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Abstract: 

We provide an overview of our recent work on the shaping and stability of optical continua in 

the long pulse regime. Fibers with normal group-velocity dispersion at all-wavelengths are 

shown to allow for highly coherent continua that can be nonlinearly shaped using appropriate 

initial conditions. In contrast, supercontinua generated in the anomalous dispersion regime are 

shown to exhibit large fluctuations in the temporal and spectral domains that can be controlled 

using a carefully chosen seed. A particular example of this is the first experimental 

observation of the Peregrine soliton which constitutes a prototype of optical rogue-waves. 

© 2012 Elsevier 

Keywords: Fiber optics; supercontinuum ; pulse shaping ; extreme statistics ; optical solitons  
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1. Introduction 

Nonlinearity in single-mode optical fibers has often been regarded as a detrimental effect for the 

transmission of pulsed signals. However, when properly managed, nonlinearity offers great 

opportunity to reshape the optical spectrum of coherent light and expand its bandwidth to several 

hundreds of nanometers. For example, in the early 1990’s, supercontinuum (SC) generated in 

optical fibers has found several practical applications in dense wavelength-division multiplexed 

communications [1]. The advent of photonic crystal fibers (PCF) in the late 90’s has 

considerably widened the field of applications: by means of accurate control of the periodic 

arrangement of air holes and silica rods, stronger confinement of the optical field can be 

achieved so that the nonlinear response is enhanced by more than an order of magnitude 

compared to conventional fibers. PCFs also offer the crucial advantage of enabling precise 

engineering of the dispersive properties so that a zero dispersion wavelength (ZDW) well below 

the ZDW of bulk silica (1.3 µm) has become technologically feasible (indeed now 

commonplace). This has paved the way for efficient nonlinear processes at the wavelengths of 

Ytterbium technologies (1.06 µm) and within the tuning range of  Ti-Sapphire lasers [2]. With 

optical spectra routinely spanning an octave, SCs have found many disruptive applications and 

have stimulated numerous breakthroughs in optical coherence tomography [3], metrology and 

spectroscopy [4], biophotonics, and other fields of science.  

 

The physics of the continuum generation is generally complex and crucially depends on the 

dispersion properties at the pump wavelength. However, chromatic dispersion is not the only 

parameter affecting the output spectrum, the input pulse duration, peak power and pulse shape 

also strongly influence the output and further increase the richness and diversity of the nonlinear 
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propagation dynamics. In this paper, we choose to focus on how these parameters influence the 

stability characteristics of SC spectra and how they can be controlled in different regimes. In this 

respect, the performance of normally dispersive fibers is seen as superior to that of anomalous-

dispersion fibers, where large shot-to-shot fluctuations are seen both in the temporal and spectral 

domains [5]. In this context, the observation of rare but intense spikes of light [6] in the 

anomalous-dispersion regime has initiated the field of optical rogue waves and has provided a 

new perspective for the analysis of SC stability. This, in turn, has highlighted or confirmed the 

crucial role of nonlinear coherent structures such as fundamental solitons [7; 8], breathers [9; 10] 

and rational solitons such as the Peregrine soliton [11]. 

 

Several review articles and books are now available to understand the physical mechanisms 

driving the continuum formation and its modeling using the nonlinear Schrödinger equation 

(NLSE) in its extended form [12; 13; 14; 15; 16]. Therefore it is not our intention here to present 

an additional comprehensive or analytical description of the nonlinear dynamics of pulses 

propagating in an optical fiber, but rather to provide an overview of our recent numerical and 

experimental contributions to the field of SC generation in both the normal and anomalous 

dispersion regimes. To this end, we restrict ourselves to fibers with a constant longitudinal 

dispersion profile and to the long pulse regime (i.e. picosecond pumping or longer). 

Significantly, the results presented in this paper are mostly obtained at telecommunication 

wavelengths and with commercially available components and fibers. 

In the first part of this paper, we emphasize how the normal dispersion regime is particularly 

well-suited for nonlinear pulse shaping, with the output pulse shape being directly controlled by 

adjustment of the initial amplitude and phase [17]. In the second part, we show that in the 
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anomalous dispersion regime, soliton dynamics govern the temporal and spectral features of the 

generated SC resulting in large shot-to-shot fluctuations and associated with the emergence of 

extreme events. We then discuss a possible experimental solution to efficiently harness the 

observed fluctuations. This particular setup further allows us to experimentally generate a 

specific solution of NLSE which is considered as a prototype of freak events known as the 

Peregrine soliton.  

