spring model.  A foam column was subjected 

to a rectangular pressure pulse at one end (simplified ‘blast’ loading) while the other 

end was fixed to a rigid support.  Stress enhancement (i.e. stresses greater than the 

applied pressure [10]) within the foam was predicted during the propagation of the 

compaction wave through the cellular material.  Further, a series of pressure pulses 

were considered in order to predict the critical pulses delivered to the foam core, 

beyond which the maximum pressure pulse applied to the rigid support was greater 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

 6

than the original, applied pressure.  An R-P-P-L idealisation is again used to obtain 

closed-form solutions.  A more realistic elastic, perfectly plastic, hardening (E-P-P-H) 

material description is used later for one loading scenario for comparison with the R-

P-P-L model and the results in [10].   

 

Gao and Yu [11] used a one-dimensional mass-spring system to model the response of 

a cellular material to a short duration pressure pulse in order to investigate the effect 

of material properties on the response.  The speed of the compaction wave predicted 

by the mass-spring model is shown to agree well with that predicted by “shock 

theory” [11].  However, typical pressures considered in [10] were 2 to 5 times the 

plateau stress in the material whereas in [11] the maximum pressure considered is 

only 2.5 times the “collapse stress” of the material.  Additionally, Li and Meng 

provide an attenuation/enhancement boundary in [10] (discussed in Example 2) that is 

not provided in [11].  For these reasons, the predictions in [10] are used for 

comparison in Example 2. 

 
 
2. Example 1: Compaction wave in cellular solid subject to impact by a rigid 
mass 
 
Under a high speed impact or high magnitude impulsive load, a cellular material 

deforms in a progressive manner with the cells adjacent to the loaded surface 

compacting first and the deformation then passing through the material in a wave-like 

manner.  Whilst this problem has been treated previously (e.g. [6, 7], for clarity, the 

steps in developing the basic theory are repeated below. 

 

The dynamic crushing model for a rigid projectile of mass G striking a R-P-P-L target 

of mass MCore, initial length 0l , cross-sectional area 0A  and density 0ρ  is illustrated in 
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Fig. 2.  The mass G has an initial velocity v0 and strikes the cellular column at time t = 

0.  Fig. 2 (a) shows the situation just before impact while Figs. 2 (b) and (c) illustrate 

the compression at times t and t + δt.  As cellular solids can undergo large plastic 

compression in one direction without lateral expansion, the target is assumed to 

deform under uniaxial compressive strain conditions. As the compaction wave travels 

through the material a strong discontinuity is assumed to exist between the deformed 

and undeformed regions.  In the undeformed region ahead of the wave, the stress is 

equal to the plateau stress σP (essentially assuming an infinite elastic wave speed) 

while the strain and particle velocity there are zero.  After compression the stress can 

take any value.  The compacted region travels with the same (reducing) velocity as 

the mass and has been compressed to the densification strain, εD .  The stress in this 

region is now considered. 

 
From kinematic considerations it can be shown [1] that the speed of the compaction 

front relative to the projectile (see Fig. 2) is 

 

              v
dt
dx

D

D

ε
ε−

=
1 ,           (1) 

 
where v is the instantaneous velocity of the rigid mass with respect to a stationary 

frame.  Conservation of mass [1] gives 

 

         
ux

x
D

D +
=−= ε

ρ
ρ 10 ,                                               (2) 

 
where 0ρ  is the initial density, Dρ  is the density when fully crushed, u  is the 

displacement of the rigid mass at time t, and x is the deformed length of the crushed 

cellular material.  Over a small time interval δt (see Fig. 2) the compaction wave 

travels along the column so that a small element of material of mass mδ is added to 
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the front of the compacted portion which increases in length by a small amount xδ .  

The mass of this element is 

 

               
D

xA
m

ε
δρ

δ
−

=
1

00 .         (3) 

 
Over the time interval δt this element has stresses σD and σP on its left and right faces 

respectively, where σD is the stress just inside the compacted region.  The element has 

zero velocity at time t and a velocity v at time t + δt.  Conservation of momentum for 

the element of mass mδ  over the time increment δt during which it undergoes 

compaction gives 

 

( ) mvtAPD δδσσ =− 0 .     (4) 

 

Substituting Eqns. (1) and (2) into (4) leads to 

 

              20 v
D

PD ε
ρ

σσ += .                (5) 

 

This is the original, simple, stress enhancement formula (c.f. [1]) for the stress just 

inside the discontinuity and can also be derived by applying the classical Rankine-

Hugoniot relationships (e.g. [4]).  All the referenced works use this equation in one 

form or another.  However, after this point different models diverge.  In Section 3.1, 

conservation of momentum is applied to the whole system to derive an equation of 

motion.  In Section 3.2, the alternative “energy balance” approach is employed to 

derive a different equation of motion.   

