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Abstract: In order to optimize the performance of a diesel engine subject to legislative
constraints on pollutant emissions, it is necessary to improve their design, and to identify how
design parameters affect engine behaviours. One specificity of this work is that it does not
exist a physical model of engine behaviour under all possible operational conditions. A powerful
strategy for engine modeling is to build a fast emulator based on carefully chosen observations,
made according to an experimental design. In this paper, two Kriging models are considered.
One is based on a geostatistical approach and the other corresponds to a Gaussian process
metamodel approach. Our aim is to show that the use of each of these methods does not lead
to the same results, particularly when ”atypical” points are present in our database. In a more
precise way, the statistical approach allows us to obtain a good quality modeling even if atypical
data are present, while this situation leads to a bad quality of the modeling by the geostatistical
approach. This behaviour takes a fundamental importance for the problem of the pollutant
emissions, because the analysis of these atypical data, which are rarely erroneous data, can
supply precious information for the engine tuning in the design stage.

Keywords: Modelling, Optimization problems, modelling errors, Automotive emissions, Diesel

engines

1. INTRODUCTION

The automotive industry faces the competing goals of
producing better performing vehicles and keeping devel-
opment time with low costs. It is crucial for the manufac-
turers to be able to produce fuel-economic vehicles, which
respect pollutant emissions standards, and which meet the
customersexpectations. Accordingly, the complexity of the
engines responses to be optimized and the number of the
parameters to be controlled during the design stage, have
increased rapidly, in the last years. In order to deliver
vehicles, which respond to these requirements, in a rea-
sonable time scale, companies use design of experiments
(DOE) in one side, and modeling, in the other side. DOE
[Box et al. (2005)] is a powerful tool, but the cost of
the experiments and their duration, particularly in the
field of pollutant emissions, can be a limit to their use
in automotive industry. The engine developers use two
main approaches to model engine behaviour. The first one
is based on chemical and physical models, via differential
systems, see Borg Jonathan et al. (2009) et Brahmi et al.
(2010). This approach is not the subject of this article,
because in our case, we don’t have such models. Further-

more, even when these models are available, generally,
they are time-consuming, impractical for multi-objective
optimisation routines, and fail to capture all the trends in
the engine system described by measured data. Statisti-
cal modeling based on carefully chosen measured data of
engine performance, according to an experimental design,
is an important alternative technique. Strategies based on
Lolimot [Castric et al. (2007)] (Local Linear Model Tree)
and Zeldovich mechanisms Heywood (1988) have been
developed in order to predict emissions of NOx. In the first
case, the corresponding model can lead to singular points,
which reduces the precision of the results. In the second
case, the results are not satisfactory enough. Therefore,
several statistical modeling methods offer interesting pos-
sibilities, see Edwards et al. (1997). The methods based on
statistical training such as the neural networks Fang et al.
(2006), knew a striking success. At the same time, the
use of the computer modeling [Santner et al. (2003) and
Bayarri et al. (2009)] is strongly developed. The methods
based on the surface responses methodologies are studied
and compared, particularly by Jin et al. (2001), taking into
account various levels of complexity of the problem in term
of nonlinearity and of the number of variables. However,



most of these approaches cannot be used in our case,
because we are drastically limited by the small number
of experiments which our industrial partner is able to do.
The advantages offered by the kriging methods [Matheron
(1963), Zhu et al. (2010) and Jack (2009)] brought us to
choose them for our study. Two approaches of Kriging
model are considered in this work. The first one is based on
a geostatistical approach. Softwares such as R and Matlab
contain a toolbox for the use of this method, but unfortu-
nately, they are restricted to less than 3 dimensions. The
method has been adapted to higher dimensions, and more
generally an innovative approach for functional data has
been proposed. The performance of this model is due to
its ability to take into account the spatial dependence of
data [Cressie (1991)], and has minimal variance estimators
without bias. But this method may be difficult to couple
with optimization process of calibration. The second one is
a Gaussian process metamodel approach Baillargeon et al.
(2004). In this case, the system response in consideration
is modeled by the sum of two quantities f(z) and d(z),
where f(z) corresponds to a deterministic function which
is a linear combination of known functions (in our case a
one-degree polynomial model) and §(x) is the stochastic
part and corresponds to a Gaussian stationary process of
order 2, see Tooss (2009). The aim of this paper is to bring
response to the problem of the polluting emissions. At first,
we wish to know if the two kriging models are adapted to
the modeling of the three pollutants studied here: NOx,
smokes and CO. Then, the question which arises is to
know if, according to the values taken by the coefficient
used to estimate the quality of the modeling, conclusions
can be established as for the presence or not of atypical
points. The detection of these atypical points and their
interpretation are very important, because these points are
often revealing specific information for engine tuning. This
paper is organized as follows: In the second section, the
Kriging techniques, geostatistical approach and Gaussian
process metamodel, are recalled. In the third section, the
engine behaviour and the importance of controlling pollu-
tant emissions are described. In the last section, numerical
results and some elements of discussion are given.

