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In the last years, several epidemics have been reported in particular the chikungunya epidemic on the Réunion Island. For predicting its possible evolution, new models describing the transmission of the chikungunya to the human population have been proposed and studied in the literature. In such models, some parameters are not directely accessible from experiments and for estimating them, iterative algorithms can be used. However, before searching for their values, it is essential to verify the identifiability of models parameters to assess wether the set of unknown parameters can be uniquely determined from the data. Thus, identifiability is particularly important in modeling. Indeed, if the model is not identifiable, numerical procedures can fail and in that case, some supplementary data have to be added or the set of admissible data has to be reduced. Thus, this paper proposes to study the identifiability of the proposed models by (Moulay, Aziz-Alaoui & Cadivel 2011).

Introduction

The chikungunya virus is a vector-borne disease transmitted by mosquitoes of Aedes genus. Several epidemics of this tropical disease have been reported this last 50 years. Recently an unprecedented epidemic has been observed in the Réunion island (a French island in the Indian Ocean) in [2005][2006] where one third of the total population has been infected. A pic of 40 000 infected per week has been reached in february 2006. An other chikungunya epidemic has been reported in Italy in 2007. It was the first time that such disease is observed in a non tropical region. The responsible vector of these two epidemics is identified: the Aedes Albopictus mosquito [START_REF] Reiter | Aedes albopictus as an epidemic vector of chikungunya virus: another emerging problem?[END_REF]. Contrary to Aedes Aegipty, the main vector of Dengue, which also transmits the chikungunya virus, Aedes Albopictus has developed capabilities to adapt to non tropical region. Chikungunya is now a major health problem. European health authorities are now strongly engaged in the control of this disease. Since there is no vaccine nor specific treatment, efforts are mostly directed towards prevention measures and the control of mosquito proliferation. Since these events, several works and models are proposed to try to understand their emergence or re-emergence. Various fields of research are concerned, such as epidemiology, biology, medicine or mathematics. For instance, Dengue, a vector borne disease mainly transmitted by Aedes Aegipy mosquitoes was the subject of several studies [START_REF] Esteva | A model for dengue disease with variable human population[END_REF][START_REF] Esteva | Analysis of a dengue disease transmission model[END_REF]. Models for the chikungunya virus have been recently proposed [START_REF] Dumont | On a temporal model for the chikungunya disease: Modeling, theory and numerics[END_REF], [START_REF] Moulay | The chikungunya disease: Modeling, vector and transmission global dynamics[END_REF].... Since the models are recent, the not well-known parameters have not yet been studied. In this paper, we propose to take again the models proposed by [START_REF] Moulay | The chikungunya disease: Modeling, vector and transmission global dynamics[END_REF] and to do an identifiability study. In their paper, the models are uncontrolled and can be described in a general state-space form:

Γ θ = ẋ(t, θ) = f (x(t, θ)), y(t, θ) = h(x(t, θ), θ). (1) 
Here x(t, θ) ∈ R n and y(t, θ) ∈ R m denote the state variables and the measured outputs, respectively and θ ∈ U p the unknown parameters vector (U p is an open subset in R p ). The functions f (., θ) and h(., θ) are real, rational and analytic for every θ ∈ U p on M (a connected open subset of R n such that x(t, θ) ∈ M for every θ ∈ U p and every t ∈ [0, T ]).

The identifiability definition of the uncontrolled model Γ θ is the following: The identifiability of models has been extensively studied [START_REF] Ljung | On global identifiability for arbitrary model parametrizations[END_REF], [START_REF] Vajda | Similarity transformation approach to structural identifiability of nonlinear models[END_REF], [START_REF] Verdière | Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor[END_REF] and different approaches have been proposed for studying the global identifiability of nonlinear systems. We can mention for example, the Taylor Series approach of [START_REF] Pohjanpalo | System identifiability based on the power series expansion of the solution[END_REF].

He proposed a method based on the analysis of a power series expansion of the output which gives rise to an algebraic system constituted of an infinite number of equations. A second method is based on the local state isomorphism theorem ( [START_REF] Walter | Global approaches to identifiability testing for linear and nonlinear state space models[END_REF], [START_REF] Chappell | Structural identifiability of the parameters of a nonlinear batch reactor model[END_REF], (Denis-Vidal, Joly-Blanchard & Noiret 2001), [START_REF] Chapman | Structural identifiability of nonlinear systems using linear/nonlinear splitting[END_REF]). It leads to study the solution of a specific set of differential partial equations. A third one is a method based on differential algebra that was introduced by (M. Fliess 1993), [START_REF] Ljung | On global identifiability for arbitrary model parametrizations[END_REF] and [START_REF] Ollivier | Identifiabilité des systèmes[END_REF]). It allows one to obtain relations linking the observations, the inputs and the unknown parameters of the system. These relations can be used to obtain a first estimation of the unknown parameters without a priori any knowledge of them [START_REF] Verdière | Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor[END_REF]. It is the latter method which will be used in this paper for studying the models identifiability.