 

2. Highly coherent supercontinuum and nonlinear spectral 

shaping in normally dispersive fibers 

Due to the Kerr nonlinearity of silica, the propagation of intense ultrashort pulses in optical 

fibers is strongly affected by self-phase modulation (SPM) [18]. The resulting nonlinear phase 

directly depends on the temporal gradient of the pulse intensity profile and leads to broadening 

of the optical spectrum. For an ideal dispersionless fiber, this broadening would linearly increase 

with the propagation distance and the temporal intensity profile would remain unchanged. 

However, in a real fiber, the impact of chromatic dispersion cannot be ignored, especially when 

the spectral bandwidth becomes substantial, and taking dispersion into account leads to radically 

different nonlinear dynamics depending on the dispersion regime. 

In this section we consider propagation in the regime of normal dispersion. In this case, 

the chirp induced by the dispersion combines with the nonlinear chirp from SPM, in such as way 

as to enhance the temporal broadening. As a consequence, the pulse peak power progressively 

drops and the spectral broadening saturates [19; 20]. During propagation, the temporal intensity 

profile also experiences strong reshaping as illustrated in Fig. 1(a2) where an initial hyperbolic 

secant pulse becomes gradually close to a parabolic shape before undergoing wave-breaking 

phenomenon [21], and subsequently evolving into a trapezoidal-like pulse profile. The stage of 
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wave-breaking occurs when the portions of the pulse with higher instantaneous frequencies 

temporally overlap with pulse portions having much lower instantaneous frequencies [20; 21; 

22]. In the spectral domain, wave-breaking manifests itself as the generation of new frequencies 

and the appearance of sidelobes in the spectrum as seen both in the numerical simulations of Fig. 

1(a1) and experimental results shown in Fig. 2(a). 

 

 

 

 

 
 
Figure 1: Evolution of different initial pulses in a normally dispersive fiber: transform-limited pulse with 

hyperbolic secant, parabolic and triangular intensity profiles (subplots a, b, c respectively) and linearly 

chirped Gaussian pulse (subplot d). Subplots (1) show the longitudinal evolution of the spectral intensity 

profile, and subplots (2) show the temporal intensity at different stages of propagation. The initial pulses 

have a full-width at half maximum (FWHM) duration of 3 ps with an input peak power of 12 W and 

propagate in a highly non-linear fiber with a non-linear coefficient of 10 /W/km and a dispersion 

coefficient of -0.5 ps/nm/km. The results are obtained by numerical integration of the standard NLSE. 
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As the nonlinear dynamics involved here depends crucially on the input pulse features, it 

is possible to nonlinearly shape the output spectrum through accurate control of the input pulse 

temporal intensity or/and phase profiles. It is worth noting that this type of approach can be 

flexibly applied to generate spectral bandwidth exceeding significantly than that of the input 

pump pulse. This is obviously not possible with conventional linear shaping techniques where 

one cannot shift energy outside the initial pulse bandwidth [17]. For example, the use of initial 

parabolic-shaped pulses allows to prevent optical wave-breaking [23; 24] (see Fig. 1(b) and 2(b) 

for experimental evidence) as well as to generate a highly flat continuum with enhanced spectral 

energy density. The use of an initial triangular temporal profile on the other hand leads to the 

symmetric splitting of the pulse spectrum  into two peaks of equal magnitude [25] (Figs. 1(c) and 

2(c)), which can be advantageous for the realization of optical functions such as frequency 

conversion [26] or pulse doubling [27]. The input temporal phase profile also has a strong impact 

on the pulse evolution in the fiber and, as such, allows the generation of more advanced pulse 

shapes. For example, an initial Gaussian pulse with a parabolic phase profile (linear chirp) will 

passively reshape itself into a triangular intensity profile at a given stage of the propagation [25; 

28]. Another striking example demonstrating the impact of the input phase profile is the process 

of spectral recompression where, contrary to what might be expected based on simple 

considerations, SPM leads to energy concentration at the center of the pulse spectrum [29; 30; 

31; 32] (Figs. 1(d) and 2(d)). 
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Figure 2: Experimental results of the propagation of a hyperbolic secant pulse in a dispersion-shifted 

fiber, of a parabolic pulse in a highly nonlinear fiber followed by spectral slicing (the different channels 

are plotted), of a triangular pulse and of a Gaussian pulse with a parabolic phase (subplots a, b, c and d 

respectively). Details of the different experimental configurations can be found in [20], [23], [25] and [32] 

respectively. 