2. KRIGING TECHNIQUES

Kriging methods are used frequently for spatial interpo-
lation of soil properties, see Krige (1951).Kriging is a
linear least squares estimation algorithm, which is used
for interpolation. The aim is to estimate the value of an
unknown real function y at point x*, given the values of
the function y at some other points (¥ € R for each
i € {1,...,n}. The Kriging estimator is defined by

§(a*) = Zm(w@) (1)

In this paper, we will note y(z®) = y©@
Where

n is the number of surrounding observations

z(® is a vecteur composed of the d values (xgz), - xy)) of
the factors at point i

\; is the weight corresponding to the observation y(z(?).
The weights are estimated in order to make the estimator
unbiased with minimal variance.

The system response is treated as a realization of a random
function y(x). This model can be written as:

y(x) = f(x) +6(x).

The deterministic function f(z) provides the mean of
y(x) and §(x) is the stochastic part which verifies some
assumptions depending on the choice of Kriging model.

2.1 Geostatistical approach: Ordinary Kriging

In this approach the weights are determined such that the
following Kriging variance

var(g(z") — y(z"))
is minimal under the unbiased constraint given by

En: A=1. 2)
1=1

It leads to a classical optimization problem with equality
constraint. The Lagrange multiplier theory is used in order
to work out this problem. This leads to a linear system to
be solved, see Davis (1986). This system produces, under
certain assumptions specified below, a function called
variogram described in the following paragraph.

Variogram  The variogram is a function representing the
spatial dependency. It is obtained from the stationarity
definition. Indeed, this stationarity hypothesis is an indis-
pensable condition for the use of the Kriging method. In
the case of ordinary Kriging, the expression of the vari-
ogram is obtained from the following definition of intrinsic
stationarity:
E(y(e” +h) —y(@™)) =0,1<i<n
var(y(z) 4+ h) —y(zD)) =2v(h), 1 <i<n.

More precisely, the expression of the theoretical variogram
is deduced from the second condition of intrinsic station-
arity. With the assumption of isotropy, the variation of a
data set will be dependent only on distance ||h|| between
two locations. To infer the variogram from observed data,

we will then use the common formula for the experimental
variogram, see Cressie (1991):

~ 1 i j 2
i) = ] % [y ) = y(=)] 3)

where _ _

N() = { ), N2 = 2D =7}
The quantity |N(r)| is the pair number of N(r) and the
function 4(r) is the experimental variogram.

Variogram Model The experimental variogram presented
in equation (3) estimates the theoretical variogram, for
only a finite number of distances. Moreover, it does
not necessarily form a valid variogram. This means that
maybe, it does not concern a negative conditionally func-
tion. Indeed, this condition is necessary to ensure the
positivity of the variance of a sum of random variables,
see Christakos (1984). The experimental variogram is then
modelled by a function of negative conditional type and
is defined for all distances. It is named the variagrophic
model. This model must be selected among the various



forms of the variogram models, which exist in the literature
and adjusted to the experimental variogram Arnaud et al.
(2000). It means that the parameters of the model must
be estimated. This adjustment is done with an estimation
method such as the weighted least squares or maximum
likelihood method. Once the variographic model is chosen,
and its parameters estimated, the weights \; which appear
in (1) are computed by solving the following system:

AN =B
with
y(rin) y(ri2) - (i) 1
v(ro1) Y(raz) ... Y(ran) 1
'Y(Tnl) 'Y(TnQ) V(Tnn) 1
1 1 1 1 0
A= De o A A
B = [y(ro1) v(ro2) ... Y(ron) 1J°
and
rij = |la®@ — 20|, ro; = [lz* — 2V

where A is the Lagrange multiplier. The function ~(r;;) is
the variogram model used for adjusting the experimental
variogram.