The paper is organized as follows. In the second section, models describing the transmission of the chikungunya virus to human population are presented. Some results obtained in (Moulay, Aziz-Alaoui & Cadivel 2011) will be recalled since they will give us first, the framework of our study then, the steps to study the identifiability of the not wellknown parameters. In the third section, the identifiability results are given.

Presentation of the models

In [START_REF] Bacaër | Approximation of the basic reproduction number r0 for vector-borne diseases with a periodic vector population[END_REF]) the author formulate several methods to compute the basic reproduction number for epidemiological models. One of the first models describing the chikungunya transmission virus using SI-SIR type models is proposed. Moreover, some biological parameter values are given. An other approach is describe in [START_REF] Dumont | On a temporal model for the chikungunya disease: Modeling, theory and numerics[END_REF], where a global aquatic stage for the mosquito dynamics supplements a classical transmission model. In [START_REF] Dumont | Vector control for the chikungunya disease[END_REF], authors formulate an ordinary differential equation system to study control of chikunugunya virus using mechanical and chemical tools. In [START_REF] Moulay | Optimal control of chikungunya disease: Larvae reduction, treatment and prevention[END_REF], control efforts are taken into account through the formulation of an optimal control problem, where the objective is to control the mosquito proliferation and limit the number of human and mosquito infection. This papers deal with the Réunion Island epidemic.

Our model given in [START_REF] Moulay | The chikungunya disease: Modeling, vector and transmission global dynamics[END_REF][START_REF] Moulay | Optimal control of chikungunya disease: Larvae reduction, treatment and prevention[END_REF] takes into account the mosquito biological life cycle and describe the transmission virus to human population. For the reader convenience, we briefly recall the modeling steps. The mosquito biological life cycle consists in four stages: eggs, larvae, pupae and adults. We use a stage structured model to describe the following stages: eggs (E), larvae and pupae (L, two stages biologically close) and female adults (A, only females can transmit the virus) stages. The density variation of each stage is describe by the following scheme:

density variation = entering -(leaving + death)
The egg density variation is then described by the number of eggs laid by females b, by eggs becoming larvae with a transfer rate s and by eggs death with a natural mortality rate d. We assume that the number of eggs is proportional to the number of females b(t)A(t), and regulated by a carrying capacity K E since mosquitoes are able to detect the best breeding site ensuring the egg development, then b

(t) = bA(t)(1 -E(t)/K E ).
Other stages, are described in the same way. The input in the larvae stage, given with a transfer s is also assumed to be regulated by a carrying capacity K L which characterizes the availability of nutrients and space. The number of new larvae entering the L stage is then given by s(t) = sE(t)(1 -L(t)/K L ). These larvae become adult females with a transfer rate s L . Natural deaths occur with a rate d L , d m for larvae and adults respectively.

This model is then included in a classical SI-SIR epidemiological model to describe the virus transmission to human population. To this aim, the adult stage A is divided into two epidemiological states: susceptible S m and infective I m , since mosquitoes carry the infection along their life. All previous assumptions are summed up in Fig. 1. Based on our model description (see Fig. 1) and assumptions, we establish the following equations: 

Adult

                                                         dE dt (t) = bA(t) 1 E(t) K E -(s + d)E(t) dL dt (t) = sE(t) 1 - L(t) K L -(s L + d L )L(t) dA dt (t) = s L L(t) -d m A(t) d Sm dt (t) = s L L(t) -d m Sm (t) -β m ĪH (t) N H (t) Sm (t) d Īm dt (t) = β m ĪH (t) N H (t) Sm (t) -d m Īm (t) d SH dt (t) = -β H Īm (t) A(t) SH (t) -d H SH (t) +b H ( SH (t) + ĪH (t) + RH (t)) d ĪH dt (t) = β H Īm (t) A(t) SH (t) -γ ĪH (t) -d H ĪH (t) d RH dt (t) = γ ĪH (t) -d H RH (t) (2 
                                        E (t) = bA(t) 1 - E(t) K E -(s + d)E(t) L (t) = sE(t) 1 - L(t) K L -(s L + d L )L(t) A (t) = s L L(t) -d m A(t) (a)        S H (t) = -(b H + β H I m (t)) S H (t) + b H I H (t) = β H I m (t)S H (t) -(γ + b H )I H (t) I m (t) = -s L L(t) A(t) + β m I H (t) I m (t) + β m I H (t) (b) (3)
and it is defined on ∆ × Ω where

