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Logarithm laws for strong unstable foliations
In negative curvature
and non-Archimedian Diophantine approximation

Jayadev S. Athreya Frédéric Paulin

Abstract

Given for instance a finite volume negatively curved Riemannian manifold M, we
give a precise relation between the logarithmic growth rates of the excursions into
cusps neighborhoods of the strong unstable leaves of negatively recurrent unit vectors
of M and their linear divergence rates under the geodesic flow. As an application to
non-Archimedian Diophantine approximation in positive characteristic, we relate the
growth of the orbits of lattices under one-parameter unipotent subgroups of GLa(K)
with approximation exponents and continued fraction expansions of elements of the
field K of formal Laurent series over a finite field. !

1 Introduction

The excursions of geodesic flow lines into neighborhoods of ends of finite volume negatively
curved manifolds have been studied for a long time, and Sullivan [Sul|] proved a seminal
almost sure logarithm law in the finite volume constant curvature case. More probabilistic
aspects have been considered too (see for instance the works of Enriquez, Franchi, Guiv-
arc’h, Le Jan, as [EFJ]). Sullivan’s result has been extended by Kleinbock-Margulis [KM2]
to finite volume locally symmetric spaces of non compact type, by Stratmann-Velani [SV]
to geometrically finite constant negative curvature, by Hersonsky-Paulin [HP4, HP5| to
variable negative curvature and to trees, and by Athreya-Ghosh-Prasad [AGP1, AGP2] to
some buildings.

The ergodic theory and topological dynamics of the horocyclic flow in dimension 2 (or
of the strong unstable foliation of the geodesic flow in higher dimension) has attracted
a huge amount of studies (see the works in negative curvature of Hedlund, Furstenberg,
Dal’Bo, Dani, Roblin, Sarig, Schapira, Smillie, as well as the recent [PPS, Chap. 9], and
in higher rank of Ratner, Kleinbock-Margulis, Benoist-Quint and many others, see for
instance [Esk|). But strictly analogous problems of excursions of horocyclic flow lines or
of the leaves of the strong unstable foliation have only recently started to be studied, see
for instance the work of Athreya-Margulis [AM] for unipotent or horospherical actions in
some locally symmetric spaces of non compact type, and also [Ath, KM1].

In this paper, we are interested in this problem of excursions of (projections of) horo-
spheres into cusps neighborhoods, with Diophantine approximation applications, a com-
ponent which is present in all the previous works.

'Keywords: negative curvature, geodesic flow, horocyclic flow, strong unstable foliation, cusp excur-
sions, logarithm law, Diophantine approximation, continued fraction, approximation exponent. =~ AMS
codes: 37D40, 53D25, 11J61, 11J70, 20E08, 20G25



Let M be a complete, geometrically finite, Riemannian manifold with dimension at
least 2 and sectional curvature at most —1. Let o : T*M — M be its unit tangent bundle
and (¢¢)er its geodesic flow. For every v € T M, let

W (v) = {w e T'M : t_lgrnoo d(o(¢p—_4v),0(¢p_4w)) = 0}

be the strong unstable leaf of v, endowed with the naturally scaling Hamenstadt’s distance
d®" (see Section 2, it coincides with the induced Riemannian distance when the sectional
curvature is constant) and, when non compact, with the filter of the complementary subsets
of its relatively compact subsets.

Our main result, Theorem 7, whose simplified version is given below, is a precise rela-
tion between the logarithmic growth rates of the strong unstable foliation and the linear
divergence rates of the geodesic flow.

Theorem 1 For every v € T'M which is negatively recurrent under the geodesic flow, we

have
sy A€ o) | d(o(0-m). o)
weWs¥(v) logdsu(w,v) t—+o00 t

In the particular case when M is a finite volume orientable hyperbolic surface, we
recover, by a purely geometric proof, the logarithm law for the excursions into cusps
neighborhoods of the horocyclic flow due to [Ath, Theo. 2.8|.

We may also specify a set of cusps into whose neighborhoods we want to study the
excursions of the strong unstable manifolds, as follows. Recall that a cusp of M is an
asymptotic class of minimizing geodesic rays in M along which the injectivity radius tends
to 0. For every cusp e, let r. : [0,+00[ — M be a representative of e, and let S, : M —
[0, 400 be the map x — max{ 0, lim; 1o t—d(x,7c(t)) }. (One way to normalize . is to
ask for r. to be contained in the closure of, and start from the boundary of, a maximal open
Margulis neighborhood of e (see for instance [BK, Bow, HP4], it is a canonical neighborhood
of the end of M to which converges e if M has finite volume).) Given a (necessarily finite
since M is geometrically finite) set E of cusps, let g = max.cp Se.

Theorem 2 For every v € T'M which is negatively recurrent under the geodesic flow, we

have
lim sup Pplolw) _ 1 + lim sup M.
wewsu(v) 10g d*(w,v) t—-+00 t

We refer to Corollary 12 for almost everywhere consequences of these theorems for the
excursions of the strong unstable leaves in cusp neighborhoods.

These theorems are valid when M is replaced by the quotient of any proper CAT(—1)
metric space X by any geometrically finite discrete group of isometries of X, see Section
4.