 
 
3. Two different solution schemes in the literature 
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3.1 Scheme 1: “Conservation of momentum” approach 
 
 

Conservation of momentum for the whole system shown in Fig. 2 over the period 

from t to t + δt gives 

 

             [ ][ ] [ ] tAvxAGvvAxxG PDD δσρδδρ 000)( −=+−+++ .       (6) 

Thus, substituting Eqns. (1) and (2) into Eqn. (5), the governing equation of motion is 
 

             ⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=== u

A
Gv

du
dvv

dt
ud

dt
dv

DD
P ε

ρ
ε
ρσ 0

0

20
2

2

.      (7) 

 
Integrating Eqn. (7) with the initial condition 0vv =  at 0=u  gives 
 

           
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= P

D
P

D

D u
A
G

A
Gvv σ

ε
ρ

σ
ε
ρ

ρ
ε

2

0

0

2

0

2
0

0

0

.                         (8) 

 

Thus for PD σσ > , from Eqns. (5) and (8) the stress just behind the compaction front 

can be found as a function of the displacement of the rigid mass, i.e.   

             
2

0

0

2

0

2
0

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= u

A
G

A
Gv

D
P

D
D ε

ρ
σ

ε
ρ

σ .        (9) 

 
The compaction front will continue to propagate through the foam until either the 

mass is brought to rest or the compaction front reaches the distal end, which results in 

rigid impact with the support for the R-P-P-L shock model.  The impact velocity, Dv , 

for which the cellular specimen is just fully crushed before the end mass is brought to 

rest, can be found by setting the initial velocity as Dvv =0  and the final velocity as 

0=v  when maxuu =  in Eqn. (8), i.e. 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= 11

2
max00

0 D

DP
D G

uA
v

ε
ρ

ρ
εσ .                (10)  

 
The maximum displacement of the proximal end is Dlu ε0max = , where 0l  is the 

original length of the column.  Therefore, equation (10) can be written in terms of the 

mass ratio for full specimen locking as 

 

            
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ += 11

2

0 G
M

v coreDp
D ρ

εσ
,     (11) 

 
where Mcore is the mass of the cellular material cylinder.  It follows that for full 

locking of the specimen, the ratio of the specific energy absorbed under conditions 

where the response is governed by the propagation of a compaction (structural shock) 

wave to that under quasi-static compression is given by 

 

             1
2

+=
G

M coreψ .                                        (12) 

 
Equation (12) shows that for impacting masses with equal kinetic energy but different 

masses (and impact velocities), the ratio of the specific energy absorption can be 

defined in terms of the mass ratio only.  This clearly demonstrates the shock 

enhancement in the dynamic energy absorbing mechanism.  Additionally, from 

equation (11) we can find the critical length of the foam column required to just bring 

a mass G with an impact velocity v0 to rest as  

 

  
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+= 11

2
00

00
1

DP
CR

v
A

Gl
εσ

ρ
ρ

.      (13) 

 
 
3.2 Scheme 2: “Energy balance” approach 
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However a different development of the equations is found in [12-14].  Assuming that 

the energy absorbed during the dynamic compression is equal to that for quasi-static 

compression as in [12-14], “conservation of energy” for the element of mass mδ  over 

the time increment δt during which it undergoes compaction (Fig. 2) gives 

              20

2
v

D
PD ε

ρσσ += .                            (14) 

 

A similar “energy conservation” approach for the whole system between times t and t 

+ δt (Fig. 2) gives,  

             [ ] lAxvAvvxAG DPDD δεσδρδρ 0
2

00 2
1

=++ .                                   (15) 

 
Substituting Eqns. (1) and (2) into Eqn. (15), the governing equation of motion is 
 

             ⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−== u

A
Gv

du
dvv

dt
dv

DD
P ε

ρ
ε
ρσ 0

0

20

2
.            (16) 

 
 
Integrating Eqn. (16) with the initial conditions 0vv =  at 0=u  gives, 
 

              

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

+
= P

D

D
p

D

G
uA

v

v σ

ε
ρ

ε
ρ

σ

ρ
ε

00

2
00

0 1

22
.                     (17) 

 
 
From this “energy balance” approach the impact velocity that just causes full crushing 

of the core by the end mass can be found either by setting Dvv =0  and 0=v  when 

maxuu =  in Eqn. (17), or more simply by equating the initial kinetic energy of the mass 

with the maximum energy absorbed by the cellular column, giving 

 

              
G

uA
v P

D
σmax02

= .       (18)  
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It follows that the critical thickness of cellular solid required to just bring a mass G 

with an impact velocity v0 to rest is 

   
DP

CR A
Gv

l
εσ0

2
0

2
= .      (19) 

 
That is, 1=ψ  and, as expected, there is no velocity effect on energy absorption. 
 