∆ =      (E, L, A) | 0 ≤ E ≤ K E 0 ≤ L ≤ K L 0 ≤ A ≤ s L d m K L      (4) 
and

Ω = (S H , I H , I m ) ∈ (R + ) 3 | 0 ≤ S H + I H ≤ 1 0 ≤ I m ≤ 1 .
(5)

The stability analysis of the model is detailed in [START_REF] Moulay | The chikungunya disease: Modeling, vector and transmission global dynamics[END_REF]. We briefly recall some results about this model. The study was conducted in two steps and they will be taken again for the identifiability study. First, we analyze the mosquito dynamics in the absence of virus, which correspond to the subsystem (3a). The mosquito dynamic is governed by the following threshold:

r = b s + d s s L + d L s L d m (6)
obtained from computation of the equilibrium.

Theorem 2.1.

• System (3a) always has the mosquito-free equilibrium (0, 0, 0), which is globally asymptotically stable (GAS) if r ≤ 1 and unstable otherwise

• If r > 1 system (3a) has an endemic equilibrium (E * , L * , A * ) wich is GAS, where

  E * L * A *   = 1 - 1 r        K E γ E K L γ L s L d m K L γ L        γ E = 1 + (s+d)dmK E bs L K L and γ L = 1 + (s L +d L )K L sK E
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In both cases, the global stability is obtained by using Lyapunov function theory. Now we assume r > 1, the biological interesting case, in order to ensure the persistence of mosquito population and we consider the subsystem (3b).

The stability of equilibrium of the transmission dynamics model is described thanks to the basic reproduction number (van den [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF][START_REF] Diekmann | Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation[END_REF], computed in the case r > 1 which is the biologically interesting case:

R 0 = β m β H d m (γ + b H ) (7)
We show the following result Theorem 2.2. Assume r > 1 and let us denote (E * , L * , A * ) the endemic equilibrium of (3a).

• System (3b) always has the disease-free equilibrium (1, 0, 0), which is GAS if R 0 ≤ 1 and unstable otherwise.

• If R 0 > 1 system (3a) has an endemic equilibrium (S * H , I * H , S * m ) which is GAS and where

  S * H I * H I * m   =        b H β H + b H + β H (β H + b H )R 0 d m b H β m (β H + b H ) (R 0 -1) b H β H + b H R 0 (R 0 -1)       
The first part of the theorem is obtained using Lypunov function theory. The case of the endemic equilibrium needs more study. The idea here is that the mosquito dynamic system drove the transmission dynamics. It may be assimilated to master-slave system.

The coupling term is s L L(t) A(t) .

In order to study the equilibrium stability we consider the limit system associated to (3b) and use the result of [START_REF] Vidyasagar | Decomposition techniques for large-scale systems with nonadditive interactions stability and stabilizability[END_REF]) :

Theorem 2.3. Consider the following

C 1 system      dx dt = f (x) dy dt = g(x, y), (8) 
with (x, y) ∈ R n × R m . Let (x * , y * ) be an equilibrium point. If x * is GAS in R n for the system dx dt = f (x) and if y * is GAS R n for the system dy dt = g(x * , y)

, then (x * , y * ) is (locally) asymptotically stable for system (8). Moreover, if all trajectories of (8) are forward bounded, then (x * , y * ) is GAS for (8).

The GAS of the endemic equilibrium (S * H , I * H , S * m ) of system (3b) where s L L(t) A(t) is replaced by s L L * A * is then shown using the theory of competitive systems [START_REF] Hirsch | Differential equations, dynamical systems, and linear algebra[END_REF], [START_REF] Hirsch | System of differential equations that are competitive or cooperative. iv: structural stability in three-dimensional systems[END_REF]) [START_REF] Smith | Monotone Dynamical Systems : An introduction to the theory of competitive and cooperative systems, American Mathematical Society[END_REF] and the Poincaré-Bendixson property [START_REF] Thieme | Convergence results and a poincare -bendixson trichotomy for asymptotically autonomous differential equations[END_REF].