Kriging Emulator Validation The true test of the quality
of the fitted emulator model is its ability to predict the
response at untried factor values. In order to maximally
exploit the data to aid model fitting, the emulators are
validated using leave-one-out cross validation. This process
involves taking the fitted model and re-fitting it to a subset
of non used experimental data. More precisely, for an
experiment with d design factors, the set of n experimental
design points and corresponding responses, contain the
information used to build the Kriging model. A cross
validation involves predicting at each design point in turn
when that point is left out of the predictor equations.
Let () be the estimate of the y(z()) based on all
the design points except z(?). The prediction error is then
calculated by a coefficient of determination R? used in
multiple regression:

iy @) — )P

R*=1- - T
Zi:l |y(x(l)) —7?

(4)

2.2 Gaussian Process Metamodel

In this approach, the deterministic function f(x) is a linear
combination of known functions In this study, a one-degree
polynomial model is used and f(x) can be rewritten as
follows:

d
fa(z) = Bo + Zﬁixi
1

where 8 = (Bq, ..., B4) is the regression parameter vector.
The stochastic part §(x) is a Gaussian, stationary of order
two process, then:

E((x))=0
E(5(z),0(2)) = 02 R(x — 2)

where ag denotes the variance of Y and R is the correlation
function. Among correlation models given in the literature,

see Abr (1997), we choose to use the generalized exponen-
tial correlation function:

d
Ry 4(x — 2z) = exp(— ZGHJ'% — 2 |7*)
k=1
or

d
Roq(z—2) = H exp(—0k|xr — 2 |™)
k=1
where 6 = (01,...,04)" and ¢ = (q1,...,qq4)" are the
correlation parameters (hyperparameters) with 6 > 0 and
0 <gqp <2, Vk € {1,...,d}. This choice is motivated by
wide spectrum of shapes that such a function offers. If a
new point z* = (z7,...,z}) is considered, the following
unbiased linear predictor is obtained:
§= f5@") +r(@ )Y = F)
where

e Y is the vector of observations Y = (y() ... y(™)t,

F = (f5a0),., f5a)),

I = o} (Rgﬁq(x(’) — fC(J))(i,j)e{l,...,n}Z) is the covari-

ance matrix of

677- = (5(I(1))7 e 75(I(n)))ta

r(z*) = 02(Rg.q(x™) —2%), ..., Ry o(x(™ —2*)), since

r(x*) = E[6(x*)d,].

In the following, unknown regression and correlation pa-

rameters 3, o5, § and ¢ are estimated by maximizing a

likelihood function, see Fang et al. (2006):
B=(F'Ry.F)""F'R, Y

1

n

63 =

(éa Cj) =

(Y = F)'R, (Y — F)
arg min (&§|R9,q|1/”)
0eRtdge(1,2]d

3. POLLUTANTS EMISSION TESTING

The problem which we handle consists in a contribution
to the modeling of the pollutants emissions, with the
aim of being able to make their rate predictable, most
upstream to the phase of engine development. Obviously,
this problem is not new but remains critical, see Christakos
(1984). Besides, the good choice of the modeling method
and detection of outliers are important as in any domain
where data exploitation is used to make prdictions, see
Zhu et al. (2010).

