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PRIME POISSON SUSPENSIONS

FRANÇOIS PARREAU AND EMMANUEL ROY

Abstract. We establish a necessary and sufficient condition for a Pois-
son suspension to be prime. The proof is based on the Fock space
structure of the L

2-space of the Poisson suspension. We give examples
of explicit infinite measure preserving systems that give way to prime
Poisson suspensions, in particular non-singular compact group rotations.
We also compare those prime Poisson suspensions to the existing prime
transformations known so far, showing our examples are new.

1. Introduction

A measure-preserving transformation (X,A, µ, T ) is said to be prime if
A and {X, ∅} are the only factors of the system. The first examples were
Ornstein’s mixing rank one constructions [10], proved to be prime by Polit
in [12]. Indeed those systems are part of the larger class of simple systems
which possess their own theory: they are those systems (X,A, µ, T ) whose
ergodic selfjoinings are either the product joining or graph joinings ∆S with
S ∈ C (T ), the centralizer of T . In particular factors of simple systems
correspond to compact groups of K ⊂ C (T ):

K := {A ∈ A, SA = A, A ∈ K}
The factor system T�K is simple if and only if K is normal in C (T ).

Therefore, if K is a maximal compact subgroup of the centralizer of a simple
system T , then it induces a prime system T�K. The most drastic situation
occurs when the centralizer of the simple system is reduced to the powers
of the transformation, it is then said to have minimal self-joinings (MSJ(2))
(mixing rank one transformations are such, also Chacon transformation and
many others).

There also exists example of rigid (and therefore not MSJ(2)), simple,
prime transformations (see [2]) and examples of simple systems with a cen-
tralizer possessing a non normal maximal compact subgroup K, giving way
to prime, non simple systems are given in [4]. Observe that some non-zero
time map of a horocycle flow are prime. As they can always be seen as
factors of a simple system [16], they are part of the above theory. Let us
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PRIME POISSON SUSPENSIONS 2

mention also that if T is MSJ(2), then the symmetric factor of T × T is
prime and so is the map (x, y) 7→ (y, Tx).

Many of the examples of prime maps are also rank one. Indeed, mildly
mixing rank one maps are prime as King showed that a strict factor of a
rank one map is rigid. It is yet unknown if prime rank one maps are not
factors of simple systems.

We believe that we’ve listed all the examples of finite measure preserving
prime transformations known so far.

The aim of this paper is to introduce new examples of prime transforma-
tion as special cases of Poisson suspensions. The main structural result is
given in Section 3 and examples in Section 5.

2. Technology

2.1. Poisson measure. Let (X,A, µ) be a σ-finite measure space and (X∗,A∗, µ∗)
be the corresponding Poisson measure space.

It is frequent to define the identity on X∗ by N , that is N (ν) = ν where
ν is a counting measure on X. Under the distribution µ∗, N is therefore a
random measure distributed as µ∗ and A∗ = σ {N (A) , A ∈ A}.

2.1.1. Fock space. We recall that L2 (µ∗) has a Fock-space structure based
on L2 (µ). Namely:

L2 (µ∗) ≃ C⊕ L2 (µ)⊕ L2
sym

(
µ⊗2

)
⊕ · · · ⊕ L2

sym

(
µ⊗n

)
⊕ · · ·

Through this identification, L2 (µ∗) decomposes into an orthogonal sum
of chaos Hn, where Hn is linearly spanned by multiple integrals, for f in
L1 (µ) ∩ L2 (µ), defined by:

J (n) (f⊗n) :=

ˆ

. . .

ˆ

∆c
n

f (x1) . . . f (xn) (N (dx1)− µ (dx1)) . . . (N (dxn)− µ (dxn))

In the identification, J (n) (f⊗n) corresponds to
√
n!f⊗n ∈ L2

sym (µ⊗n) and
we have the isometry formula:

〈
J (n) (f) , J (p) (g)

〉
L2(µ∗)

= n!
〈
f⊗n, g⊗n

〉
L2
sym(µ⊗n)

1n=p

We can therefore consider that J (n) (h) is defined for all h ∈ L2
sym (µ⊗n).

