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ABSTRACT : In the last years, several epidemics have been reported in particular the chikungunya epidemic
on the Réunion Island. For predicting its possible evolution, new models describing the transmission of the
chikungunya to the human population have been proposed and studied in the literature. In such models, some
parameters are not directely accessible from experiments and for estimating them, iterative algorithms can be
used. Howewver, before searching for their values, it is essential to verify the identifiability of models parameters
to assess wether the set of unknown parameters can be uniquely determined from the data. Thus, identifiability
1s particularly important in modeling. Indeed, if the model is not identifiable, numerical procedures can fail and
in that case, some supplementary data have to be added or the set of admissible data has to be reduced. Thus,
this paper proposes to study the identifiability of the proposed models by (Moulay, Aziz-Alaoui & Cadivel 2011).
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1 Introduction

The chikungunya virus is a vector-borne disease
transmitted by mosquitoes of Aedes genus. Sev-
eral epidemics of this tropical disease have been re-
ported this last 50 years. Recently an unprecedented
epidemic has been observed in the Réunion island
(a French island in the Indian Ocean) in 2005-2006
where one third of the total population has been in-
fected. A pic of 40 000 infected per week has been
reached in february 2006. An other chikungunya epi-
demic has been reported in Italy in 2007. It was the
first time that such disease is observed in a non trop-
ical region. The responsible vector of these two epi-
demics is identified: the Aedes Albopictus mosquito
(Reiter, Fontenille & Paupy 2006). Contrary to Aedes
Aegipty, the main vector of Dengue, which also trans-
mits the chikungunya virus, Aedes Albopictus has de-
veloped capabilities to adapt to non tropical region.
Chikungunya is now a major health problem. Eu-
ropean health authorities are now strongly engaged
in the control of this disease. Since there is no vac-
cine nor specific treatment, efforts are mostly di-
rected towards prevention measures and the control
of mosquito proliferation. Since these events, several
works and models are proposed to try to understand
their emergence or re-emergence. Various fields of
research are concerned, such as epidemiology, biol-
ogy, medicine or mathematics. For instance, Dengue,
a vector borne disease mainly transmitted by Aedes

Aegipy mosquitoes was the subject of several studies
(Esteva & Vargas 1999, Esteva & Vargas 1998).
Models for the chikungunya virus have been re-
cently proposed (Dumont, Chiroleu & Domerg 2008),
(Moulay, Aziz-Alaoui & Cadivel 2011).... Since the
models are recent, the not well-known parameters
have not yet been studied. In this paper, we pro-
pose to take again the models proposed by (Moulay,
Aziz-Alaoui & Cadivel 2011) and to do an identifiabil-
ity study. In their paper, the models are uncontrolled
and can be described in a general state-space form:

[ #(6.0) = f(x(t,0)),
= { y(1,0) = h(z(t,0),0). S

Here z(t,0) € R™ and y(t,0) € R™ denote the state
variables and the measured outputs, respectively and
0 € U, the unknown parameters vector (i), is an open
subset in RP). The functions f(.,0) and h(.,0) are
real, rational and analytic for every § € U, on M (a
connected open subset of R™ such that z(¢,0) € M
for every § € U,, and every t € [0,T7).

The identifiability definition of the uncontrolled
model T'? is the following:

Definition 1.1. The model T'? is globally identifiable
at 0 € Uy if there exists a finite time t1 > 0 such
that if y(t,0) = y(t,0) (0 € Uy) for allt € [0,t1] then
0=4.

The model T is locally identifiable at 6 € U, if there
exists an open neighborhood W of @ such that T'? is
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globally identifiable at 0 with Uy restricted to W.

The identifiability of models has been extensively
studied (Ljung & Glad 1994), (Vajda, Godfrey &
Rabitz 1989), (Verdiére, Denis-Vidal, Joly-Blanchard
& Domurado 2005) and different approaches have
been proposed for studying the global identifiability
of nonlinear systems. We can mention for example,
the Taylor Series approach of (Pohjanpalo 1978).
He proposed a method based on the analysis of a
power series expansion of the output which gives
rise to an algebraic system constituted of an infinite
number of equations. A second method is based
on the local state isomorphism theorem ((Walter
& Lecourtier 1982), (Chappell & Godfrey 1992),
(Denis-Vidal, Joly-Blanchard & Noiret 2001),
(Chapman, Godfrey, Chappell & Evans 2003)). It
leads to study the solution of a specific set of dif-
ferential partial equations. A third one is a method
based on differential algebra that was introduced
by (M. Fliess 1993), (Ljung & Glad 1994) and
(Ollivier 1997). It allows one to obtain relations
linking the observations, the inputs and the unknown
parameters of the system. These relations can be
used to obtain a first estimation of the unknown
parameters without a priori any knowledge of them
(Verdiere et al. 2005). It is the latter method which
will be used in this paper for studying the models
identifiability.