 
3.3 Comparison of the solution schemes 1 and 2 
 
It should be noted that Eqn. (5) and Eqn. (7) are consistent and that Eqn. (7) can be 

derived from Eqn. (5) by considering the motion of the end mass and compressed 

material to the left of the shock front.   In the same way Eqns. (14) and (16) form a 

consistent pair in that Eqn. (16) can be derived from Eqn. (14).  However, solution 

Scheme 2 violates momentum conservation for both the prediction of the stress just 

inside the compaction front (c.f. Eqns. (14) and (5)) and the governing equation of 

motion (c.f. Eqns. (16) and (7)); therefore Scheme 2 is incorrect.  In Scheme 1 no 

assumptions are made regarding the energy absorption capacity of the column of 

cellular material whereas this was done in Scheme 2.  Energy is conserved in Scheme 

1 and not in scheme 2 despite the “energy balance” approach used, as can be 

illustrated by considering the hatched element in Fig. 2.  Over the time increment δt, 

the work done on this element by external forces is 

 
uAW DE δσ 0= , (20) 

 
and the gain in kinetic energy of the element is 
 

( )D
E

xvAT
ε

δρ
−

=
12

1 2
00 . (21) 

 
By conservation of energy, the energy absorbed by plastic deformation per unit 

volume of the element is therefore 
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( ) DPDVE εσσ +=
2
1 . (22) 

 
Eqn. (22) is consistent with the Scheme 1 solution and can be derived from the 

Rankine-Hugoniot jump conditions, as has been done elsewhere [4].  The key point is 

that the conservation equations that should be applied when dealing with wave 

motion that involves discontinuities in density, particle velocity and stress, refer to 

initial and final values across the shock and are not a function of the path between the 

initial and final values.  This creates no problem for equations involving mass and 

momentum conservation.  The assumption in Scheme 2 that the energy absorbed per 

unit volume is equal to the area under the stress-strain curve (i.e. DPVE εσ= ) is 

erroneous as this clearly implies that the material follows a certain path during the 

compression.  The correct “energy balance” approach would be to use the Rankine-

Hugoniot equation that ensures energy conservation across a discontinuity.  Scheme 1 

makes no assumptions regarding path-dependency and agrees with the “shock theory” 

in [1-9].  However, the differences between solutions available in the literature are not 

so apparent as the differences between Schemes 1 and 2 above.  That is because in 

[12-14, 18] Eqn (5) is used to describe the stress jump across the shock.  However, the 

equation of motion used in [12-14, 18] corresponds to the Scheme 2 approach, i.e. 

Eqn. (16).  

 
The differences between the two solutions is illustrated in Fig. 3, which shows the 

critical length of a foam column struck by a 40 kg.m-2 mass over a range of velocities 

according to Eqns. (13) and (19).  The R-P-P-L foam properties used in the analysis 

are given in the figure title.  Clearly the differences between solution Schemes 1 and 2 

become large with increasing impact velocity.  Note that no energy absorbing 

mechanism has been defined that is a function of strain-rate or velocity, yet Scheme 1 
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analysis predicts that the energy absorbed increases with increasing impact velocity 

(substitute for σD from Eqn. (5) in Eqn. (22)). 

 

4. Example 2: Comparison between mass-spring models and “shock wave” 
predictions for a foam column subjected to high pressure over a short duration  
 
The use of foam has been suggested as a possible way of mitigating blast loads.  This 

important application has been modelled using mass-spring idealisation in recent 

work [10].  There are several interesting features in this application of cellular 

materials for blast protection including a possible shock enhancement resulting from 

the use of a “protective” foam layer.  Such an event is problematic and 

counterintuitive, considering the use of such a foam as a protective measure.  

 

The experimental evidence for this enhancement was discussed in [10], and in that 

paper, the characteristics of compressive shock wave propagation in a cellular 

material were treated using a one-dimensional mass-spring model.  For illustrative 

purposes, the foam core was considered to be subjected to a rectangular pressure pulse 

at one end with magnitude P and duration T (see Fig. 4), while the other end of the 

foam core was fixed and this simplification is followed herein for comparison 

purposes. 

 

Typical pressures considered were 2 to 5 times the plateau stress in the material and it 

was argued in [10] that, although a one-dimensional mass-spring model is more 

suitable for a system consisting of periodic structures, such as a ring or tube system, it 

is still capable of representing a macroscopically continuous cellular material.  The 

three stage stress-strain curve used in [10] is shown in Fig. 1. The material response is 

first linear elastic, then perfectly-plastic before hardening begins at a “lock-up” strain.  
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The findings were that stress enhancement may occur during the propagation of a 

compaction wave through a cellular material [10], where stress enhancement was 

defined as stresses anywhere along the foam column that are greater than the applied 

pressure.  Additionally it was shown that the conditions for full densification of the 

mass-spring system (i.e. compression of every spring beyond the “lock-up” strain) 

and conditions for blast enhancement at the rigid support (i.e. loads greater than the 

applied load) are almost the same.  A series of pressure pulses were considered in 

order to predict the pulse conditions for full densification and therefore stress 

enhancement at the rigid support.  This is shown in Fig. 5 in non-dimensional form 

where  

 

P

Pp
σ

=  , (23) 

  

 
0ρ

τ E
L
T

d = , (24) 

and E is the elastic modulus of the foam core.   