 

 

Normally dispersive fibers are undoubtedly advantageous compared to anomalous fibers as far as 

the coherence of the generated continuum is concerned. Specifically, nonlinear propagation in 

the normal dispersion regime inhibits modulation instability (MI) phenomena to occur, which 

reduces significantly spontaneous amplification of noise and thereby shot-to-shot fluctuations. 

Consequently, a high degree of coherence is maintained as illustrated in Fig. 3, where we plot the 

results of a few hundreds of numerical simulations with distinct input noise seeds. Such a high 

level of stability is associated with a single temporal coherent structure that is clearly attractive 

for all-optical pulse processing in highly nonlinear fibers [17] or the generation of SC covering 

the entire C-band of optical telecommunications. Indeed, several studies have reported that such 

continua can be sliced into several tens of high-quality high-repetition-rate picosecond channels 

where isolated spectral lines of the 10-GHz or 40-GHz resulting comb provide several hundreds 

of continuous waves [16; 23; 33]. The high degree of coherence of the generated spectra further 

enables efficient pulse compression with very high compression ratio as the nonlinear chirp 
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induced by SPM can be compensated to a large extent by an optical fiber providing anomalous 

dispersion [26; 34; 35; 36] or by a pair of diffraction gratings [34; 37; 38]. 

 

 
 
Figure 3: Superposition of 200 simulations of the output temporal (a) and spectral (b) intensity profiles of 

a hyperbolic secant pulse (3 ps FWHM duration, 10 W peak power) propagating in a 500-m-long  highly 

nonlinear fiber (nonlinear coefficient 10 /W/km, dispersion -0.5 ps/nm/km, dispersion slope 0.01 

ps
2
/nm/km at 1550 nm). The results are obtained by numerical integration of the NLSE with third-order 

dispersion, including the quantum noise as well as 1% fluctuations on the input pump. The different shots 

are plotted in grey color and the average curve is plotted with a solid black line. Grey and black curves 

nearly coincide. 

 

 

This technique has been efficiently exploited in PCFs where dispersion characteristics 

can be accurately controlled so as to obtain a fiber with normal dispersion at all wavelengths [39] 

that enables the generation of highly broadband coherent spectra spanning more than several 

hundreds of nanometers. Such spectra are particularly attractive from the perspective of pulse 

compression  down to duration as short as a few optical cycles after compensation of the 

nonlinear phase [40; 41]. 
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Finally, we would like to point out that the benefits of the regime of normal dispersion in 

terms of nonlinear pulse shaping can be further enhanced by the additional presence of optical 

gain. Indeed, regardless of its initial properties, any pulse in this case tends asymptotically 

towards a parabolic intensity profile both in the temporal and spectral domains, combined with a 

highly linear chirp. The formed pulse in the amplifier then propagates in a self similar manner, 

experiencing an exponential increase of its amplitude, duration and spectral bandwidth. Self-

similar parabolic pulses not only can tolerate strong nonlinearity without wave breaking, but can 

also be compressed to shorter pulse of very high quality [36; 42]. This makes parabolic pulse 

amplification an attractive alternative to chirped pulse amplification techniques at moderate 

energies and is beneficial for generation of high quality continua [43; 44]. 

 

 

 

 

3. Supercontinuum stability in the anomalous dispersion regime 

and extremes events 

In this section, we review the main properties of SC generated in the anomalous dispersion 

regime of a nonlinear fiber. 

  

Supercontinuum stability 

The stability of the continuum obtained in the normal regime of dispersion is generally not 

preserved in the anomalous dispersion region (in fact the stability breaks in the vicinity of the 

ZDW regardless of the dispersion sign). This is because in the anomalous regime, the SC 

properties change significantly from shot to shot both in the temporal and spectral domains. The 

spectral phase fluctuations have been the subject of intense investigations as early as 2000 [45]. 
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But it is only at the end of the year 2007 that an article published by Solli et al has reported the 

experimental observation of significant fluctuations in the temporal domain [6]. By spectrally 

filtering the most red-shifted part of the SC spectrum generated in a PCF pumped in the regime 

of anomalous dispersion, Solli et al have analyzed the statistical fluctuation of the corresponding 

filtered temporal intensity and found that a highly-skewed distribution that strongly differs from 

the Gaussian shape. By analogy with the typical L-shaped distribution observed for extreme 

events, the intense and extremely rare outliers of the distribution were named “optical rogue 

waves”. Since then, the subject has become the focus of intense international research in the 

optical community by the large number of studies published in the last three years. This 

enthusiasm has indeed largely surpassed the confines of SC generation in PCFs and optical rogue 

waves have been reported in various nonlinear systems including filamentation [46], optical 

amplifiers driven by incoherent pumps [47; 48], generation of SC in non-silica materials [49], 

telecommunications transmission systems [50] or optical feedback systems [51; 52; 53; 54]. 