The paper is organized as follows. In the second
section, models describing the transmission of the
chikungunya virus to human population are pre-
sented. Some results obtained in (Moulay, Aziz-
Alaoui & Cadivel 2011) will be recalled since they
will give us first, the framework of our study then,
the steps to study the identifiability of the not well-
known parameters. In the third section, the identifi-
ability results are given.

2 Presentation of the models

In (Bacaér 2007) the author formulate several meth-
ods to compute the basic reproduction number for
epidemiological models. One of the first models de-
scribing the chikungunya transmission virus using SI-
SIR type models is proposed. Moreover, some bi-
ological parameter values are given. An other ap-
proach is describe in (Dumont et al. 2008), where
a global aquatic stage for the mosquito dynam-
ics supplements a classical transmission model. In
(Dumont & Chiroleu 2010), authors formulate an or-
dinary differential equation system to study control
of chikunugunya virus using mechanical and chemical
tools. In (Moulay, Aziz-Alaoui & Kwon 2011), con-
trol efforts are taken into account through the for-
mulation of an optimal control problem, where the

objective is to control the mosquito proliferation and
limit the number of human and mosquito infection.
This papers deal with the Réunion Island epidemic.

Our model given in (Moulay, Aziz-Alaoui & Cadivel
2011, Moulay, Aziz-Alaoui & Kwon 2011) takes into
account the mosquito biological life cycle and describe
the transmission virus to human population. For
the reader convenience, we briefly recall the model-
ing steps. The mosquito biological life cycle consists
in four stages: eggs, larvae, pupae and adults. We
use a stage structured model to describe the follow-
ing stages: eggs (E), larvae and pupae (L, two stages
biologically close) and female adults (A, only females
can transmit the virus) stages. The density variation
of each stage is describe by the following scheme:

density variation = entering — (leaving + death)

The egg density variation is then described by the
number of eggs laid by females b, by eggs becom-
ing larvae with a transfer rate s and by eggs death
with a natural mortality rate d. We assume that
the number of eggs is proportional to the number
of females b(t)A(t), and regulated by a carrying ca-
pacity Kg since mosquitoes are able to detect the
best breeding site ensuring the egg development, then
b(t) = bA(t)(1 — E(t)/Kg). Other stages, are de-
scribed in the same way. The input in the larvae
stage, given with a transfer s is also assumed to be
regulated by a carrying capacity Kj which charac-
terizes the availability of nutrients and space. The
number of new larvae entering the L stage is then
given by s(t) = sE(t)(1—L(t)/Kr). These larvae be-
come adult females with a transfer rate s;. Natural
deaths occur with a rate dr,, d,, for larvae and adults
respectively.

This model is then included in a classical SI-SIR epi-
demiological model to describe the virus transmission
to human population. To this aim, the adult stage A
is divided into two epidemiological states: suscepti-
ble S;, and infective I,,, since mosquitoes carry the
infection along their life. The human population Ng
is subdivided into three stages: susceptible Sy, in-
fected Iy and recovered (or immune) Ry. We assume
that there is no vertical transmission for both humans
and mosquitos. This means that human birth, with
a rate by from susceptible, infected and removed are
susceptible and eggs laid by susceptible or infected
mosquitoes are susceptible. The vector infection of
susceptible mosquitoes (S,,) occurs during the blood
meal (necessary to the female egg laying) from infec-
tious humans (/). The force of infection (or per-
capita incidence rate among mosquitoes) given by
Bl u /Ny depends on the fraction of infectious in-
dividuals Iz /N and the number of bites that would
result in an infection (,,. Conversely, the chikun-
gunya infection among humans occurs when suscep-
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tible humans (Sg) are bitten by infectious mosquitoes
(I,,,) during blood meal. The force of infection given
by (Br I, /A(t)) depends on the fraction of infectious
mosquitoes (I,,/A(t)) and the number of bites that
would result an infection Og. Infected humans are
infectious during 1/ days, called the viremic period,
and then become immune.

All previous assumptions are summed up in Fig. 1.