 

For the same loading condition, it is straighforward to use “shock theory” with an R-

P-P-L material model (see [7] for similar example).  The pressure pulse is applied at t 

= 0 and there are two distinct stages to the solution.   

 

Stage 1: t < T. The boundary condition during this stage is that there is a high pressure 

P at the left end of the column.  This is essentially the same loading condition as 

considered by Tan et al [4] to derive the “steady state shock model”.  In this stage 

there is a steady-shock with the two states on either side of the shock remaining 

constant with time.  The compaction wave starts from the loaded end and the stress 
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within this compacted region is raised to P. From Eqn. (5), the particle velocity 

behind the shock during stage 1 is 

 

( )P
D

I Pv σ
ρ
ε

−=
0

.      (25) 

 
At time t = T, there is a compacted portion at the left end of the column with an 

undeformed length given by  

 

D

I
I

vTl
ε

= .       (26) 

 
From Eqns. (25) and (26), 
 

   ( )P
D

D
I PTl σ

ρ
ε

ε
−=

0

      (27) 

 
Stage 2:  This is equivalent to Example 1, with a mass G impacting the foam column 

of length lII, where G = ρ0A0lI, and lII = l- lI  is the undeformed length of the foam at 

time t = T.  The mass ratio of the foam core to the rigid mass is equal to the ratio of lII 

to lI. So, considering only the critical case where the length lII is fully compacted at 

the end of stage 2, Eqn (11) gives 

 

   11
2

0 −+=
DP

I

I

II v
l
l

εσ
ρ

.      (28) 

 
Since the total critical length of the column in this scenario is lCR2 = lI + lII and  

substituting for the velocity from Eqn. (25) and for lI from Eqn. (27), the critical 

initial length of the foam column can be defined in terms of the loading parameters 

and material properties as 

 
( )

DP

P
CR

PPTl
ερσ

σ

0
2

−
= .      (29) 
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Because Eqn. (29) is defined for an R-P-P-L material, it is not possible to non-

dimensionalise the solution as has been done in [10].  However, the two predictions 

can be compared by approximating the properties used in [10] for Rohacell 51 WF 

foam reported in [19].  For this material, the properties are summarised in Table 1, the 

only difference between the properties in Table 1 and those tabulated in [19] is that, 

following [10], the material is assumed to be linear-elastic up to the plateau stress so 

that the yield strain εY is equal to 3.64%.  Therefore, taking a column length of 1 m for 

simplicity, a dimensionless loading period 1=dτ  corresponds to a loading time of 

1.53 ms.   

 
For the “shock theory” model the material is assumed to be R-P-P-L with a plateau 

stress of 0.8 MPa and a locking strain of 68.9%.  Eqn. (29) can be rearranged so that 

for an initial length of 1 m, the critical period of loading for a given pressure can be 

calculated from, 

( )P

DP
CR PP

T
σ
ερσ

−
= 0 .      (30) 

 
Eqn. (30) has been used to plot the enhancement/attenuation boundary for a 1 m long 

column of Rohacell 51 WF in Fig. 6.  Both of the curves in Fig. 6 separate the 

pressure pulses that lead to shock enhancement at the distal boundary due to full 

compaction of the foam core from those pulses that are attenuated by the foam.  The 

regions above and to the right of the lines experience enhancement.  The differences 

between the two predictions are extremely large.  The material model used in [10] 

incorporates both elasticity and a hardening régime beyond the densification strain 

(defined as “lock-up” strain in [10]).  This more accurate material description requires 

an extended shock model which is dealt with in the next sub-section. 
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4.1  Shock-wave models based on R-P-P-L and E-P-P-H material descriptions 
 
The generation of attenuation/enhancement boundaries from shock theory is more 

difficult when using an E-P-P-H material model than is the case for the R-P-P-L 

idealisation.  A single case is used to illustrate the effect of the inclusion of elasticity 

and hardening beyond the onset of densification.  The R-P-P-L idealisation used here 

employs a locking strain definition that is consistent with that in [2, 3]. However, this 

definition is unrealistic for large velocity changes wherein the stress jump is large and 

strain jumps can be significantly greater than the locking strain defined in Fig. 1.  The 

locking strain used in the previous section and in [2, 3] is essentially the strain at the 

onset of densification (see [23]) and its use for more intense shocks will in general 

lead to an over-prediction of stresses due to compaction waves (see [4, 24]).     

 
In order to consider a shock wave model based on a fuller E-P-P-H material 

description, it is necessary to generalise the basic equations for the theory given above, 

following [6].  Consider a one-dimensional, compressive shock wave propagating 

through a cellular material as illustrated in Fig. 7. At the shock front there is a 

discontinuous change in properties.  The material state ahead of the shock is denoted 

by subscript A and the compacted material behind the shock has the subscript B.  