Let us now give an application of our main result to non-Archimedian Diophantine
approximation in positive characteristic (see for instance |Las, Sch| for nice introductions).

Let k = IF, be a finite field with ¢ elements, where ¢ is a positive power of a prime p.
Let A = k[X] be the ring of polynomials in one variable X over k and let K = k(X) be
its fraction field, endowed with the absolute value |- | =| - |« defined by

‘ P ‘ — gles P-degQ
Q
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Let K be the completion of K for this absolute value, which is the field E((T71)) of formal
Laurent series f =, [iT~% (where f; € k is zero for i € Z small enough), with absolute
value |- | = | | defined by

’f’ _ qfsup{jEZ:Vi<j, fi=0} )
For every f € K- K, the approm’mation exponent v = v(f) of f is the least upper bound

of the positive numbers v/ such that there exist infinitely many elements 5 in K (with
P, Q relatively prime) such that

-5l =<1er.

Artin’s continued fraction expansion of [ € K — K is the sequence (a; = a;(f))ien in A
with dega; > 0 if ¢ > 0 such that

1
f =ao+ 1
ay + 1
G2t
as + —
Let ¢ = k[[X']] be the local ring of formal power series f = >, fZ ~¢ (where f; € k)

in T~! over k. An O- lattice is a free O-submodule of rank 2 in the K-vector space K<. K2
The linear action of GLy(K) on K2 induces an action of GLa(K) on the set of &-lattices.
For every O-lattice A, let A(A) be the unique n € N such that there exists v € SLy(A)
and A € K such that A\yA = & x X 6. For every f € K — K, let (ug = ug(f))gef( be

the maximal one-parameter unipotent subgroup of SLo(K A) whose projective action on the
projective line Py (K) = K U {oo} fixes f.

Using the geometric approach of [Paul| and the Bruhat-Tits building of (PGL, K ), we
have the following result, relating, for a given irrational formal Laurent series f, the growth
of the orbit of any &-lattice under the one-parameter unipotent subgroup of SLQ(I? ) fixing
f with the approximation exponent of f and with the continued fraction expansion of f.

Theorem 3 For every f € K- K, we have

A ﬁz 2 1
lim sup MZQ——:l—Flimsup Og’i"_‘l -
|g|—=+o0 logq ’g‘ v n—-4oo 10g ay, Hi:(] ai

We give versions of this result for Diophantine approximation with congruence condi-
tions in Section 5.

Acknowledgement: ~ We thank the Mathematisches Forchungsinstitut Oberwolfach, where this
project was started. The first author thanks the Université Paris-Sud (Orsay) were this paper was
continued, and G. A. Margulis for many useful and inspiring discussions. The first author also
acknowledges the support by NSF grant DMS 1069153. The second author thanks the Mittag-
Leffler Institute (Djursholm) where this paper was completed, and J. Parkkonen for the discussion
of Corollary 13.



2 Background on CAT(—1) spaces

We refer to [BH| for the definitions and basic properties of CAT(—1) spaces, and the
knowledgeable reader may skip this section.

Let (X,d) be a proper CAT(—1) geodesic metric space, and X° = X U dxX its
cone-topology compactification by the asymptotic classes of its geodesic rays.

We denote by 7' X the space of geodesic lines in X, that is, of isometric maps v : ¢ — vy
from R into X. To simplify the notation, we will denote by v; instead of v(¢) the image
by v € T'X of t € R. When X is a (complete, simply connected) Riemannian manifold
(with dimension at least 2 and sectional curvature at most —1), this notation coincides
with the usual one, upon identifying a unit tangent vector and the geodesic line it defines.
We denote by v+ € 05X the points at 400 of any v € T'X. The geodesic flow (¢;)icr is
the action of R on T'X by translations at the source: ¢v : s — vsy; for all s,¢ € R and
veTX.

The Busemann cocycle is the continuous map 3 : 05X X X x X — R, defined by
(57 z, y) = 5&('%'7 y) = t—lgl—noo d(.%', gt) o d(y7 gt) )

where t — & is any geodesic ray converging to &. For every & € 0,,X, the horospheres
centered at & are the level sets f~1()) for A € R of the map f : y — Be(y,x0) from X to
R, and the (closed) horoballs centered at & are its sublevel sets f~1(] — oo, A]) for A € R,
for some (hence any) zp € X.

If C' is a nonempty closed convex subset of X and £ € 0, X — 0,C, the closest point to
¢ on C'is the unique point of C' which minimizes the map y — S¢(y, o), for some (hence
any) given xg € X.

Let T" be a discrete group of isometries of X. We denote by 7 : X — I'\ X the canonical
projection of X onto its quotient metric space I'\ X, whose distance is again denoted by d.

The limit set of I will be denoted by AI'; and the convex hull of this limit set by €AT.
Recall that I' is nonelementary if Card(AI') > 3. The conical limit set A.I' of T" is the set
of points £ € 05X such that there exists a sequence of orbit points of some (hence any)
xo € X under I' converging to £ while staying at bounded distance from a geodesic ray
converging to . The points in A D" are called the conical limit points.