A A by

d : dm: \i / o=
PE T < |« - \\
E |-+ b B |m — SH -—d—H—f \|
% v |
\ T Wl \
S| Brg- | | P PR
\ b H ’ \
v M v,/ !
- - dy |

L ™ Sm | H f---+ by
SL |
——— S 1
di | dr ! i
v v Y .'
1
T (
— H !
Ry b-—-» /
I~ 1
Immature Adult R

Vector Model Human Model

Fic. 1: Compartmental model for the dynamics of
Aedes albopictus mosquitos and the virus transmis-
sion to human population.

Based on our model description (see Fig.1) and as-
sumptions, we establish the following equations:

PRGN 1—%’? — (s +d)E)
%(” = sE(t) (1 %? — (s, +dp)L(t)
%() = spL(t) — dnA()
f;W = s.L{t) = duSu(t) = B ]{Z((tt))gm(t)
ddI;”(t) = %é’i ((%gm(t)—dmfm(t)
%() = —ﬂHIXg))SH@)_dHSH(t)
. +br (Su(t) + Iu(t) + Ru(t))
dgl() = BHZ((tt))SH(t)fyIH(t)dH[H(t)
d%() = Iu(t)—dgRpu(t)

(2)

Using the following variable changes S,, = S,,/A,

I_m = _m/A SH = S'H/NH7 IH = fH/NH a.nd RH -
Ry /Ny and the fact that then S,, = 1—1,, et Ry =
1— Sy — Iy, system (2) reads as:

and it is defined on A x Q where

0<ELKE

A= (B,LA) | OsbsEr )

m

and

0<Sy+1Ig<1
QZ{(SH,IHalm)G(R+)3| 02]::1]{_ }

(5)

The stability analysis of the model is detailed in
(Moulay, Aziz-Alaoui & Cadivel 2011). We briefly
recall some results about this model. The study was
conducted in two steps and they will be taken again
for the identifiability study. First, we analyze the
mosquito dynamics in the absence of virus, which
correspond to the subsystem (3a). The mosquito dy-
namic is governed by the following threshold:

T:(sid> (sLjd) (;Z) ©)

obtained from computation of the equilibrium.

Theorem 2.1.

o System (8a) always has the mosquito-free equi-
librium (0,0,0), which is globally asymptotically
stable (GAS) if r < 1 and unstable otherwise

o Ifr > 1 system (3a) has an endemic equilibrium
(E*, L*, A*) wich is GAS, where

Kg
E* ?(E
1
L :(1_> Ky
* r YL
A SLKL
dm'YL
vE :1+% and 7L:1+%

Iy (t) = Buln(t)Su(t) — (v +bu)Iu(t)
I0) = = (5250 + B (9)) 1) + G0
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In both cases, the global stability is obtained by
using Lyapunov function theory.

Now we assume r > 1, the biological interesting case,
in order to ensure the persistence of mosquito popu-
lation and we consider the subsystem (3b).

The stability of equilibrium of the transmission dy-
namics model is described thanks to the basic re-
production number (van den Driessche & Watmough
2002, Diekmann & Heesterbeek 2000), computed in
the case r > 1 which is the biologically interesting
case:

ﬁmﬁH

Ry = —LmPH__

(7)
We show the following result
Theorem 2.2. Assume r > 1 and let us denote

(E*, L*, A*) the endemic equilibrium of (3a).

e System (3b) always has the disease-free equilib-
rium (1,0,0), which is GAS if Ry < 1 and un-
stable otherwise.

e If Ry > 1 system (3a) has an endemic equilib-
rium (S, I5, Sk) which is GAS and where

by n Bu
g Bu+bu  (Bu +bu)Ro
o | = | dmbr (Ro — 1)
I B (Brr +brr)
m H
2 (Ry -1
5H+bHR0( o= 1)

The first part of the theorem is obtained using Ly-
punov function theory. The case of the endemic equi-
librium needs more study. The idea here is that the
mosquito dynamic system drove the transmission dy-
namics. It may be assimilated to master-slave system.
L(t)

A(t)

The coupling term is sy,

In order to study the equilibrium stability we consider
the limit system associated to (3b) and use the result
of (Vidyasagar 1980) :

Theorem 2.3. Consider the following C* system

dx

= fla)

gt ( (8)
it =g(z,y),

with (z,y) € R™ x R™. Let (z*,y*) be an equilibrium

point. If x* is GAS in R™ for the system (é—f = f(x)
d

and if y* is GAS R™ for the system d—i’ = g(z*,y)

, then (z*,y*) is (locally) asymptotically stable for
system (8). Moreover, if all trajectories of (8) are
forward bounded, then (x*,y*) is GAS for (8).