2.1.2. Difference operators. In this section, we refer to the very useful paper
of Last and Penrose [7]. We shall need the following “operators”, called
difference operator :

Let F ∈ L2 (µ∗). Define D1
yF by:

D1
yF (ν) := F (ν + δy)− F (ν)
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and by induction Dn
y1...,yn

F

Dn
y1...,yn

F := Dn−1
y2...,yn

(
D1

y1
F
)

It can be observed that this operator is symmetric in y’s for any n ∈ N.
Those operators are acting between L2 (µ∗) and L2 (µ∗ ⊗ µ⊗n), that is

F ∈ L2 (µ∗) is mapped to

(ν, y1 . . . , yn) 7→ Dn
y1...,yn

F (ν)

An by taking expectation we get an operator which maps F ∈ L2 (µ∗) to
PnF ∈ L2

sym (µ⊗n):

PnF (y1 . . . , yn) = E
[
Dn

y1...,yn
F
]

It is convenient to set P0F = E [F ] and we get the remarkable property
that F decomposes in the Fock space as:

F ≃ P0F + · · ·+ PnF + . . .

In particular PnJ
(n) (f⊗n) = f⊗n and in this case, we can even remove

the expectation:

Dn
y1...,yn

J (n)
(
f⊗n

)
(ν) = f⊗n (y1 . . . , yn)

for µ∗ ⊗ µ⊗n-almost all ν, y1 . . . , yn ∈ X∗ ×Xn.

Lemma 1. If F ∈ Hn, then, for µ-almost all a ∈ X, D1
aF ∈ Hn−1.

Proof. First, by Eqs (3.9), (3.11) and Theorem 3.3 in [7]:
ˆ

X

E
[(
D1

aF
)2]

µ (da) = nE
[
F 2

]
,

D1
aF is thus in L2 (µ∗) for µ-almost all a ∈ X.

Let k 6= n−1, we get Pk

(
D1

aF
)
(y1 . . . , yk) = E

[
Dk

y1...,yk

(
D1

aF
)]

= E
[
Dk+1

y1...,yk,a
F
]
=

Pk+1F (y1 . . . , yk, a).
But as F ∈ Hn, Pk+1F (y1 . . . , yk, yk+1) is zero for µ⊗k+1-almost all

y1 . . . , yk+1 ∈ Xk+1, therefore we deduce that for µ-almost all a ∈ X,
Pk

(
D1

aF
)
(y1 . . . , yk) is zero for µ⊗k-almost all y1 . . . , yk ∈ Xk. This proves

our claim. �

We shall need this formula in the sequel:

(2.1)

ˆ

X∗

ˆ

X

h (ν, x) ν (dx)µ∗ (dν) =

ˆ

X∗

ˆ

X

h (ν + δx, x)µ (dx)µ
∗ (dν)

valid for all positive measurable functions h defined on X∗ ×X.
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2.2. Poisson suspension. If T is a measure preserving automorphism of
(X,A, µ), then T∗ : ν 7→ ν

(
T−1 (·)

)
is a measure preserving automorphism

of (X∗,A∗, µ∗). (X∗,A∗, µ∗, T∗) is the Poisson suspension over the base
(X,A, µ, T ). T acts unitarily on L2 (µ) by UT : f 7→ f ◦ T and similarly T∗
on L2 (µ∗) by UT∗

: F 7→ F ◦ T∗. UT∗
preserves every chaos and, through

the above identification, it is easy to see that UT∗
corresponds to UT on

H1 ≃ L2 (µ), and more generally to U⊙n
T on Hn ≃ L2

sym (µ⊗n).

If σ is the maximal spectral type of UT on L2 (µ), σ∗n is the maximal
spectral type of U⊙n

T on L2
sym (µ⊗n).

2.3. Poissonian factors. There are two main ways to obtain natural fac-
tors of a Poisson suspension (X∗,A∗, µ∗, T∗).

First assume you can break down X into two T -invariant measurable
pieces A and B. Then the Poisson measure retricted to A is such a factor.
Indeed, the map

X∗ → A∗

ν 7→ ν|A

realizes such a factor between (X∗,A∗, µ∗, T∗) and
(
A∗,

(
A|A

)∗
,
(
µ|A

)∗
,
(
T|A

)∗)
.

In terms of σ-algebra, the above factor corresponds to σ {N (C) , C ∈ A, C ⊂ A} ⊂
A∗.