Conservation of mass and momentum across the shock gives: 

 

,1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−

B

A
SAB cvv

ρ
ρ        (31) 

 
( )ABASAB vvc −=− ρσσ ,     (32) 

 
where v is absolute particle velocity and cS is the shock speed relative to the material 

just ahead of the shock, so that the absolute shock speed is 
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SAS cvV += .       (33) 

 
Using the more general form of Eqn. (2) to define the density ρ in terms of strain ε,  
 

   ( )
ε

ρερ
−

=
1

0 ,       (34) 

 
from Eqn. (31) the shock speed is given by (see [6, 17]) 
 

   ( )
t
Zvc AS δ

δε
ε

=−= 1
][
][  ,     (35) 

 
where [] denotes the change in quantity across the shock front and Z is the 

displacement of the shock front (used later) relative to the particle displacement just 

ahead of the shock and is defined according to Eqn. (35) such that a steady shock with 

a speed cS would traverse a length δZ of material ahead of the shock over a time 

increment δt.  The mass of material δm that is compacted by the shock over this time 

increment can therefore be calculated using 

 
[ ]
[ ] t

ZAvAcA
t
m

ASA δ
δρ

ε
ρρ

δ
δ

0000 === .    (36) 

 
 
 Combining Eqns. (31) and (32) gives 
 

   [ ] [ ]
[ ]ε

ρσ
2

0 v
= .       (37) 

 
The E-P-P-H material model used here is based on that used in [10].  The elastic and 

perfectly-plastic parts of the stress-strain response are the same (see Fig. 1) as those in 

[10].  However, for compression beyond the densification strain, a slightly different 

and more convenient stress-strain relationship than that in [10] is used.  This is 

because the densification behaviour defined in [10] according to Eqn. (38) below is 

difficult to incorporate in the set of differential equations that must be solved for the 

extended shock-wave solution:   
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( ) ( ) ( )
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D

D   (38) 

 
To incorporate an approximate hardening behaviour for the E-P-P-H model, consider 

a compaction wave travelling through the foam, with the material ahead of the foam 

already loaded to the elastic limit by an elastic wave. Eqns. (37) and (38) have been 

combined to plot the relationship between the particle velocity jump across the 

compaction front and the strain just inside the compaction front in Fig. 8.  Note that 

Eqn. (38) is in terms of strain whereas Eqn. (37) is in terms of strain jump.  However, 

converting from absolute strain to strain jump is simple as the strain ahead of the 

compaction wave is εY.  In Fig. 8, the E-P-P-H behaviour is a straight line 

approximation of the curve derived from Eqn. (38) and is given by 

 
[ ]vD 00105.0+= εε .      (39) 

 
Note that equation (39) relates the change in particle velocity to the change in strain 

(from Dε  to ε ) through the gradient of the straight line in Fig. 8.  The constant in 

equation (39) therefore has units of m-1.s.  Based on the two curves plotted in Fig. 8 

and Eqn. (35), it is possible to plot a relationship between the shock speed and the 

change in particle velocity.  This is plotted for both the material defined by Eqn (38) 

and the E-P-P-H models in Fig. 9.  Clearly there is little difference between the shock 

properties of the two material models.  Eqn. (37) was used to plot a stress-strain curve 

for the E-P-P-H material model.  From Fig. 1 it can be seen that this E-P-P-H model 

is a reasonable approximation to the material model used in [10] and defined in Eqn. 

(38).  

 
 
4.1.1 Stage 1 for E-P-P-H shock wave model 
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As with the R-P-P-L solution, the E-P-P-H analysis is carried out in two stages.  

Unfortunately, it is not possible to obtain closed-form solutions for the E-P-P-H 

material model.  For illustration, a single case is considered for comparison with the 

predictions in [10].  The case considered is for an applied pressure P of 3.6 MPa (non-

dimensional pressure p = 4.5).  A foam column of 1 m in length is assumed so that the 

non-dimensional loading duration in [10] of τ = τd corresponds to a time T of 1.53 ms.  

All other material properties correspond to those listed in Table 1 and plotted in Fig. 1. 

 
Consider the situation illustrated in Fig. 4 for time t such that 0 ≤ t ≤ T.  There are two 

waves travelling through the foam core.  The elastic precursor travels through the 

foam and loads it to the elastic limit, σP of Fig. 1.  The speed of this wave is c0 and 

the change in particle velocity associated with this wave is VY, where 

 

   
0

0 ρ
Ec =  ≈ 653 m.s-1      (40) 

 

   
ρ

σ
E

V P
Y =  ≈ 24 m.s-1      (41) 

 
Behind this elastic precursor there is a slower travelling compaction front that has a 

speed relative to the elastically loaded material defined from Eqn. (35).  The material 

in the compacted region is loaded to a stress equal to P.  Eqns. (37) and (39) give the 

strain and particle velocity behind the compaction front.  The position of the 

compaction front at the end of stage 1 can be calculated using 

 

   [ ]
[ ]( )⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+== YYS

vVTTVX ε
ε

11 ,    (42)  
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where VS is the absolute velocity of the shock defined in Eqn (33) and the quantity 

changes are those associated with the compaction wave.  The displacement of the 

proximal end at the end of phase 1 is 

 
   [ ]( )TvVu Y +=1 .      (43) 
 