As it has been said previously, our main objective is to
establish a comparison between the two Kriging methods,
especially for the industrial problem in interest. Are these
two approaches equivalent? If they are not, which is the
best of them regarding the specificity of our problem?
To achieve this goal, we will apply those techniques over
data received from a car manufacturer. The company
wants to improve its engine responses owing to model
based methods. In our case, the goal is to create models
representing the pollutant emissions of a diesel engine. In
order to be compatible with the engine tuning process, the
inputs and the outputs of the models have been imposed
by the cars manufacturer. The inputs of our models z(?) =

(xgi), ) x((ii)) are the following ones:

e the opening percentage of air flux, xgi)



(@)
2

the rail pressure, x

the mass fuel quantities,x:(f)

the instants of fuel injection, :z:ff)

the engine speed, acg)
rhe EGR quantity, azél)

the manifold pressure, x

(4)
7
The outputs of the models are the following ones:

e The NOx quantity in ppm (parts per million)

e The Particule quantity in FSN (Filter Smoke Num-
ber)

e The CO quantity in ppm (parts per million)

To solve this problem, we dispose of two databases. The
first one contains 317 points. To test our models, we de-
cided to use 267 points to create the models and 50 points
to validate them. Consequently, we dispose of a learn-
ing database of 267 points and a prediction/validation
database of 50 points. The second data base is composed
of 90 points that are divided into a learning database of 75
points and a prediction/validation database of 15 points.
the second database is smaller than the first one because
the engine speed parameter is not taken into account We
choose these two bases because they correspond to the
two functioning modes possible in the engine tuning. The
adjuster builds at first a representative global model of the
behaviour of engine on the entire domain which interests
him. Then, he builds several models corresponding to
particular and more representative functioning points.

4. COMPARAISON OF THE TWO KRIGING
APPROACHES

At first time, we want to be sure that both types of kriging,
previously presented, can give a response to the modeling
of pollutants emitted by diesel engine. To do it, we be-
gan with the modeling of NOxand particles. We do not
consider CO at first, because, as we shall see it afterward,
this measure is rather delicate and the databases can be
erroneous. Furthermore, NOx are the pollutants that are
modeled the most easily because their formation depends
only on the temperature of combustion. It is why they are
often used to test the good accuracy of the models which
we want to elaborate.

In the Geostatistic Kriging context, we used a variogram
whose the formula is the following one:

y=b+cx*(r)°

Considering the first database, figure 1, 2 and 3 show the
results obtained.

* a=‘l.3, b=4.8e+094, ¢=0.0055 )

0 1 2 3 4 5 6
Distance

Fig. 1. adjusted variogram model

L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 18C
measures

Fig. 2. geostatistical kriging model - NOx measures vs
estimations

: ‘ : : R2=0.87
0 200 400 600 800 1000 1200 1400 1600 18C
measures

Fig. 3. statistic kriging model - NOx measures vs estima-
tions

We can see that whatever the Kriging method used, the R?
coefficient is satisfactory and is greater than 0.85. However,
in the figures 2, 3, for the NOx, the R? coefficient obtained
by the geostatistical approach is about 0.94 and is better



than the R? for Gaussian Kriging model (R* = 0.87).
Moreover, we can notice that the fit of the variogram is
correct with this function.

The results obtained for the particles are quite similar.
We reproduce the same reasoning with the second database
which contains fewer test points than the first one. In the
same way, we consider a power variogram model for the
geostatistical approach: y = b+ ¢ * (r)%.

*
4 a=2, b=0.046, c=5.3e-005

k3 I I I I I I I
4 1.6 18 2 22 24 26 2.8 3 3.
Distance

Fig. 4. adjusted variogram model

[ * R2=0.85 7

L
0 05 1 15 2 25 3
measures

Fig. 5. geostatistical kriging model - particles measures vs
estimations

R?=086
0 0.5 1 15 2 25 3
measures

Fig. 6. statistic kriging model - particles measures vs
estimations

For the NOx, which are not represented here, the results
are quite satisfactory and completly equivalent with R? =
0.97 for the geostatistical kriging, and R? = 0.95 for
the Gaussian Kriging. However, for this pollutant, the
variogram is less adjusted. This can be explained by the
small size of the database which we have and which limits
the adjustment of the experimental variogram. As for
particles, the results are just satisfactory with a value of R?
around 0.85. This is explained partially by the insufficient
size of the database but is especially due to the complexity
of the physical phenomenon We can conclude that the
Kriging methods offer a good response to the problem of
modelling pollutants emissions such as NOx and particles.
Nevertheless, it often arrives that the measures contain
errors. This is due to the context in which these measures
are made and to the necessity of keeping instruments of
post-treatment on the engine in spite of the modifications
which it leads on the conditions of the combustion.