The GAS of the endemic equilibrium (S35, Sk)

L(t
of system (3b) where sy, AEt; is replaced by SLoy is

then shown using the theory of competitive systems
(Hirsch & Smale 1974), (Hirsch 1990)(Smith 1995)
and the Poincaré-Bendixson property (Thieme 1992).

3 Identifiability Analysis

Recall that the identifiability analysis of models pa-
rameters consists in assessing wether the set of un-
known parameters can be uniquely determined from
the data. Thus, it is essential to determine the state
variables that can be considered as observable. In the
case of the chikungunya Réunion Island epidemic, au-
thorities have registered the average number of eggs
in a number if sites. Thus, (E) can be considered as
an observable variable. Furthermore, they estimate
the number of new infection week by week. More
generally, it seems to be realistic to assume that data
about human population may be obtained. For in-
stance, we know that the entire Réunion island before
the epidemic was susceptible. Data indicating week
per week new cases of the disease may be provided
by the INVS (French Institute for Health Care). We
know that the epidemic was declared over by April
2006. In the end the INVS counted 265,733 cases of
chikungunya from March 2005 to April 2006. This
represents more than 35% of the total population of
the Island. That is why it seems reasonable to as-
sume that susceptible (Sg) and infected human (Iyy)
are observable.

The parameters whose values are not directly accessi-
ble from the fiel are: s, s;, K., K for the system (3a)
and d;, d,,, for the system (3b). Let us recall main re-
sults in differential algebra for proving the parameters
identifiability.

3.1 Differential Algebra

This method consists in eliminating unobservable
state variables in order to get relations between out-
puts and parameters. Let us recall the methodology.
The system I'? is rewritten as a differential polyno-
mial system completed with 0; = 0,7=1,...,p, thus
the following system composed of polynomial equa-
tions and inequalities is obtained:

p(2,z,0) =0,
q(l’, Y, 6) =0,
r(z,y,0) #0, ©)

97107111,,]7
Let us introduce some notations:
e 7 is the radical of the differential ideal generated

by (9). Z, endowed with the following ranking
which eliminates the states variables:

[0] < [y, u] < [2] (10)
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is assumed to admit a characteristic presenta-
tion C (i.e., a canonical representant of the ideal)
which has the following form:

{9.17 <. 'épapl(yauva)v e »Pm(yvua 0),Q1(y,u,97x),
..,Qn(y,u,&m),}
(11)

e 7y is the radical of the differential ideal generated
by (9) for the particular value of parameter 6 and
Cy is the characteristic presentation associated
with the ranking [y, u] < [z].

e Finally, Zéo is the ideal obtained after eliminat-
ing state variables, the set C;° = CoNQ(0){U,Y}
is a characteristic presentation of this ideal.
The authors in (Denis-Vidal, Joly-Blanchard,
Noiret & Petitot 2001) have given some tech-
nical conditions for having the equality Cy =
C(6). Under these assumptions, the charac-
teristic presentation Cy, that is, C;“ of Ié"
is proved to contain the differential polynomi-
als Py (y,u,0),...,Pn(y,u,0) which can be ex-
pressed as

Pily, 4, 0) = 7 (g, w) + > 2 O s(y, w) (12)
k=1

where (7%)1<k<; are rational in 0, 7% # ¢ (u #
v), (m,;)1<k<; are differential polynomials with
respect to y and w and 7 # 0.

The list {7{(0),...,7..(9)} is called the exhaustive
summary of P;. The size of the system is the num-
ber of observations. The identifiability analysis is
based on the following proposition (Denis-Vidal, Joly-
Blanchard, Noiret & Petitot 2001).

Proposition 3.1. If fori=1,...,m, AP;(y,u,0) =
det(my,i(y,u),k = 1,...,n;) is not in the ideal Ié“,
then T'Y is globally identifiable at 6 if and only if for
every 0 e Uy (0 # p), the characteristic presentations
Cy’ and C3 are distinct.

For studying the identifiability of the parameters s, s;,
K., K, d;, d, in (3a) and (3b), the two coupled sys-
tems can be considered as a unique system in which
FE, Sy and Iy are supposed to be observed. However,
we will take again the procedure done in (Moulay,
Aziz-Alaoui & Kwon 2011) and presented in section
2, that is, decompose the identifiability analysis in
two steps. Indeed, for studying the parameters of the
second system it is essential to know those of the first
one. Besides, our aim is to propose an identifiability
study which can be used for a numerical procedure.
Indeed, as it was done in (Verdiere et al. 2005), the
use of differential algebra gives output polynomials
usable for estimating the unknown parameters.