The total mass of the compacted portion of the material at the end of stage 1 is 
 

   [ ]
[ ]T
vATcAm SA ε

ρρ 0001 == .     (44) 

 
 
4.1.2 Stage 2 for E-P-P-H shock model 
 
At τ = 1, the elastic precursor reaches the distal end of the foam column and is 

reflected back as a compaction wave.  The jumps in stress, strain and particle velocity 

and shock wave speed at this distal end are simple to calculate since the elastic 

precursor has increased the particle velocity to VY and the compaction wave brings the 

material back to rest.  Note that this solution is an idealisation based on the E-P-P-H 

model and that experimentally, distal end compaction is often not present.  Note also 

that the stress at the distal end will be greater than σP.  However, the stress jump at 

this end is small and corresponds to an increase in stress from 0.8 MPa to 0.84 MPa 

for this material. 

 
At the same instant that the elastic wave is reflected back as a compaction front at the 

distal end, the pressure is released at the proximal end.  During stage 2, the proximal 

end can be considered as consisting of an unloading rigid mass of compacted foam 

that has sufficient velocity to cause further material to compress at this end, i.e. the 

initial mass at the proximal end is defined in Eqn. (44).  The situation in stage 2 is 

illustrated in Fig. 10.  The compaction front at the proximal end is travelling into 

material in region II that has been loaded to the yield stress and has a particle velocity 
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defined in Eqn. (41).  The simplest way to obtain the end displacement and wave 

positions as a function of time is to consider the material inside the dashed box in Fig. 

10.  This box moves to the right with a constant speed equal to VY so that no material 

enters or leaves the box over the time increment δt.  The compaction front travels to 

the right with a speed greater than VY so that the mass of the compacted portion of the 

foam increases by an amount δm over the time increment δt. The material in region II 

has been raised to the yield stress so that the change of momentum of the material 

inside the box can be related to the impulse delivered at the boundary of the box as 

 
( )( ) ( ) tAVmvmmvvmmm Py δσδδδ 011 . −=−+−+++ .    (45) 

 
Re-arranging Eqn. (45) and combining this expression with Eqns. (36) and (39) it is 

possible to define velocity changes as a function of v and Z only, i.e. 
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A solution can then be obtained by solving three first order partial differential 

equations in terms of the proximal end velocity v (Eqn. (46)), the length Z (Eqn. (36)) 

and the displacement of the proximal end u ( vtu =δδ ).  The initial conditions for 

stage 2 come from the final conditions from stage 1.  The compaction front at the 

proximal end will continue to propagate until either full densification occurs or the 

particle velocity in region III has reduced to the level in region II (see Fig. 10).  As the 

compaction wave propagates, its position can be calculated using 

 
   ( ) 1XTtVZX Y +−+=  ,     (47) 
 
where X1 is the position at the end of stage 1.  
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4.2 Compaction waves predicted by the R-P-P-L and the E-P-P-H shock waves 
and the mass-spring model  
 
As mentioned previously, there are large differences between the “shock-wave” and 

mass-spring predictions.  For “shock-wave” models, stress enhancement never occurs 

during the propagation of the compaction front through the material.  The maximum 

stress in the foam is equal to the applied pressure during stage 1 and reduces to the 

plateau stress as the velocity reduces in stage 2.  For “shock wave” models the only 

source of stress enhancement is reflection of the compaction front from the distal end.  

Other differences between the “shock-wave” and mass-spring predictions are 

highlighted by inspection of the wave propagation predicted by the two types of 

analysis.  For Example 2, an R-P-P-L shock wave solution is plotted in Fig. 11(a).  

This solution was obtained by solving for u in Eqn. (7) and using Eqn. (2) to find the 

position of the compaction front.  The material in region I of Fig. 11(a) is not 

compressed while the material in region II is compacted to the densification strain.  

Full densification does not occur for this case since nearly 10% of the column is still 

in region I when the compacted portion of the material is brought to rest after about 

6.9 ms.  The R-P-P-L shock wave solution therefore predicts that the pressure applied 

to the proximal end is attenuated by the foam column and the stress at the distal end 

never rises above the foam’s plateau stress.  The solutions in Fig. 11 were obtained 

via a coordinate system in which the proximal end at t = 0 is the origin and the distal 

end of the column was 1 m from the impact.  This axis has been reversed for the plots 

in Fig. 11 so that the results can be compared more easily with those in Fig. 12 [10].  

In Fig. 12, the dimensionless displacement of each mass in a mass-spring model with 

ten elements is plotted against dimensionless time.  The mass-spring prediction is that 
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the compaction wave reaches the distal end and the distal stress is enhanced by the 

foam column.  