5. CO MODEL AND ATYPICAL POINTS

In what follows, we are interested in the pollutant CO by
using the data contained in the first database.

* a=4.1, b=7.4e+002, c=5e+004

I I I I I
0 1 2 3 4 5 6
Distance

Fig. 7. adjusted variogram model



R2=-20

L
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measures

Fig. 8. geostatistical kriging model - CO measures vs
estimations

0 500 1000 15C
measures

Fig. 9. statistic kriging model - CO measures vs estima-
tions

We notice that the model obtained by the geostatistical
kriging does not allow a correct prediction of the CO, in
spite of the fact that the variogram fits correctly the ex-
perimental data. We notice that the gaussian kriging gives
a very good value of R? equal to 0.95 (figure 9). Indeed,
the results are linked to the presence of an atypical point
in the learning database. We could consider this point as
an outlier. However, nothing can allow considering it as
erroneous datum of a physical viewpoint. It is possible that
it corresponds to a particular mode of engine functioning
or to the fact that the instruments of post-treatment,
need a cleaning as for example for the Anti-particles Filter
(FAP) which requires regularly a regeneration operation.
To validate this supposition, we eliminate this point of our
sample and we build the model again. The following results
are obtained.

a=3.9, b=9.8e+002, c=4.2e+004

* I I I I I
0 1 2 3 4 5 6
Distance

Fig. 10. adjusted variogram model

I
0 500 1000 15C
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Fig. 11. geostatistical kriging model - CO measures vs
estimations

We notice that R? has a highest value 0.94 (figure 11)
and is comparable to that one obtained with the Gaussian
Kriging. Then, two hypothesis are possible. The first one
is that the point is an outlier. Thus we have to wonder
why the Gaussian model did not react to its presence
while the geostatistical model is very sensitive. In the
second hypothesis, this value is an atypical one, revealing
an important phenomenon. In that case, the capacity of
the geostatistical Kriging to have a different behaviour
following the presence or no of atypical data can be very
useful to inform us about particular behaviour of the
engine. These hypothesis are very important specially if
the tests must be exploited very quickly (even in real time)
to detect points of particular functioning during engine
tuning and calibration. The hypothesis was tested over
the second data base, still on CO modelling:
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Fig. 12. adjusted variogram model
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Fig. 13. geostatistical kriging model - CO measures vs
estimations
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Fig. 14. statistic kriging model - CO measures vs estima-
tions

The figures show that over this database it seems that
there is no atypical point and in this case the two ap-
proaches produce quite the same results. The last test done
is the introduction in this database of an outlier, which is

illustrated by the two figures 15 and 16.

In this case, the R? of the two models are degraded even if
the statistical approach is still better than the geostatisti-
cal one. Thus, the comparison between the two approaches
can provide an indication about the nature of a point: if it
is an outlier or if it is an atypical point. If the statistical
krigeage gives acceptable results whereas the geostatistical
one not, it can be assumed that there is an atypical point
that must be studied.

L L L L L
0 500 1000 1500 2000 2500 30C
measures

Fig. 15. geostatistical kriging model - CO measures vs
estimations

L L L L
0 500 1000 1500 2000 2500 30C
measures

Fig. 16. statistic kriging model - CO measures vs estima-
tions

5.1 Conclusions

The results we have described below, allow us to assert
that in the field of diesel pollutants emissions, the krig-
ing approaches can be mobilized. However, as outliers
or atypical data are present or not, both methods have
different performances. The geostatistical approach is rec-
ommended especially in our case, where often an atypical
point corresponds to a particular behavior of the engine.
These first results encourage us to continue the study,
first to demonstrate its validity for modelling of other



pollutants, secondly by studying other models of kriging,
such as cokriging, for example.
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