Identifiability Analysis

Recall that the identifiability analysis of models parameters consists in assessing wether the set of unknown parameters can be uniquely determined from the data. Thus, it is essential to determine the state variables that can be considered as observable. In the case of the chikungunya Réunion Island epidemic, authorities have registered the average number of eggs in a number if sites. Thus, (E) can be considered as an observable variable. Furthermore, they estimate the number of new infection week by week. More generally, it seems to be realistic to assume that data about human population may be obtained. For instance, we know that the entire Réunion island before the epidemic was susceptible. Data indicating week per week new cases of the disease may be provided by the INVS (French Institute for Health Care). We know that the epidemic was declared over by April 2006. In the end the INVS counted 265,733 cases of chikungunya from March 2005 to April 2006. This represents more than 35% of the total population of the Island. That is why it seems reasonable to assume that susceptible (S H ) and infected human (I H ) are observable. The parameters whose values are not directly accessible from the fiel are: s, s l , K e , K l for the system (3a) and d l , d m for the system (3b). Let us recall main results in differential algebra for proving the parameters identifiability.

Differential Algebra

This method consists in eliminating unobservable state variables in order to get relations between outputs and parameters. Let us recall the methodology. The system Γ θ is rewritten as a differential polynomial system completed with θi = 0, i = 1, . . . , p, thus the following system composed of polynomial equations and inequalities is obtained:

       p( ẋ, x, θ) = 0, q(x, y, θ) = 0, r(x, y, θ) = 0, θi = 0, i = 1, . . . , p. (9) 
Let us introduce some notations:

• I is the radical of the differential ideal generated by ( 9). I, endowed with the following ranking which eliminates the states variables:

[θ] ≺ [y, u] ≺ [x] (10) 
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• I θ is the radical of the differential ideal generated by ( 9) for the particular value of parameter θ and C θ is the characteristic presentation associated with the ranking [y, u] ≺ [x].

• Finally, I i0 θ is the ideal obtained after eliminating state variables, the set

C i0 θ = C θ ∩ Q(θ){U, Y } is a characteristic presentation of this ideal.
The authors in (Denis-Vidal, Joly-Blanchard, Noiret & Petitot 2001) have given some technical conditions for having the equality C θ = C(θ). Under these assumptions, the characteristic presentation C θ , that is, C i0 θ of I i0 θ is proved to contain the differential polynomials P 1 (y, u, θ), . . . , P m (y, u, θ) which can be expressed as

P i (y, u, θ) = γ i 0 (y, u) + ni k=1 γ i k (θ)m k,i (y, u) (12) 
where (γ i k ) 1≤k≤l are rational in θ, γ i u = γ i v (u = v), (m k,i ) 1≤k≤l are differential polynomials with respect to y and u and γ i 0 = 0.

The list {γ i 1 (θ), . . . , γ i ni (θ)} is called the exhaustive summary of P i . The size of the system is the number of observations. The identifiability analysis is based on the following proposition (Denis-Vidal, Joly-Blanchard, Noiret & Petitot 2001).

Proposition 3.1. If for i = 1, . . . , m, P i (y, u, θ) = det(m k,i (y, u), k = 1, . . . , n i ) is not in the ideal I i0 θ , then Γ θ is globally identifiable at θ if and only if for every θ ∈ U θ ( θ = p), the characteristic presentations C i0 θ and C i0 θ are distinct.

For studying the identifiability of the parameters s, s l , K e , K l , d l , d m in (3a) and (3b), the two coupled systems can be considered as a unique system in which E, S H and I H are supposed to be observed. However, we will take again the procedure done in [START_REF] Moulay | Optimal control of chikungunya disease: Larvae reduction, treatment and prevention[END_REF] and presented in section 2, that is, decompose the identifiability analysis in two steps. Indeed, for studying the parameters of the second system it is essential to know those of the first one. Besides, our aim is to propose an identifiability study which can be used for a numerical procedure. Indeed, as it was done in [START_REF] Verdière | Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor[END_REF], the use of differential algebra gives output polynomials usable for estimating the unknown parameters.

Application to the Vector population

Since E is supposed to be observed, the equation y = E is added to the sytem (3a). In using the elimination order [y] ≺ [E, L, A], the package diffalg of Maple gives the caracteristic presentation constituted of the three following polynomials (13):