 

An illustration of the temporal and spectral instability of the continuum generated in the 

anomalous dispersion region is shown in Fig. 4, which shows the results of NLSE numerical 

simulations similar to those in Fig. 3, but with anomalous dispersion. The nonlinear pulse 

dynamics is dominated by an initial stage of MI followed by soliton dynamics with splitting of 

the ultrashort coherent structure due to third-order dispersion. We note that similar splitting 

would be produced by the intra-pulse Raman effect. Pulse splitting results in the emergence of 

several ultrashort solitons with significant shot-to-shot amplitude and timing jitters (Fig. 4(a)) 

which prevents this type of SC to be sliced in multiple channels for WDM applications. The 
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spectral intensity profile (Fig. 4(b)) is significantly broader than those typically obtained in fibers 

with normal dispersion but also suffers from large fluctuations. 

 

 
 
Figure 4: Superposition of 200 simulations of the ouput temporal (a) and spectral (b) intensity profiles of 

a secant hyperbolic pulse (FWHM duration of 3 ps, peak power of 10 W) propagating in a 500-m highly 

nonlinear fiber (nonlinear coefficient 10 /W/km, dispersion 0.5 ps/nm/km, dispersion slope 0.01 

ps/nm/km at 1550 nm). Results are obtained by the numerical integration of the standard NLSE with 

third-order dispersion and include the quantum noise as well as 1% of the fluctuations on the input pump. 

The different shots are plotted in grey and the average curve is plotted with a solid black line. 

 

 

 

In order to illustrate quantitatively the fluctuations inherent to anomalous dispersion 

pumping, we present in Fig. 5 results of numerical simulations that take into account the full 

dispersive and nonlinear responses of the fiber through the integration of the generalized NLSE. 

Specifically, we show that independently of the fiber characteristics (fiber with one or two 

ZDWs) [55; 56] large fluctuations are present on the red side of the generated SC with associated 
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L-shaped histograms (see subplots 2), when a filter is used to isolate those fluctuations. We also 

stress that significant fluctuations can occur for normal pumping when the initial pulse spectrum 

lies close to the ZDW (see Fig. 5c)  [55; 56]. 

 
 

 

 

 

 
 

 

Figure 5: Superposition of 200 simulations of the pulse spectrum after propagation in a fiber with a single 

ZDW pumped in anomalous dispersion (subplots a), a fiber with two ZDWs and pumped in the 

anomalous dispersion regime (subplots b), and a fiber pumped in the normal dispersion regime and where 

the broadening process is governed by fourth-order modulation instability (subplots c). Details of the fiber 

parameters, input pulses can be found in publications [57] and [58] respectively. The results are obtained 

by the numerical integration of the generalized NLSE. 

 

 

Optical rogue solitons 

The main questions arising from the pioneering observations of rogue waves in optical systems 

are directed towards the physical nature of the extreme events and the mechanisms behind their 

emergence. A careful analysis of various configurations has now led to the conclusion that the 

most red-shifted events detected in the original experiments of Solli et al are fundamental 
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solitons shifted in frequency by the intra-pulse Raman response of silica [59]. As an example, 

Fig. 6 shows the spectrogram of an extreme event obtained in a SC driven by fourth-order 

modulation instability [58]. One can clearly identify the signature of the extreme event in the 

form of a transform-limited coherent soliton structure that emerges at long wavelengths. Because 

such giant solitons are fully coherent and persist once they form, they are now generally referred 

to as “rogue solitons” [60]. 

 

 

 
 
Figure 6: (a) Spectro-temporal representation of a rogue event occurring in a SC driven by fourth-order 

modulation instability (cf. Fig. 5c). (b) Detail of the temporal structure of the most frequency red-shifted 

event (solid line) compared with the shape of a fundamental soliton. Details of the numerical simulations 

can be found in [58]. 