The second way consists in considering σ-finite factors of the base. Namely,
if B ⊂ A is such a σ-finite factor then we obtain the following situation

(X,A, µ, T )
ψ

→ (X�B,A�B, µ�B, T�B)

and if we define ψ∗ by ν 7→ ν
(
ψ−1 (·)

)
we obtain the following factor

relationship at the level of the Poisson suspensions:

(X∗,A∗, µ∗, T∗)
ψ∗

→ ((X�B)
∗ , (A�B)

∗ , (µ�B)
∗ , (T�B)

∗)

In terms of σ-algebra, it corresponds to B∗ := σ {N (C) , C ∈ B} ⊂ A∗.
A Poissonian factor is a combination of both situations which is obtained

by first considering a T -invariant subset A ⊂ X and then considering a
σ-finite factor B of the restricted system

(
A,A|A, µ|A, T|A

)
.

For example, if (X,A, µ, T ) is ergodic, then the Poissonian factors of
(X∗,A∗, µ∗, T∗) are:

• the trivial factor {∅,X∗} which corresponds to the first situation
with A = ∅;

• B∗, for a σ-finite factor B ⊂ A.

We recall a result from [13]:

Proposition 2. Let C ⊂ A∗ be a factor of (X∗,A∗, µ∗, T∗) and Φ the cor-
responding conditional expectation. Assume moreover that Φ preserves the
first chaos H1 and doesn’t vanish on H1. Then:

• Φ induces on L2 (µ) a sub-Markov operator Ψ.



PRIME POISSON SUSPENSIONS 5

• There exists a T -invariant set A ⊂ X such that Ψ restricted to
L2

(
µ|A

)
is a conditional expectation on a σ-finite factor G ⊂ A|A

and vanishes on L2
(
µ|Ac

)
.

3. The Main result

Definition 3. A Poisson suspension is said to have the property “CP” (for
“chaos-preserving”) if any conditional expectation with respect to a factor
preserves each chaos Hn.

Example 4. If the maximal spectral type σ of (X,A, µ, T ) satisfies σ∗n ⊥
σ∗m then (X∗,A∗, µ∗, T∗) has property CP (see [8] for the proof in the Gauss-
ian case, completely analogous to the Poissonian one).

Theorem 5. Let Φ be a conditional expectation on a σ-algebra C ⊂ A∗ that
preserves Hn for every n ≥ 1. If Φ is zero on H1, then Φ is zero on every
Hn, for every n ≥ 1. In other words, Φ is the conditional expectation on the
trivial σ-algebra {X∗, ∅}.
Proof. Let F be in Hn, n ≥ 2 and a ∈ X. We will compute D1

aΦF .

We have E
[(
D1

aΦF
)2]

= E
[
((ΦF ) (·+ δa)−ΦF )2

]
= E

[
(ΦF )2 (·+ δa)

]
+

E
[
(ΦF )2

]
− 2E [(ΦF ) (·+ δa) (ΦF )]

We use Formula 2.1 with h (ν, x) = (ΦF )2 (ν) f (x) where f ∈ L1 (µ) ∩
L2 (µ) is a nonnegative function.

We get
ˆ

X∗

ˆ

X

(ΦF )2 (ν) f (x) ν (dx)µ∗ (dν) =

ˆ

X∗

ˆ

X

(ΦF )2 (ν + δx) f (x)µ (dx)µ
∗ (dν)

which can be rewritten into

E
[
(ΦF )2N (f)

]
=

ˆ

X

E
[
(ΦF )2 (·+ δx)

]
f (x) dx

And E
[
(ΦF )2N (f)

]
= E

[
(ΦF )2

(
N (f)−

´

X
f (x) dx

)]
+E

[
(ΦF )2

´

X
f (x) dx

]
=

E
[
(ΦF )2 J (1) (f)

]
+
´

X
E
[
(ΦF )2

]
f (x) dx

But as Φ is the conditional expectation on C, ΦF is C-measurable and so
is (ΦF )2. Therefore:

E
[
(ΦF )2 J (1) (f)

]
= E

[
Φ
[
(ΦF )2 J (1) (f)

]]
= E

[
(ΦF )2 Φ

[
J (1) (f)

]]

But, by assumption, Φ vanishes on H1, which implies that Φ
[
J (1) (f)

]
=

0.
Then we get:

E
[
(ΦF )2N (f)

]
=

ˆ

X

E
[
(ΦF )2

]
f (x) dx
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and we deduce the equality
ˆ

X

E
[
(ΦF )2

]
f (x) dx =

ˆ

X

E
[
(ΦF )2 (·+ δx)