A point p € 0, X is a bounded parabolic point of T if it is the fixed point of a parabolic
element of I' and if its stabilizer I'y, in I" acts properly with compact quotient on AT — {p}.
A discrete nonelementary group of isometries I' of X is called geometrically finite if every
element of AT is either a conical limit point or a bounded parabolic point of T'.

Let Parp be the set of fixed points of parabolic elements of I'. If I' is a geometrically
finite group of isometries of X, then (see for instance [Bow]) the action of I" on Parp has
only finitely many orbits, and there exists a I'-equivariant family (HB)),cpar, of pairwise
disjoint closed horoballs, with HB,, centered at p, such that the quotient

I\(¢AT - | ) HB,)
peParp

is compact, and any geodesic ray from the boundary of HB, to p injects isometrically by
the canonical projection 7 : X — I'\ X.



For every v € T'X, the strong unstable leaf of v is

W (v) = {w e T*X : t—lg-noo (v_t,w_y) =0} .
The set {wy : w € W3 (v)} is exactly the horosphere centered at v_ through wvy.

For every v € T' X, let d** be Hamenstidt’s distance on the strong unstable leaf of v,
defined as follows (see |[HP1, Appendix|, compare with [Ham]|, see also [HP6, §2.2] for a
generalisation when horoballs are replaced by arbitrary nonempty closed convex subsets):
for all w,w’ € W (v),

ds“(w,w/) = lim e%d(w‘“w/—t)*t.
t—+o0
This limit exists, and Hamenstddt’s distance is a distance inducing the original topology
on W% (v). We will denote by B*“(w,r) the ball of center w and radius r in the metric
space (W5 (v),d*"). For all t € R and w,w’ € W*"(v), and for every isometry ~ of X, we
have YW (v) = W3%(yv), ¢ W3 (v) = W (ppv), d**(yw,yw') = d*“(w,w’") and

d* (pyw, ppw’) = e'd™ (w,w') . (1)

Remark. (1) When X is a Riemannian manifold with constant sectional curvature, then
Hamenstadt’s distance is the induced Riemannian distance on the horosphere of base points
of vectors of W*"(v) (see for instance [HP2]). When X is a complex hyperbolic space HE,
then Hamenstddt’s distance is a multiple of Cygan’s distance, see [HP3, §3.11]).

(2) When X is a metric tree, then d*(v,w) = min{t € R : v_; = w_}.

(3) Here is a coarse interpretation of Hamenstadt'’s distance. Let x > 0 be fixed. Let T
be the map defined on the set of couples of elements of 71X in the same strong unstable
leaf, with values in [0, 4o00[, by

T(v,w) =min{t € R : d(v_y,w_y) < K} .

Then is its easy to prove that there exists a constant ¢ > 0, depending only on &, such
that
| log d**(v,w) — 1(v,w)| < c.

Finally, we denote by log the natural logarithm, with log(e) = 1.

3 Penetration in horospheres

We regroup in this section the geometric lemmas concerning the behavior of horospheres
that we will need to prove our main theorem. We refer for instance to [PP1] for more
information on the penetration properties of geodesic lines in convex subsets of CAT(—1)
spaces.

Let X be a CAT(—1) geodesic metric space. We will use several times without mention
the first of the following lemmas, which is well known and follows by comparison with a
geodesic triangle with an obtuse angle in the real hyperbolic plane Hﬁ.

Lemma 4 Letx € X andy,z € X U0 X be such that x is the closest point to z on [x,y].
Let ' € [x,2] and let q be the intersection point of [y,z] with the sphere or horosphere
centered at z and passing through q'. Then



d(z, [y, z]) < ¢ =log(l+ \/5) , Y

q
14+3
. g z

/
< g
d(q:q') < e2 = 2log — : 7

For instance by [PP1, Lem. 2.9|, for every horosphere H with center &, for every n €
0oo X — {&}, for every z,y € H such that the geodesic rays [x,n[ and [y, n[ meet H only at
x and y respectively, we have

d(z,y) <2¢ . (2)

Lemma 5 Let x,y € X be two points in a horosphere centered at & € 05X, let z be the
closest point to & on [x,y|, and let 2’ be the closest point to y on [x,&[. Then

|d(z,2) —d(y,2)| <2¢; and |d(2',z) —d(Z,y)| <ecs.

Proof. This is well known, we only prove the second statement.

If & is the point at distance ¢ from z on [z, [, and if ¢ is the z
intersection with [y, &] of the sphere centered at & through 2/,
then d(2’,¢) < ¢ by Lemma 4 and ¢

ld(2, @) —d(',y) | < d(',2) — d(q,y) | +d(Z', q) ,
and lim¢ 1o d(2',2) — d(q,y) = Be(x,y) = 0. U

Lemma 6 Let v € T'X and w € W*%(v). If d**(v,w) > €%, then the closest point Vg,
to wy on the geodesic line Ju_,vi[ belongs to the geodesic ray Jv_,vg], and

dc1 + ¢

[ log d*™ (v,0) — [t] | < *

Proof. By the triangle inequality, we have
d**(v,w) < e2(vo,wo)

If v, does not belong to the geodesic ray |v_,wvg], then d(vy,wp) < c2 by Lemma 4,

which contradicts the assumption that d**(v,w) > €7, Then, using Lemma 5 for the last
equality, writing A = B 4+ C instead of |[A — B| < C, we have

d(ve, wy) — 2t = d(vg, wo) + 4ey
= d(vo, v, ) + d(vy,,, wo) £ ey
= 2|tw| + (561 + Cg) .