P 1 = (-bK e + by)A + ẏK e + K e sy + K e dy P 2 = (bK 2 e s l -2K e bys l + by

2 s l )L -K 2 e d ẏ -K 2 e s ẏ -K 2 e ÿ + K e ÿy -K 2 e d m ẏ -K 2 e d m sy -K 2 e d m dy -K e ẏ2 + d m K e ẏy + d m K e sy 2 + d m K e dy 2 P 3 = (K 3 e s l K l d m d + K 3 e K l d l d m s + K 3 e K l d l d m d +K 3 e s l K l d m s -bK 3 e s l sK l )y + (K 3 e K l d l s + K 3 e K l d m d +K 3 e K l d l d m + K 3 e s l K l d + K 3 e s l K l s + K 3 e s l K l d m +K 3 e K l d l d + K 3 e K l d m s) ẏ + (K 3 e K l d l + K 3 e K l d +K 3 e K l d m + K 3 e K l s + K 3 e s l K l )ÿ +K l K 3 e ... y + (3K 2 e bs l sK l -2K 2 e s l K l d m d + K 3 e sd m d -2K 2 e K l d l d m s -2K 2 e K l d l d m d + K 3 e s 2 d m -2K 2 e s l K l d m s)y 2 +(-2K 2 e K l d l d m + K 3 e sd m -K 2 e K l d l s -K 2 e K l d l d + K 3 e sd -K l d m K 2 e d -K 2 e s l K l s -K 2 e s l K l d -2K 2 e s l K l d m -K l d m K 2 e s +K 3 e s 2 ) ẏy + (K 2 e K l d l + K l d m K 2 e + 2K 2 e K l s + 2K 2 e K l d+ K 2 e s l K l ) ẏ2 + (-2K 2 e K l d l -2K l d m K 2 e -K 2 e K l s -2K 2 e s l K l -K 2 e K l d + K 3 e s)ÿy + 3K l K 2 e ÿ ẏ -2K l K 2 e ... y y + (s l K l d m K e s -2K 2 e s 2 d m -3K e bs l sK l +K l d l d m K e s + s l K l d m K e d -2K 2 e sd m d + K l d l d m K e d)y 3 +(-K 2 e s 2 -2K 2 e sd m -K 2 e sd + s l K l d m K e + K l d l d m K e ) ẏ y 2 + (-K e K l d l + K 2 e s -K e s l K l -K l d m K e ) ẏ2 y +2K l K e ẏ3 + (-2K 2 e s + K l d m K e + K e K l d l + K e s l K l )ÿy 2 -3K l K e ÿ ẏy + K l K e
... y y 2 + (s 2 d m K e + sd m K e d +bs l sK l )y 4 + sd m K e ẏy 3 -sK e ẏ2 y 2 + sK e ÿy 3 .

(13)

The polynomials P 1 and P 2 used to express L and A as a function of y and the parameters of the model. The third one, P 3 , links the output with the parameters: it is the output polynomial. With the function belong to, we verifie that the functional determinant (P 3 ) is not in the ideal I i0 θ . The exhaustive summary is constituted of 21 expressions. In using the Rosenfeld-Groebner algorithm, we obtain the identifiability of the parameters K e , K l , s, s l . Thus, from the observation E, the unknown parameters can be estimated.

Application to the population Model

The third equation of (3b) links the human population to the vector population with the term L(t)/A(t). According to the previous section, they can be explicitely determined from E(t) thus the ratio L(t)/A(t) can be considered as a known input u. As previously, in adding y 1 = I H , y 2 = S H to (3b) and in considering the elimination order [y 1 , y 2 , u] ≺ [I h , S H , I m ], one gets for the two following output (14)

Only the polynomial P 4 contains the parameters β H and β m and is used for studying their identifiability. The functional determinant P 4 is proved not to be in the ideal I i0 θ . In studying the exhaustive summary of P 4 , we conclude that the parameters β H and β m are identifable.

Conclusion

In this paper, the identifiability of models describing the transmission of the chikungunya virus to human population has been studied. According to the reemergence of this virus, the chikungunya becomes a major health problem especially since the main vector has developed capabilities to adapt to non tropical region. The identifiability is an important step in the modeling. Indeed, the identifiability study enables one to know if a model is well-posed and if the unknown parameters can be assess from some observations done in the field.

Fig. 1 :

 1 Fig. 1: Compartmental model for the dynamics of Aedes albopictus mosquitos and the virus transmission to human population.
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  Using the following variable changes S m = Sm /A, I m = Īm /A S H = SH /N H , I H = ĪH /N H and R H = RH /N H and the fact that then S m = 1 -I m et R H = 1 -S H -I H , system (2) reads as:

  MOSIM'12 -06 au 08 juin 2012 -Bordeaux -France polynomials:P 4 = y 2 ÿ2 -ẏ2 2 + (β H β m + β m b H )y 1 y 2 2 + s l uy 2 ẏ2 +s l b H uy 2 2 -s l b H uy 2 + b H ẏ2 + β m y 2 y 1 ẏ2 -β m b H y 2 y 1 P 5 = ẏ2 + ẏ1 -b H + b H y 2 + (b H + γ)y 1 .