 

 

A physical process involved in the emergence of extreme solitons is the process of 

temporal collisions between the substructures generated by splitting of an initial pulse. When two 

ultrashort substructures collide, a temporal peak appears intermittently, thus reproducing one of 

the peculiar features of the infamous oceanic freak waves [61]: their unexpected appearance and 
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decay. Such collisions are favored by convective mechanisms such as the third-order dispersion 

or the Raman response of silica [62]. A dedicated care should be provided to their detection by a 

frequency offset filter that can in itself create an artifact [63] and may not see these collision 

events directly [64; 65] as the emerging temporal spike of light does not correspond to the most 

red-shifted event. In the process of collision, an energy exchange also occurs, leading to the 

progressive growth of a giant soliton, where most of the energy of the system will eventually 

concentrate [66; 67]. It is worth noting here that fluctuations do not develop only on the long 

wavelength side of the SC, but also on the short wavelength edge of the supercontinuum with a 

statistical distribution that deviates from a Gaussian statistics [58; 68] as a result of pulse 

trapping by the redshifted solitons [69] . 

 

Spontaneous modulation instability and Akhmediev breathers 

Whilst SC dynamics are now well-understood and rogue events can be explained through the 

prism of optical solitons [8], the temporal analysis of the fluctuations associated with anomalous 

pumping has led to reconsider the onset of SC generation where higher-order linear and 

nonlinear effects do not play an extensive role and pulse propagation can be described in the 

framework of the standard NLSE. In fact, the stage of MI that governs the initial spectral 

broadening can be described analytically within the framework of the Akhmediev breather 

formalism. Akhmediev breathers are particular solutions of the NLSE derived by Akhmediev 

and Korneev in 1986 which describe the single growth-return cycle of an initially weak 

sinusoidal modulation [9]. Numerical simulations and experiments have indeed confirmed that 

the properties of SC at the early stages of propagation can be accurately described in terms of 

multiple breathers corresponding to the excitation of the entire MI gain bandwidth [10]. In 
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particular, the characteristics observed at the point of maximum temporal compression can be 

estimated by considering the properties of the breather corresponding to the frequency of the MI 

gain peak and whose  spectrum exhibits a characteristic triangular shape on a log-log scale [10]. 

 

 

 
 
Figure 7: (a) Single shot NLSE simulations of the longitudinal evolution of a CW field undergoing 

spontaneous MI (subplot a1) and details of the temporal profile at 3.5 m propagation distance (subplot 

(a2)). The shaded region in the temporal trace is shown in detail in the rightmost figure comparing 

simulations (solid line) with the Akhmediev breather solution calculated for a modulation frequency 

corresponding to peak MI gain (dashed line). (b) Comparison between experiments (solid black line), 

numerical simulations using the full GNLSE (blue dashed line), numerical simulations using the NLSE 

only (red dashed line), and the calculated spectrum of the maximally-compressed Akhmediev breather 

(green open circles connected to the horizontal axis by straight lines from zero). Figures adapted from 

[10]. 

 

 
 

4. Generation of highly coherent supercontinuum in the 

anomalous dispersion regime and observation of the Peregrine 

soliton 

Seeded generation 
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The various examples of SC generation described in the previous section show that the control of 

the spectral dynamics, shape and stability and coherence properties is in general a complex issue. 

In the normal dispersion regime, changing the temporal intensity or phase profile of the input 

pulse can provide a direct means of tailoring the continuum. On the contrary, in the anomalous 

dispersion regime, the SC dynamics is governed by solitonic effects that are more difficult to 

harness. 

One way to limit the degradation of the SC coherence is to use very short segments of 

fiber or tapered fibers [5; 70]. An alternative solution is to reduce the spontaneous instabilities 

that may emerge in the first stages of propagation. In this paper, we do not consider the case 

when the pump itself is only partially coherent, which would require consideration on an 

incoherent modulational instability [48]. Here the pump is a coherent signal only affected by 

quantum noise and a small level of input amplitude fluctuations. By imposing an input seed 

located in the frequency band of the instabilities, one can expect that this deterministic seed will 

prevail over the spontaneous effects so that enhanced stability and coherence can be ensured. 

Such an approach has been used in various configurations, in both numerical [71; 72] (Fig. 8(a)) 

and experimental [73; 74; 75] works in order to control the stability and spectral extent of the 

generated continuum (Fig. 8(b)). Other straightforward applications to optical parametric 

amplification and frequency conversion [76] as well as the all-optical generation of stable pulse 

trains with very high repetition rates [34; 77] have also benefited from the enhanced stability 

resulting from seeded parametric processes. An accurate spectral study has confirmed that the 

seeded generation can be well described by the mathematical formalism introduced by 

Akhmediev [78].  
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Figure 8: (a1) Simulations results of SC generated by 20 ps pulses with modulation at 12.5 THz. 