By dividing by 2 and by taking the limit as ¢
tends to +o00, this proves the result. ]




4 Horospherical logarithm laws

Let X be a proper CAT(—1) geodesic metric space, let I' be a geometrically finite group
of isometries of X, and let 7 : X — I'\ X be the canonical projection. For all v € T'X,
consider the nondecreasing map 0, : [0, +oo[ — [0, +oo[ defined by

Ou(s) = sup  d(m(wo),m(vo)) -
weB3Y (v, s)

A map 1 : ]0, +oo[ — |0, +oo] will be called slowly increasing if t — 1 (t) and t — ﬁ are

nondecreasing for ¢ big enough, if lim;,~ () = +o0, and if limy_ 4o wg;g)c) =1 for all
t

c € R. Let ay = limy 100 55 € [0,4+00]. For instance, for all @ > 0 and « € ]0,1], the
map t — at® is slowly increasing with a,, = a if & = 1 and a,, = +00 otherwise. From now
on, we fix such a map ¥. We use the convention that +o0o + ¢ = +oo for all ¢ € [0, 4+00].
Note that 1(t) ~ i tast — +ooif ay # 0, +00, where f(t) ~ g(t) ast — 400 is Landau’s

usual notation for f(t) — g(t) = o(g(t)) as t — oo.

Theorem 7 For all v € T'X such that v_ is a conical limit point of T, we have

. 91)(5) o . d(ﬂ-(v*t)’ﬂ-(v()))
I gy = o+l TSGR

Proof. We start the proof by making some reductions. Let us fix v € T'X and denote by
¢, the horosphere with center v_ through vg. Let (HB,)pepar, be a I'-equivariant family
of pairwise disjoint closed horoballs as in Section 2, let H, = 0 HB, be the horosphere

bounding HB,, and let Xp,, = UpEParr HOBp be the union of the interiors of the horoballs
HB, for p € Parp. Let A be the diameter of I'\(¢'A — Xpar).

Since AT" has no isolated point and since v_ € AT, the strong unstable leaf W*5%(v)
is non compact. We endow W*5%(v) with the filter of the complementary subsets of its
relatively compact subsets, and we will consider limits and upper limits of functions defined
on W*%(v) along this filter. What we have to prove is

i d(wo, ') i d(v_¢, Tvp)
im sup = a imsup ————= .
weW st (v) ¢(log dsu(w’ v)) v t—-+o0 ¢(t)

3)

Since v is slowly varying and by the triangle inequality, the validity of this formula is
unchanged if we replace v by any other given element of W*%(v). We may hence assume
that vg € €Al (note that AT is not reduced to {v_}). Since v_ € AL, the negative
geodesic ray v)_u, o) is therefore contained in €’AT. Since ¢ is slowly varying, by Equation
(1) and by the triangle inequality, the validity of Equation (3) is unchanged by replacing v
by ¢_¢,v for any fixed ¢y > 0. Since v_ is a conical limit point, we may thus assume that
vg € CAI' — Xpyy.
Let us now introduce some more notation.



For every p € Parr, let ¢, € | — 00,0] be such that v, is the closest point to p on the
geodesic ray vj_ o], let z, be the intersection point with 7, of the geodesic ray [ve,,,p[ 5
let g, be the closest point to v_ on H),, and let v be the unique element of W*"(v) such
that v® = p. Note that the intersection with 7, of the geodesic line v? is its time 0 point
vfj. For all p € Parp such that v, ¢ HBp, let q;, be the closest point to v, on H)p. For
all p € Parp such that v, € HB,, let ¢ € ] — 00,0] be such that e (respectively Ut;) is
the entering (respectively exiting) point of the geodesic line v in (respectively out) of HB,,
and let s, = t, — t, > 0.

By Lemma 6, for every p € Parp such that d*"(v,vP) > 6%2, we have

oc1 + ¢
_— . 4
. (@)

By the initial reduction, for every p € Parp such that v;, € HB,,, we have d(vtg JTzg) <A,
tr <0 and d(vt;,I’xo) < A. The following estimate will also be useful.

| log d™ (v, v") — [tp| | <

Lemma 8 Let p € Parp. If vy, € HB,,, then
| d(vg, Tvo) = (It + sp) | <Ber +ea + A ()
If vy, ¢ HB,,, then
|d(vy,Tv) — ([tp| — d(vy,, HBp)) | < 2¢1 +2c2+ A . (6)

Proof. If v;, € HB,, since the geodesic ray [gp, p[ isometrically injects in I'\ X and since g,
belongs to €’AT and is the closest point to vf on H,, by Equation (2), and by the second
part of Lemma 5 for the last equality, writing A = B £ C instead of |A — B| < C, we have

d(vh,Tvg) = d(vf, qp) £ A
= d(zp,vt;) +(A+4¢)
= d(zp,v1,) + d(vtp,vtg) +(A+5¢)
=lty| +sp £ (A+5c1+¢2) .
The proof of the second assertion is similar: If vy, ¢ HB,,, then
d(vh,Tvg) = d(vf, qp) £ A

= d(zp, qll,) +(A+2c¢ +c2)

= d(zp,vtp) — d(vtp, qll,) + (A+2c¢ + )

= [tp| — d(vs,, HBp) & (A +2¢1 +2¢2) . [

8



Now that the notation is in place, let us prove Equation (3) by reducing both sides to
computations inside the horoballs HB,,, using the above notation.