3.2 Application to the Vector population

Since FE is supposed to be observed, the equation y =
E is added to the sytem (3a). In using the elimination
order [y] < [E, L, A], the package diffalg of Maple
gives the caracteristic presentation constituted of the
three following polynomials (13):

Py = (—0K. + by) A+ yK, + Kesy + Kedy

Py = (bK?%s; — 2K, bys; + by?s;) L — K2dy — K?2sy
_KE:U + Keyy - stmy - Kgdmsy - Kgdmdy
K % + dpn Ky + din Kesy? + dp Kody?

P; = (Kgleldmd + KSKldldms + KgKldldmd
+K6351Kldm$ — bKSSl.SKl)y + (KgKldlS + KSKldmd
+K3Kdid,, + K351 Kyd + K28, K;s + K35, Kd,,
+K3Kdid + K2Kdys)y + (K2Kd; + K2K;d

-‘rKgKldm + Kg’KlS + Kg’leﬂ]j

—|—KlKg’.Z.l. + (3K€2bSlSKl - QKgleldmd + Kgsdmd
—2K€2Kldldms - QKgKldldmd + KSSQdm - QKSSlKlde)yZ
+(—2K2Kdydy, + K2sdy, — K2Kdys — K2K;djd + K2sd
—Kldeezd — KglelS — Kgleld — 2K381Kldm — Kldegs
+K382) gy + (K2Kd) + Kid, K2 + 2K2K;s + 2K2 K d+
KgSlKl)y2 + (—QKeZKldl - QKldeg — KC?K[S
—2K2s)K; — K2Kd + K3s)ijy + 3K, K2ijy

72K1K2.?'J.y + (SlKldeeS — 2K382dm — 3K bs;sK;
+Kidyd Kes + 51K 1dy Ked — 2K 25d,d + Kidjd, Ked)y?
H(—K25% — 2K25d,, — K25d + 5, Kyd Ko + Kidjdy K.y
Y’ + (—K Kidy + K2s — Kes K — Kid Ke) 3y
+2KIK63)3 + (_2K623 + Kldee + KeKldl + Kelel)gy2
3K K. iy + KiK. Yy? + (s®dpn Ko + sdp Ked
+b5l5Kl)y4 + SdeeyyB - S-Kveyzy2 + SKeny.

(13)

The polynomials P; and P» used to express L and A
as a function of y and the parameters of the model.
The third one, P5, links the output with the parame-
ters: it is the output polynomial. With the function
belong_to, we verifie that the functional determinant
A(P3) is not in the ideal Z;°. The exhaustive sum-
mary is constituted of 21 expressions. In using the
Rosenfeld-Groebner algorithm, we obtain the identi-
fiability of the parameters K., K, s, s;. Thus, from
the observation E, the unknown parameters can be
estimated.

3.3 Application to the population Model

The third equation of (3b) links the human pop-
ulation to the vector population with the term
L(t)/A(t). According to the previous section, they
can be explicitely determined from E(t) thus the ra-
tio L(t)/A(t) can be considered as a known input wu.
As previously, in adding y1 = Iy, y2 = Sy to (3b)
and in considering the elimination order [y1, ya, u] <
[Ir, Sw,Im], one gets for the two following output
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polynomials:

Py = yaiio — U3 + (BuBm + Bmbr)y1y3 + siuy2y2

+sibguys — sibguyz + buva + Bmy2y192 — Bmbay2y1

Py =92+ 91— ba +buys + (b + 7)11.
(14)

Only the polynomial P, contains the parameters By
and 3, and is used for studying their identifiability.
The functional determinant AP, is proved not to be
in the ideal Ig". In studying the exhaustive summary
of P, we conclude that the parameters 0y and 3,
are identifable.

4 Conclusion

In this paper, the identifiability of models describing
the transmission of the chikungunya virus to human
population has been studied. According to the re-
emergence of this virus, the chikungunya becomes a
major health problem especially since the main vec-
tor has developed capabilities to adapt to non trop-
ical region. The identifiability is an important step
in the modeling. Indeed, the identifiability study en-
ables one to know if a model is well-posed and if the
unknown parameters can be assess from some obser-
vations done in the field.
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