]
f (x) dx

valid for any nonnegative f ∈ L1 (µ). We obtain

E
[
(ΦF )2

]
= E

[
(ΦF )2 (·+ δx)

]

for µ-almost all x ∈ X.
Now

E [(ΦF ) (·+ δa) (ΦF )] = E [[(ΦF ) (·+ δa)− (ΦF )] (ΦF )] + E
[
(ΦF )2

]

= E
[(
D1

aΦF
)
(ΦF )

]
+ E

[
(ΦF )2

]

But, as ΦF is in Hn, D1
aΦF is in Hn−1 for µ-almost all a ∈ X, thanks

to Lemma 1. These two vectors are therefore orthogonal which means that

E [(ΦF ) (·+ δa) (ΦF )] = E
[
(ΦF )2

]
.

If we sum up, we get, for µ-almost all a ∈ X,

E
[(
D1

aΦF
)2]

= 0

and this implies that D1
aΦF (ν) = 0 for µ∗ ⊗ µ-a.e. (ν, a), and it follows

that Dn
y1...,yn

ΦF = 0 for µ∗ ⊗ µ⊗n-a.e. (ν, y1, . . . , yn) (thanks to repeated
use of Lemma 2.4 in [7]).

This means that Pn (ΦF ) = 0. As we already know that Pk (ΦF ) = 0 for
all k 6= n (as ΦF ∈ Hn), we can conclude that ΦF = 0. �

We are now in position to prove the main structural result of the paper:

Theorem 6. Let (X,A, µ, T ) be an ergodic measure preserving system such
that (X∗,A∗, µ∗, T∗) has property CP. If C ⊂ A∗ is a non-trivial factor,
then it contains a non-trivial Poissonian factor. In particular, if we assume
moreover that (X,A, µ, T ) is prime, then (X∗,A∗, µ∗, T∗) is prime.

Proof. Let C be a non-trivial T∗-invariant σ-algebra included in A∗ and Φ
the corresponding conditional expectation. Φ preserves H1 and by means of
Proposition 2, Φ induces on L2 (µ) a sub-Markov operator Ψ. Assume Ψ 6= 0,
then Ψ is also an orthogonal projection and it exists a T -invariant setK ⊂ X

such that Ψf = 0 for all f ∈ L2 (µ) supported on K and Ψ restricted to
L2

(
Kc,A|Kc, µ|Kc

)
is a Markov operator and thus a conditional expectation

on a T -invariant σ-algebra T included in A|Kc. But T is ergodic, therefore
K = ∅. The image of Ψ contains all the indicator functions of finite measure
sets contained in T . But this means that the image of Φ contains all the
vector of the form N (A) − µ (A), for A ∈ T of finite measure which are
therefore C-measurable. This proves that C contains the Poissonian factor
T ∗.
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Now we assume that Ψ = 0, that is, Φ vanishes on H1. But we can now
apply Theorem 5 to conclude that C = {X∗, ∅} which is impossible as we
have assumed C to be a non-trivial. �

4. Some consequences

It has been proved that when S has MSJ, then S⊙S (the symmetric factor
of the direct product S × S) is prime and so is the map (x, y) 7→ (y, Sx)
with respect to the product measure. It is therefore natural to ask if this is
the case in our context.

Proposition 7. T∗ ⊙ T∗ is never prime.

Proof. It is well known that (X∗,A∗, (2µ)∗ , T∗) is a factor of the dirct prod-
uct (X∗ ×X∗,A∗ ⊗A∗, µ∗ ⊗ µ∗, T∗ × T∗) through the map ϕ : (ν1, ν2) 7→
ν1 + ν2 (the superposition of two independent Poisson measures of intensity
µ is a Poisson measure with intensity 2µ). But we can remark that it is also
a factor of T∗ ⊙ T∗. We thus have the scheme

(X∗ ×X∗,A∗ ⊗A∗, µ∗ ⊗ µ∗, T∗ × T∗)

↓
(X∗ ×X∗,A∗ ⊙A∗, µ∗ ⊗ µ∗, T∗ ⊙ T∗)

↓
(X∗,A∗, (2µ)∗ , T∗)

However we know that

(X∗ ×X∗,A∗ ⊗A∗, µ∗ ⊗ µ∗, T∗ × T∗)