Let us endow the set Parp, and any infinite subset of it, with the Fréchet filter of the
complementary subsets of its finite subsets. We also consider limits and upper limits of

functions defined on this set along this filter. We denote by HB,, the interior of HB,.

[¢]
€ HB,} is finite, then limsup, , do—r,Lv) _ o 4pq

Lemma 9 If {p € Parp : v ¥(t)

otherwise

P

¢,
lim sup M = lim sup °p

totoe  Y(H) o Y([tp])

pEParyp : Vip € HBp

Proof. For all t € | — o0, 0] such that v; ¢ Xpar = (U ,cpa, HBp, we have d(ve,I'vg) < A,
which in particular proves the first claim, since lim; 4o 9(t) = +o00. Let p € Parp be

o
such that v, € HB,,. For all t € [t,,1,], let r be the closest point to v; on the geodesic ray
[vtg , D [ .
Since d(vy,, [vt;, p[) < ¢1 and by convexity, since
the geodesic ray [vt;, p[ isometrically injects in I'\ X and

since Uy belongs to €Al" and is the closest point to r on

H,, writing A = B 4 C instead of |A — B| < C, we have
d(vg, Twg) = d(r,Tvo) £ ¢
= d(r, vt;) + (1 + 4)
= d(vt,vt;) + (2¢1 + A)
=[t—t,| £ (21 +A).
Similarly, for all t € [t,, £}], we have |d(vy, Tvo) — [t — )] | < 2¢1 + A.

P p
Since t +— (t) and ¢ — ﬁ are eventually nondecreasing, if |t,| is big enough, note
[t—t, | t—t, . . o o [t—t5| -t .
that ST = ey i maximal as ¢ ranges in |t,,t,] when t = ¢,, and STy = Py s
maximal as ¢ ranges in [tp, ;[ also when ¢ = t,. Since | d(vs,,'vg) — s, | < 2¢1 + A, and
| [tp —t, | — sp| < 2c1 by Lemma 5, this proves the result. O

Lemma 10 If {p € Parr : vy, € HB,} is finite, then lim SUDP e su(v) % = ay,

and otherwise

. d(wo, FUO) . Sp
lim sup =ay, + lim sup .
wewsu() V(logd(w, v)) ~ o ¥(lt])

p€EParr : vy, € HB)
Proof. Since v— € AT, there exist C' > 0 and a sequence (y,)neny in I' such that
limy, 400 d(v0, Ynv0) = 400 and sup,ey d(¥nv0,V)—o0,0) < C. In particular, since the
family of pairwise disjoint horoballs (HB,)pepar. is locally finite in X, there exists a se-
quence (pp)nen in Parp such that lim, , o t,, = —00 and sup,cy d(vy,, , HBp,) < C+A.
By Equation (4) and Lemma 8, since v is eventually nondecreasing, for all p € Parp such
that d*"(v,vP) is big enough, we have

d(vg, T'vo) > mi { [tp| — d(v,,HBp) —2¢1 — 2co — A |tp| —5ep — cp — A}
Y(log dst(vP,v)) — W(|t,] + 501%) o([ty) + 501%)
9




In particular,

. d(wo, T'vo) . d(vg", T'vo)
lim sup > lim sup > ay - 7
weweu(y) Y(logds(w,v)) = notee W(logdst(vrn,v)) = Y )

Let w € W#(v) with d*“(w,v) > e%. Let vy, be the closest point to wy on the
geodesic line v, which belongs to v)_, o) by Lemma 6 (see the picture below). Let z, be
the intersection point with 7, of the geodesic ray [vy,,,p[, which satisfies d(zy,wp) < 2¢;
by Equation (2).

If v, & Xpar = Upepary HOBp, then respectively by the triangle inequality, since vy, €
@& A", by the second claim of Lemma 5, and by Lemma 6, we have

d(wo, T'vg) < d(2w, 'vg) +2¢1 < d(2w,v1,) +2c1 + A < ty| +2c1 + 2+ A
961 +3CQ

< log d**(w,v) + 5

+A.

o
In particular, if {p € Parr : vy, € HB,} is finite, since ¢ is slowly incrasing, we have

I d(wo,T'vo) . log d*"(w, v)
im sup < limsup
wewsu(y) P(logds(w,v)) = yewsu(y) Y(logd™(w,v))
is at most a,, hence is equal to a,, by Equation (7). This proves the first claim of Lemma
10.
We may hence assume that {p € Parr : vy, € HB,} is infinite. In particular,

lim sup d(wo, I'vo) lim sup d(wo, I'vo)
weWs¥(v) w(log d=* (U), U)) wEWSY(v) 1 vg,y, € Xpar w(log dsu(w’ U))
d(vh, Tvo)

> lim sup

o P(log ds*(vP,v)) )

pEParp : vep € HB,

Let us prove that the converse inequality holds. Since v is slowly increasing, by Equation
(4) and the first part of Lemma 8, this will prove Lemma 10.

c o
Let w € W5%(v) and p € Parp such that d**(w,v) > e3 and vy, € HB,. In particular,
vy, € HB,,. Assume for instance that vy, € [vtp,vt;[.