 
The wave locations for the E-P-P-H solution are shown in Fig. 11(b).  The material in 

region I is unstressed and has no particle velocity.  The material in region II has been 

stressed to the elastic limit and has a particle velocity VY.  The material in regions III 

and IV have been compressed beyond εD.  The solution has been determined until the 

particle velocity in region III has been reduced to that in region II at a time of 

approximately 6.1 ms.  At this time 8% of the foam column has no permanent 

deformation.  An elastic unloading wave is now released from the location of the 

proximal end compaction front and although further compression will occur (see [6]), 

equating the kinetic energy remaining in the system to the “quasi-static” energy 

absorption capacity remaining in the foam shows that full densification will not take 

place.   

 
The E-P-P-H solution differs from the R-P-P-L solution in two obvious ways.  First, 

reflection of the elastic precursor results in compression from the distal end.  Second, 

the compressive strains in region III of Fig. 10(b) are clearly much greater than those 

in region II in Fig. 10 (b).  However, there are clear similarities in the solutions and 

both produce the same conclusion for Example 2, i.e. full densification does not occur 

so that the pressure pulse applied to the proximal end is attenuated by the foam 

column.   

 

Clearly the results differ greatly with those for the mass-spring model.  The 

compaction wave in Fig. 12 shows very little reduction in velocity.  However, the 

point masses within the compacted region apparently change speed a number of times 
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after the compaction wave has passed beyond the mass.  This oscillation is not seen in 

the “shock-wave” models and is the cause of the stress histories shown in [10] where 

there is more than one peak stress within the compaction wave.  Early studies on 

mass-spring models [25] show a succession of saddles and peaks that correspond to 

the post-yield deformation characteristics of the cells, even for low velocity impacts.  

The number of peaks in the load-history is directly related to the number of cells that 

are crushed.  However, the oscillations in stress and displacement reported in [10] are 

unusual.  The strength of these mass-spring models is their ability to incorporate a 

wide variety of material properties and a variation in strength from one cell to the next.  

However, their ability to simulate stress wave fronts (shock or non-shock) in a 

material depends on the discretisation levels used.  Large amplitude vibrations may 

result from insufficient discretisation and these vibrations can be misinterpreted as 

stress enhancements. 

 

Another obvious difference is that Fig. 12 shows masses “pulling away” from the 

back of the proximal end.  This is not seen in the results reported in [11], nor in the 

“shock-wave” solutions, where unloading behaviour is not considered and compacted 

portions of material will remain at their maximum strain throughout the solution, even 

when the stress reduces (rigid unloading). This omission in the “shock-wave” solution 

may lead to errors for the pressure pulse loading situation, however this should not be 

significant for other loading situations where impact masses, facesheets etc. prevent 

separation of the material during unloading. 

 
 
The inclusion of elasticity is unlikely to lead to large differences in the “shock-wave” 

prediction of Fig. 6, but will lead to a decrease in the critical time period calculated 
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for a R-P-P-L material from Eqn. (30). On the other hand, the inclusion of a more 

accurate model beyond the onset of densification will lead to increased predictions for 

this critical period.  Overall, the large differences between the predictions for the 

enhancement/attenuation boundary shown in Fig. 6 are not likely to be the result of 

the simplified R-P-P-L material model used in the shock theory.  Rather, the 

difference is due to the fundamental difference (explained below) in the way that the 

compaction wave is modelled. 

 
4.3. Discussion of mass-spring and alternative models for shock propagation 
 
Mass-spring models have certain similarities to those FE models that incorporate a 

cellular structure for the material [4, 20-21].  Both types of analysis make use of 

lumped masses as well as elements that represent the strength of the solid phase of the 

material.  Furthermore, some FE predictions (for example those based on two-

dimensional honeycombs) have been shown to agree well with “shock wave” theory 

[4, 24].   

 

However the fundamental difference between the mass-spring and FE models that 

incorporate a cellular structure for the material is that the loading path is defined in 

the mass-spring models that have been described in the literature to date, wherein the 

quasi-static stress-strain curve is always assumed to be followed within each 

individual cell.  This is similar to the Scheme 2 prediction considered for example 1 

and herein lies the error.  As noted earlier, the speed of the compaction wave derived 

from the mass-spring model in [11] is compared to the speed predicted by “shock 

theory”.  The argument in [11] is that the close agreement between the compaction 

wave speeds predicted by the two methods verifies the accuracy of the mass-spring 

system.  However, only low pressures are considered in [11] and differences in 
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predictions will increase with increasing “jumps” in particle velocity.  Furthermore, 

the close agreement in terms of compaction wave speeds is simply because this wave-

speed is highly dependent on the impact velocity and the stress-strain relationship 

within the densification region.  The “extra” energy absorbed due to dynamic 

compression in [11] is simply the consequence of the cell being compressed further 

along the quasi-static loading path.  Alternatively, the “extra” energy absorbed in a 

“shock” results from the material following a different loading path to the quasi-static 

response.  As such, the compaction wave in the mass-spring models is of a different 

nature to that in “shock-wave” theory.  The one-dimensional mass-spring models 

reported in [10, 11] are not capable of modelling the discontinuities that would exist 

in a shock in a cellular material.  Even if viscous damping effects etc. are included in 

a mass-spring model, the result is that a loading-path-dependent solution is defined.  