↓
(X∗ ×X∗,A∗ ⊙A∗, µ∗ ⊗ µ∗, T∗ ⊙ T∗)

is a compact extension. And

(X∗ ×X∗,A∗ ⊗A∗, µ∗ ⊗ µ∗, T∗ × T∗)

↓
(X∗,A∗, (2µ)∗ , T∗)

is a relatively weakly mixing extension. To see the latter, observe that
the direct product (X∗ ×X∗,A∗ ⊗A∗, µ∗ ⊗ µ∗, T∗ × T∗) can be thougt as
the Poisson suspension

((X ×X)∗ , (A⊗A)∗ , (µ⊗ δ∞ + δ∞ ⊗ µ)∗ , (T × T )∗)

where ∞ is an artificially added point in X fixed by T . In this way,
(X∗,A∗, (2µ)∗ , T∗) appears as a Poissonian factor, and we know that the
corresponding relatively independent joining is ergodic (see [13]).

This proves that (X∗,A∗, (2µ)∗ , T∗) is a strict and non trivial factor of
(X∗ ×X∗,A∗ ⊙A∗, µ∗ ⊗ µ∗, T∗ ⊙ T∗). �
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Proposition 8. If T∗ is prime and T∗×T∗ has property CP, then (ν1, ν2) 7→
(ν2, T∗ν1) is prime.

Proof. We will use the representation of (X∗ ×X∗,A∗ ⊗A∗, µ∗ ⊗ µ∗, T∗ × T∗)
introduced in the proof of the last proposition, that is

((X ×X)∗ , (A⊗A)∗ , (µ⊗ δ∞ + δ∞ ⊗ µ)∗ , (T × T )∗)

In this representation, (ν1, ν2) 7→ (ν2, T∗ν1) becomes (ν1 ⊗ δ∞ + δ∞ ⊗ ν2) 7→
(ν2 ⊗ δ∞ + δ∞ ⊗ T∗ν1) and is indeed a Poisson suspension automorphism
where the base automorphism is

(X ×X,A⊗A, µ⊗ δ∞ + δ∞ ⊗ µ,R)

where R (x, y) 7→ (y, Tx).
Observe that R2 = T × T and that R is ergodic. Indeed, if A is an

R-invariant set, then it is also a T × T -invariant set (with respect to the
measure µ⊗ δ∞ + δ∞ ⊗ µ !). But it is easy to see that, as T is ergodic, the
only T × T -invariant sets are, modulo null sets, ∅, X × X, X × {∞} and
{∞} ×X. But the last two are obviously not R-invariant, so R is ergodic.

In the same vein, a σ-finite factor of R is also a σ-finite factor of T × T .
The only factor of T × T is the symmetric factor which is not a factor of R,
so R is prime.

It remains to check that ((X ×X)∗ , (A⊗A)∗ , (µ⊗ δ∞ + δ∞ ⊗ µ)∗ , R∗)
has property CP. It follows easily from the fact that (T × T )∗ (under the
measure (µ⊗ δ∞ + δ∞ ⊗ µ)∗) has property CP and that R2

∗ = (T × T )∗. �

If the maximal spectral type σ of T satisfies σ∗n ⊥ σ∗m then σ is also the
maximal spectral type of T ×T with respect to the measure µ⊗δ∞+δ∞⊗µ
and therefore T∗ × T∗ has property CP.

4.1. Disjointness. The following disjointness results come all from [9] where
the notion of Joining Primness of order n (JP(n)) was introduced. Simple
maps and their factors are JP(1) and direct products of such maps are JP(2).

Theorem 9. [9] A Poisson suspension is disjoint from any JP(n) map, for
all n ≥ 1.

Therefore our prime Poisson suspensions are disjoint from prime maps
that are simple or factor of simple maps.

Proposition 10. If S is distally simple. Then S ⊙ S and K := (x, y) 7→
(y, Sx) are disjoint from Poisson suspensions.

Proof. The first point follows from the fact that S × S is JP(2) and so is
S ⊙ S.

For the second point, a non-trivial joining between K and a Poisson sus-
pension T∗ would yield a non-trivial joining of K2 = S × S with (T∗)

2 =(
T 2

)
∗
which is impossible by the above arguments. �
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5. Examples

5.1. Non-singular compact group rotations. We introduce a family of
examples that has been studied (among other sources) in [5] and we use the
same presentation.