Let 2], be the intersection point with %, of the geodesic
ray [vtg,p[, which satisfies d(z],,wp) < 2¢; by Equation
(2). Then, again using the second claim of Lemma 5 for
the final inequality,

d(wo,Tvg) < d(2,,Twg) + 2¢; < d(z;wvt;) +2c + A

< d(zwavt;) + 4cy + A
< d(zw, v, ) + d(vtw,vt;) +5¢1 + A
< ‘tw‘+’tw—t;‘+501+CQ+A.

[tw|+tw—ty | i —2tw

The map from [t,, 5[ to [0, +oo[ defined by t,, — ] = $=ie) 1S nonincreasing if
t;‘ is small enough, with maximum reached at ¢,, = ¢,. This maximum is at least %

10



by the first assertion of Lemma 5. Since lim;_, ¥ (t) = 400, this proves the converse
part of Equation (8), thus proves Lemma 10. O

Now Equation (3), hence Theorem 7, follows immediately from Lemma 9 and Lemma
10. ]

For every p € Parr, let Bp : X — [0,400[ be the (well-defined and 1-Lipschitz) map

Bp : x +— max{0, til«rgloot —d(x,rp(t))},
where 7y, : [0, 400[ — X is any geodesic ray from a point of H, to p. For every I'-invariant
subset E of Parp, let B B
bE = max Bp
which is a T-invariant 1-Lipschitz map from X to [0,+o0[. The proof of the following
result is the same as the one of Theorem 7, up to replacing the full family (HB,),epar. by
the subfamily (HB,)pcr.

Theorem 11 For every I'-invariant subset E of Parr, for every v € T'X such that v_ €
AT, we have

B (wo) B BE(v—4) _

lim sup = ay + limsup

O
wewsu(v) Y(logds(w,v)) totoo  Y(t)

Theorem 2 in the introduction is a corollary of Theorem 11, since replacing Bp by
Bp + ¢, for any constant ¢, € R depending only on the orbit of p under I' does not change
its validity.

Note that under the hypothesis of an almost sure logarithm law for an invariant measure
of the geodesic flow, the right hand sides of the equations in Theorem 7 and Theorem 11
are an easily computed constant for almost every v, hence so are the left hand sides. In
particular, the following result follows from [HP4, Coro. 6.1] and [HP5, Coro. 1.2]. The new
assumptions are satisfied in particular if the Riemannian metric of X is locally symmetric
in at least one horoball centered at each parabolic point. We refer for instance to [Rob]| for
the definitions and properties of the critical exponents and of the Bowen-Margulis measure.

Corollary 12 Let (X,T') be as above, with Parp nonempty. Let 6 be the critical exponent
of I'. Assume furthermore that either X is a locally finite tree, or X is a Riemannian
manifold with pinched sectional curvature such that, for every p € Parr, if 6, is the critical
exponent of the stabilizer I'y, of p in I', then 0, < o and there exists ¢ > 0 such that
Leown < Card{a €Ty : d(zg, azg) < n} < ce®™ for alln € N.
Then for almost every v € T'X for the Bowen-Margulis measure of I' on T' X, we have
Oy (s)

limsup ——— = qay, .
i Ylogs) Y

Proof. Let 6y = maxpeparp 6p < 9.
First note that, by [Rob, §2|, the set of elements v € T'X such that v, € A.I has
full measure for the Bowen-Margulis measure. Also note that since ¢ is slowly varying, if

11



ay, # +00, then limy_, | o i’% = 0. Hence if ay, # 400, by Theorem 7, we have, for almost

every v € T'X for the Bowen-Margulis measure, if limsup,_, , . Cl(v%égm) is finite, then
S) d(v_, T logt
lim sup Ouls) a, + limsup d(v—t, 'vo) im 87— ay (9)
s5——400 ¢(10g S) t——+o00 logt t—+0o0 ¢(t)

a formula which is also true if ay, = +o0.

In the locally finite tree case, [HP5, Coro. 1.2] applies directly, since it proves that
lim sup;_, 4 Cl(”%g’lzvo) = % for almost every v € T X for the Bowen-Margulis measure.

Assume hence that X is a Riemannian manifold as in the statement. The only as-
sumption of [HP4, Coro. 6.1] that is not an assumption of Corollary 12 is that there exists
¢ > 0 such that & e < Card{y €T : d(zo,vz0) < n} < € for all n € N.