In contrast, when FE models that incorporate a cellular structure for the material are 

loaded dynamically, inertial effects can lead to deformation modes that differ from 

those for quasi-static compression.   

 

This is a fundamental problem and applies to all situations where shock behaviour is 

required by the physics of the problem. The examples above have been kept simple in 

order to highlight the differences between the different analytical approaches.  For 

example, the boundary conditions affecting the interaction between the foam and the 

agent producing the blast are unrealistic compared to those for a real blast situation.  

Further details on the effect of fluid-structure interaction on the pressure pulses 

applied to structures during blast loading can be found in [26] for blasts in water and 

[27] for blasts in air.  Also herein, the cellular materials have been treated as a 

continuum and deformations are assumed to occur at wavefronts.  Clearly this is not 
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always the case (e.g. see [28]) and sufficient particle velocity must be reached before 

a “steady” compaction wave is formed [4].  A recent FE study that employs a 

hexagonal cell structure [24] gives predictions that agree closely with “shock-wave” 

theory and suggests that the compaction front has a dimension of approximately one 

cell size. This is in agreement with the experimental evidence available [29].   

 

The material properties that are needed to predict the shock compression of cellular 

materials are ill-defined.  “Equations of state” for solid materials are normally derived 

from e.g. plate-impact test data.  Equivalent data for compaction waves in cellular 

materials are not available due to the difficulties associated with measuring the 

“states” either side of a compaction wave.  Currently, quasi-static stress-strain curves 

are used to predict stresses under impact conditions. These quasi-static material 

properties are usually measured over length scales over which several cells are present 

in any direction and deformation modes are very different to those during dynamic 

compaction.  This issue will be the subject of future research  

 

5.  Conclusions 

Two examples of the dynamic compression of a cellular material have been analysed.  

It has been shown that the ‘correct’ shock theory solution can be derived purely by 

applying the conservation equations for mass and momentum and this derivation has 

been used to explain differences between “shock” solutions available in the literature.  

An extended shock theory, which accounts for the non-lineartity in the post-locking 

behaviour of the material, has been derived and compared to the predictions of a 

mass-spring model for the case of rectangular pressure pulse loads.   
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The mass-spring model in [10] predicts that stress enhancements can occur during the 

propagation of a compaction wave through a cellular material.  The “shock theory” 

prediction is that the stress in the compacted-region is constant at P during stage 1 and 

then reduces below this value during stage 2, i.e. the stress in the foam only exceeds 

the magnitude of the applied pressure once the entire foam column is fully compacted.  

For pressures of between two and five times the plateau stress in the foam, there is a 

large difference in the predictions of the “mass-spring” and “shock wave” models.  

The predictions are expected to diverge as the loading intensity increases.   

 

“Shock theory” has been shown to predict well experimental results for a number of 

cellular materials (e.g. [6]) and to be in close agreement with FE simulations (e.g. 

[24]).  However “mass-spring” models have not been calibrated against test data for 

cases where compaction waves are likely to occur.  As such, the authors believe that 

“mass-spring” models should be treated with caution. 
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Table 1. Mechanical properties of Rohacell-51 WF foam. 

 

 

 

 

 

 

 

ρ0 (kg.m-3) E (MPa) σP (MPa) εy (%) εD (%) 

51.6 22.0 0.8 3.64 68.9 

 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

 

 

 

 

 

 

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

0 0.2 0.4 0.6 0.8 1

 
 

 

 

 

 

 

 

 

 

Fig. 1. Stress-nominal strain from [10] together with R-P-P-L and E-P-P-H material 

models. 
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Fig. 2. Example 1: A mass G impacting a foam column.  
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Fig. 3. Comparison between critical lengths for the two solution schemes for G = 40 

kg, A0 = 1 m2, εD = 0.67, σ0 = 0.3 MPa and 0ρ =155 Kg.m-3. 
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Fig. 4. Example 2: Rectangular pressure pulse applied to foam column. 
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Fig. 5. Non-dimensional enhancement/attenuation boundary according to Li and 

Meng [10]. Squares denote densification. Triangles denote distal stresses 
greater than the applied pressure. 
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Fig. 6. Enhancement/attenuation boundaries for a 1 m long Rohacell-51 WF foam 

column according to “shock theory” and a mass-spring model [10].  
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Fig. 7. States immediately ahead of and behind a one-dimensional shock. 
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Fig. 8. Strain-particle velocity relationship corresponding to Eqn. (38) and E-P-P-H 

material models. 
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Fig. 9. Shock speed-particle velocity relationship corresponding to Eqn. (38) and E-

P-P-H material models. 
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Fig. 10. Example 2: Stage 2 for E-P-P-H material model.  
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Fig. 11. Propagation of elastic and compaction waves according to “shock-wave” 

theory for (a) R-P-P-L and (b) E-P-P-H material models. 
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Fig. 12. Propagation of elastic and compaction waves according to mass-spring 

model [10].  Each line shows the dimensionless position of a point mass as a 
function of dimensionless time. 

 
 
 
 