Consider Ω := {0, 1}N equipped with the uniform Bernoulli probability

measure
(
1
2δ0 +

1
2δ1

)⊗N
and the “carrier to the right” transformation ω 7→

ω+1 where addition is modulo 2 and 1 = (1, 0, 0, . . . ). Let h be a measurable
integer-valued positive function and define X ⊂ Ω × N as the set of points
(ω, n) such that 1 ≤ n ≤ h (ω).

Let T be the transformation

T (ω, n) =

{
(ω, n+ 1) if 1 ≤ n < h (ω)(
ω + 1, n

)
if n = h (ω)

We endow X with the measure, preserved by T and defined, for a mea-
surable positive function f :

ˆ

X

f (ω, n)µ (d (ω, n)) =

ˆ

Ω



h(ω)∑

n=1

f (ω, n)


 ν (dω)

We have built a Kakutani tower over Ω with height function h.
Let’s give the specifications that define h. Consider a sequence of integers

{mi}i≥0 where mi ≥ 3 and set nj+1 = mini where n0 = 1.

For ω ∈ Ω, let us denote k (ω) the smallest integer k such that ωk = 0
and

h (ω) = nk(ω) −
∑

j<k(ω)

nj.

It is easy to see that the measure µ is infinite.
It can be noted (see [5]) that this system encodes an ergodic infinite mea-

sure preserving compact group rotation, the adding machine on
∏

j≥0 {0, . . . ,mj − 1}
with a measure singular with respect to the Haar measure on this group.

5.2. Properties. In [1], they obtained the following:

Proposition 11. Joinings between (X,A, c1µ, T ) and (X,A, c2µ, T ) exist
only for c1 = c2 and are graph joinings ∆Tn , n ∈ Z. In particular, it is
prime.

In [5], they computed the maximal spectral type:

Proposition 12. The maximal spectral type of T is the Riesz product

σ :=

+∞∏

j=0

(1 + cos 2πnjt)

Those Riesz products are the most easy to deal with and we can obtain:

Proposition 13. For all n 6= m, σ∗n ⊥ σ∗m.
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Proof. First observe that for all n ≥ 1, σ∗n =

+∞∏

j=0

(
1 + 1

2n−1 cos 2πnjt
)

We can therefore apply to those Riesz products the criterium of Peyrière

[11] to verify their mutual singularity as
nj+1

nj
≥ 3 and

∑

k∈N

(
1

2n−1 − 1
2m−1

)
=

+∞. �

5.3. Poisson suspensions over (X,A, µ, T ). As a direct application, we
obtain our first examples of prime Poisson suspensions

Proposition 14. The Poisson suspension (X∗,A∗, µ∗, T∗) is prime. More-
over, it is midly mixing non mixing, has trivial centralizer and singular
spectrum with infinite multiplicity.

Proof. The requirements of Theorem 6 are satisfied as T is ergodic, prime,
preserves an infinite measure, and has property CP as for all n 6= m, σ∗n ⊥
σ∗m. This last property also implies (see [13]) that each transformation S
that commutes with T∗ is of the form R∗ for a transformation R of the base,
that commutes with T . Therefore, as the centralizer of T is trivial, so is
the centralizer of T∗. A rigid transformation has an uncountable centralizer
([6]), therefore T∗ is not rigid. As T∗ is prime, the only rigid factor is the
trivial one point system, consequently T∗ is mildly mixing.

For such Riesz products σ, if we set U , the unitary operator acting on
L2 (σ) by U : (z 7→ f (z)) 7→ (z 7→ zf (z)), then the spectrum of U ⊙ U on
L2 (σ)⊙L2 (σ) never has simple spectrum. This implies that UT∗

restricted
to the second chaos which is unitarily isomorphic to U ⊙U never has simple
spectrum. As the multiplicity of a Poisson suspension is either 1 or infinity,
we are in the latter case here.

To prove it is not mixing, it is sufficient to prove that σ is not Rajchman.
This is follows from the fact that σ̂ (nj) =

1
2 for all j ≥ 0. �

Remark 15. The fact that those systems possess a singular spectrum of
infinite multiplicity makes them new examples of prime systems. Also they
are not rank one (see Appendix) as they are midly mixing.