By [DOP], the assumptions that I' is geometrically finite and that ¢, < ¢ for all p € Parp
imply the finiteness of the Bowen-Margulis measure on I'\T" X. By [Dal] since Parp # (),
the set of the translation lengths of the hyperbolic elements of I' is not contained in a
discrete subgroup of R. By |[Rob], the extra assumption above is satisfied (and there is
even an asymptotic equivalent Card{y € T' : d(xg,yz¢) < n} ~ ¢ ™ as n — 400). Since

the conclusion of [HP4, Coro. 6.1] is that lim sup,_, , ., d(vméfv(’) = 2(5£60) for almost every
v € T'X for the Bowen-Margulis measure, Corollary 12 follows from Equation (9). U

Remark. Since the results [HP4, Coro. 6.1] and [HP5, Coro. 1.2] are valid cusp by cusp,
a statement analogous to Corollary 12 for a prescribed set of cusps is also valid.

As another application of our main theorem, here is another consequence, for the
behavior of strong unstable leaves, of properties of the geodesic flow.

Corollary 13 If T is convex-cocompact, then for every v € T'X such that v— € AT, we
: Ou(s) _

have limsupg_, | ogs — 1-

If T is not convex-cocompact and if X is a Riemannian manifold of dimension at least

3, then for every o € [1,2], there exists v € T'X such that limsup,_,, o ?gg(i) =

Proof. The first claim is immediate from Theorem 1. The second one follows from the
techniques of [PP1, §5.4]. O

Given « € ]1,2], it would be interesting to study the Hausdorff dimension of the set of
Oy (s)
log s

elements v € 71X such that limsup,_, , = .

5 An application to non-Archimedian Diophantine approxi-
mation

For all n > 2, let Hig be the upper halfspace model of the real hyperbolic space of dimension
n. Applications to Archimedian Diophantine approximation may be obtained, as in the
case of X = HZ and I' a congruence subgroup of PSLy(Z) (see for instance [AM]), by
taking for instance X = H% and I' = PSL(&) where & is an order in the ring of integers
of an imaginary quadratic number field, or X = H2 and I' = PSL(&) where € is an order
in a definite quaternion algebra over Q (see for instance [PP2]). But in this paper, we
concentrate on the applications to non-Archimedian Diophantine approximation.

12



We start this section by restating a version of Theorem 11 in the particular case of
trees, which will be more directly applicable for our arithmetic applications.

Let T be a localy finite tree (endowed with the maximal distance making each edge
isometric to [0, 1], which is CAT(—1)). Let VT be its set of vertices and Aut(T") its locally
compact automorphism groups (which is contained in its isometry group). Let I' be a
geometrically finite subgroup of Aut(7"). Up to taking the first barycentric subdivision of
T and rescaling, we assume that I" acts without inversion (that is, no element of I' maps
an edge of T' to its opposite edge), so that I'\T" has a unique structure of graph such that
the canonical projection 7' — T'\T is a morphism of graphs. By the structure theorem
of [Pau2| (improving on the algebraic cases of Serre [Ser| and Lubotzky |Lub|), with E
the finite set I'\ Parp, there exist a finite subgraph ¢ of I'\@AI' and for every e € E, a
geodesic ray pe : [0,+o0o] — T'\@Al' with origin a vertex, which lifts to a geodesic ray in
T converging to any representative of e in Parp, such that I'\@ AT is the disjoint union of
% and the open rays p.(]0,+o0]) for e € E.

For every e € E, define a map A, : VI' — [0,4+00] by Ac(z) = n if 'z = pe(n) (such
an n is unique if it exists), and A.(xz) = 0 otherwise. Note that if € is an element of
Parp whose image in I'\ Parr is e, since p. lifts to a geodesic ray converging to €, there
exists a constant ¢ € R such that Bz (t) = Ac(t) + ¢ for ¢ big enough, with the notation
before Theorem 11. Also note that two geodesic lines in T', starting from the same point
at infinity, coincide up to translation on a neighborhood of —oo. For every non-isolated
point &, € 05T, we endow 05T — {&,} with the filter of the complementary subsets of its
relatively compact subsets. Therefore, the following result follows immediately from the
definition of Hamenstédt’s distance and Theorem 11.

Corollary 14 Let & € AL and ne € 05T — {&}. For every n € 0xT — {&}, let
t — n(t) be the geodesic line from &, to n such that n.(0) € VT and n(t) = n.(t) fort
small enough. Let §,(n,n.) = inf{t € N : Vs >t, n(—t) =n.(—t)}. Then for alle € E
and 1 : 10, 4+00[ — |0, 4+00[ slowly increasing, we have

lim sup _Lem0) = ay + limsup Beln:(=1)) .
NEJoc T—{Ex} Y(0x (1, m4)) t—+o00 Y(t)

Let us now give our applications to non-Archimedian Diophantine approximation. We
follow the notation of [Paul|, in particular as recalled in the introduction for k = Fy,
A=k[X],K =k(X), K =k(X™1), 0 =k[[X ], || = || and, for every f € K—K, its
continued fraction expansion (a, = a(f))nen and its approximation exponent v = v(f).

For every f =3, [T " € K, the integral part [f] of fis Yo i7" € A and its
fractional part {f} is >, o fiT" € X~ 10. Artin’s map ¥ : X100 - {0} - X 10 is
defined by f — {1/f}. Given f € K — K, we have ag = [f] and if n > 1, then a, =
[m] Consider the sequences (P, )nGNU{ 13 and (Qn)nenug—1y in A inductively
defined by

P1=1,Q-1=0,P=apQ =1

and for every n € N

Pn+1 - an-l—lpn + Pn—l and Qn—l—l - an—f—lQn + Qn—l .