Individual simulation results (gray traces) and the calculated mean from the ensemble (black line) are 

shown. The associated calculated coherence as defined in [79] is plotted on the right axis. (a2) Zoomed 

portion of the central part of the comb-like SC spectrum is displayed. Details of the numerical simulations 

are provided in ref [72].  (b) Experimental set-up for the seeded generation of a continuum at 

telecommunication wavelengths. (c) Resulting experimental continuum recorded after 90m of highly 

nonlinear fiber. Details of the experimental parameters can be found in [73]. 

 

 

Observation of the Peregrine soliton in optical fiber 

The control of MI dynamics shows that a judicious choice of excitation parameters and fibers 

can significantly improve the overall performance level of a broadband source by limiting the 

emergence of random rogue solitons. Significantly, the same kind of control can be used to 

generate the ultimate prototype of nonlinear rogue wave, the Peregrine soliton. This nonlinear 

structure has been first theoretically predicted in 1983 in hydrodynamics [11] but, up to 2010 and 
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experiments in fiber optics, has never been demonstrated experimentally in any continuous 

physical media. The Peregrine soliton represents a limiting case of the Akhmediev breather for 

which the temporal localization is maximum [80]. Consequently, this pulse over a continuous 

background has the particularity to appear from nowhere and to disappear without leaving a 

trace, thus constituting an excellent prototype of oceanic rogue waves. From an experimental 

point of view we have shown that a sinusoidal beating created by the temporal overlap of two 

continuous wave that are frequency shifted [81] or the direct intensity modulation of a 

continuous wave [82] can reshape into a Peregrine soliton [83] . The obtained Peregrine soliton 

was accurately characterized using  a frequency resolved optical gating device [81] or an optical 

sampling oscilloscope [82]. Experimental results are well reproduced both numerically and 

analytically as can be seen in Fig. 9. The longitudinal study performed by a cut-back technique 

has confirmed the strong spatial localization (Fig. 9(b)), though some replicas are manifested for 

large propagation distances. Those replicas can be theoretically interpreted in terms of higher-

order breather solutions through the Darboux transformations and linked to the process of higher 

order modulation instabilities [84]. Note that the Peregrine is only the first order solution of a 

wider class of rational solitons that have been also numerically found in turbulent optical 

environments [85; 86]. 
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Figure 9: (a) Experimental set-up. CW : continuous wave, EDFA : erbium doped fiber amplifier, SMF : 

standard Single Mode Fiber ITU G652. Details of the experimental parameters are provided in [82]. (b) 

Longitudinal evolution of the temporal intensity profile as measured on the ultrafast sampling 

oscilloscope. Experiments (b1) are compared with numerical simulation of the NLSE (b2). (c) Temporal 

intensity profile at the point of maximum compression. The experimental results (red circles) are 

compared with the analytical form of the Peregrine soliton (solid black line).  (d) Spectral intensity profile 

at the point of maximum compression. The experimental results (solid line) are compared to the results of 

numerical simulations (blue circles). 

 

 

 

5. Conclusions 

We have provided an overview of several recent results on the stability of supercontinua and 

associated dynamics in normally and anomalously dispersive optical fibers. Normally dispersive 

fibers are very attractive for the generation of stable continua and different choices of input pulse 

characteristics enable a rich variety of reshaping processes within the fiber. In fibers with 

anomalous dispersion or fibers where spontaneous modulation instability processes are 

significant, the stability is much more difficult to control and the resulting SC is typically 
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affected by large shot-to-shot fluctuations that favor the emergence of intense solitons on the red 

side of the spectrum and nonlinear pulse collisions. A fine analysis of the onset of the continuum 

generation has demonstrated that the Akhmediev breather formalism can provide new insight to 

understand and predict the early stages of propagation. Moreover, seeding the SC generation 

process with a suitably chosen continuous signal significantly improves the stability. The same 

concept can be applied to stimulate the generation of the Peregrine soliton, a limiting case of the 

Akhmediev breather, whose temporal and spatial localizations make it an excellent prototype of 

rogue waves that appear from nowhere and disappear without leaving a trace. More generally, 

the results presented in this paper are a further illustration of how optical fiber systems can 

provide useful experimental testbeds for the study of complex statistical hydrodynamics 

problems. 
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