With the above examples we obtain a Poisson suspensions with a contin-
uum array of non-disjoint, non-isomorphic prime systems:

Proposition 16. The Poisson suspension
(
(X × [0, 1])∗ , (A⊗ B)∗ ,

(
µ⊗ λ[0,1]

)∗
, (T × Id)∗

)

possesses the Poisson suspensions (X∗,A∗, (cµ)∗ , T∗), 0 < c ≤ 1 as factors.
Those factors are prime, non-disjoint, unitarily isomorphic and non metri-
cally isomorphic for different c’s.

Proof. The factor relationship is implemented by the map ν 7→ ν (· × [0, c]).
The systems (X,A, cµ, T ) have the same properties as c spans R∗

+. In par-
ticular (X∗,A∗, (cµ)∗ , T∗) are prime and have the same spectrum, henceforth
they all are unitarily isomorphic.
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It is well known that adding two independent Poisson measures with in-
tensity ν1 and ν2 leads to a Poisson measure with intensity ν1 + ν2. There-
fore, if c1 < c2 then (X∗,A∗, (c2µ)

∗ , T∗) is a factor of the direct product of
(X∗,A∗, (c1µ)

∗ , T∗) with (X∗,A∗, ((c2 − c1)µ)
∗ , T∗). This yields a joining

between (X∗,A∗, (c2µ)
∗ , T∗) and (X∗,A∗, (c1µ)

∗ , T∗); it is not the indepen-
dent one for obvious reasons.

Now assume there exists an isomorphism S between both systems. As
σ ⊥ σ∗n, n ≥ 2, it implies, thanks to Proposition 5.2 in [13], that S = R∗

for an isomorphism R between (X,A, c1µ, T ) and (X,A, c2µ, T ), but this is
not possible by Proposition 11. �

5.4. A mixing example. Another source of examples is furnished by recent
Ryzhikov’s infinite measure preserving “mixing” rank one transformations
(see [15].

He has proved, in particular, that all those systems have the minimal
self-joining property in infinite measure (the only ergodic self-joinings are
off–diagonal joinings) which implies that they are prime as in examples of
the preceding section (see Proposition 11). Moreover he has proved that
Poisson suspensions over such systems (with some extra assumptions) have
simple (and singular) spectrum, which in turns implies that they have the
property CP (indeed, a necessary condition for a Poisson suspension to have
simple spectrum is that σ∗n ⊥ σ∗m for all n 6= m, where σ is the maximal
spectral type of the base). If we sum up and apply Theorem 6, we get:

Proposition 17. There exist prime Poisson suspensions which are mixing,
with simple singular spectrum and trivial centralizer.

Observe that, as any mixing rank one has MSJ, those prime mixing
Poisson suspensions are disjoint from any previously known prime systems,
thanks to Theorem 9 and Proposition 10.

6. Appendix

Proposition 18. If a Poisson suspension is rank one, then it is rigid.

Proof. We will use the following property of rank one systems, established
by Ryzhikov in [14]. If Φ is a Markov operator corresponding to an ergodic
selfjoining of a rank one transformation T , then there exists a > 0, a Markov
operator Ψ and a sequence nk such that T nk ⇀ aΦ+ (1− a)Ψ.

Now we recall that a Poisson suspension (X∗,A∗, µ∗, T∗) always has the
so-called ELF property (see [3]), that is, limits of off diagonals joinings are
ergodic. Therefore, in the above situation, a = 1. Observe that we cannot
apply the above result with Φ = Id as we have to rule out a sequence that
would be identically zero after some time.

We recall also that we build a Poissonian joining (see [3] and [13]) of a
Poisson suspension T∗ by considering a sub-Markov operator ϕ that com-
mutes with the base T and forming the exponential ϕ̃ that acts on each
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chaos Hn of L2 (µ∗) as ϕ ⊗ · · · ⊗ ϕ (n terms). Moreover, Poissonian jon-
ings of an ergodic Poisson suspension are ergodic. Therefore we can apply

Ryzhikov’s result to the Markov operators ˜(
1− 1

n

)
IdL2(µ) for each n ∈ N.

As
(
1− 1

n

)
IdL2(µ) tends to IdL2(µ), then

˜(
1− 1

n

)
IdL2(µ) tends to ĨdL2(µ) =

IdL2(µ∗). It is now easy to build a non-trivial sequence nk such that T nk
∗ ⇀

IdL2(µ∗), which is therefore a rigidity sequence for T∗.
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Current address: Laboratoire Analyse Géométrie et Applications, UMR 7539, Univer-
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