13



Then P, and @Q,, are relatively prime, and

P 1
_n:a0_|_

@n ar +

az +

Op—1+ —
Qnp
is called the n-th convergent of f. The sequence (5—”)neN converges to f (for the above,
see for instance [Las, Schl, as well as [Paul| for a geometric explanation).
The action of GL2(K) on the set of &-lattices induces an action of K* by homotheties
on this set, and we will denote by [A] the homothety class of an &-lattice A.

Remarks. (1) Note that O-lattices A in K2 behave, from the topological viewpoint,
very differently than Z-lattices in R?: they are compact open additive subgroups of K2, K2
and hence K2 /A is infinite and discrete (thus non compact). Furthermore, for any norm
|- on K2, we have inf,c,_ (o3 ]l = 0.

(2) The set VT (see below for an explanation of this notation) of homothety classes
of O-lattices in K 2 can be endowed with the quotient of Chabauty’s topology on closed
subgroups of the (additive) locally compact group K 2 or, equivalently, with the topology
of an homogeneous space under the transitive (linear) action of PGLQ(IA( ). Note that this
topology is discrete since PGLy (&) is open in PGLQ(I? ), again a major difference from the
case of Z-lattices in R?. The map A defined in the introduction induces (by passing to the
quotients) a proper map from PSLy(A)\V Tz to N. This map is an ultrametric analog of
the inverse of the systole map on Z-lattices with covolume 1 in R?, whose properness is
called Mahler’s criterion.

Let us fix a nonzero element @), of A. Consider Hecke’s nonprincipal congruence sub-
group

I’O*:{<CCL Z)ESLQ(A) =0 mon*},

which has finite index in SLy(A). For every O-lattice A, define Ag, (A) = n if there exists
v € FOQ* such that [yA] = [0 x X" 0] and Ag, (A) = 0 otherwise.

For every f € K — K, recall that (ug = ug(f))gef(
unipotent subgroup of SLy(K K) whose projective action on Py(K) = K U {oo} fixes f. For
every f € K- K, the approzimation exponent v, = vq, (f) of f relative to Q) is the least

upper bound of the positive numbers v/ such that there exist infinitely many elements g
in K with P and @ relatively prime and Q =0 mod @, such that

is the maximal one-parameter

-5] <1

Theorem 15 For every f € K- K, we have

A 0? 2 1
limsup M =2 —— =1+ limsup og |an+1|

|gl—+o0 logq |g| Q. n—+00 : Q=0 mod Qs log |an+1 HZ 1G5 ‘
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Theorem 3 in the introduction follows by taking Q. = 1.

Proof. We will apply Corollary 14 with 7' the Bruhat-Tits tree of (PGLQ,I?), whose
definition and useful properties we start by recalling (following [Ser]).
The Bruhat-Tits tree Tz of (PGL2, K) is the graph whose vertices are the homothety

classes of O-lattices in K 2 two vertices z and 2’ being joined by an edge if and only if there
exist representatives A, A’ of x, 2’ respectively such that A’ C A and A/A’ is isomorphic to
O/X7'0.

We identify as usual the projective line Py (K) with K U{co} by the map K*(z,y) =
We denote by (g, z) — g- the projective action of g € GLy(K) on z € P(K) = KU {oo}.

The action of GLy(K) on the set of @-lattices induces an isometric action of GLa(K)
on Tp. Note that SLQ(I? ) acts with two orbits on the set of vertices of T . There exists
one and only one homeomorphism between 0T and Py (K) such that the (continuous)
extension to 0T of the isometric action of GLQ(I? ) on Ty corresponds to the projec-
tive action of GLy(K) on Py(K). From now on, we identify 0T and P1(K) by this
homeomorphism.

We denote by HB, the horoball in T with center oo whose boundary contains the
vertex [0%]. Note that SLy(A) is a geometrically finite group of isometries of Ty, with
only one orbit of parabolic points, and that (v HBOO)yeSM( A)/SLa(A)s 18 the associated
SLa(A)-equivariant family of maximal horoballs with pairwise disjoint interiors (see [Paul,
§6.2]. The geodesic ray from [0?] to co € 95T 72> whose sequence of consecutive vertices
is ([0 x X7"0])nen, injects onto the quotient SLo(A)\T 5.

Let us fix f € K — K. We are now going to apply Corollary 14 with ¢ = id (so that
ay = 1), T = Tp, I' the image of F%* in Aut(7") (which is also a geometrically finite
subgroup with Parp = Parpgy,,4) = P1(K) = K U{c0}), {&« = f (which is a conical limit
point, since f is irrational and the limit set of PSLa(A), hence of T, is the whole boundary
at infinity), n. = 0, and e = T'oo.

The sequence ([0 x X" 0])nen of consecutive vertices of the geodesic ray in Ty from
(6] to oo isometrically injects in SLa(A)\Tz, hence in F%*\Tf(. Therefore, there exists a
constant ¢ € R such that for every &-lattice A, we have

[Ac([A]) —Aq.(A) [ <c.

1 0
1/f 1
horospheres centered at oo to the horospheres centered at f) and fixes 0. The maximal one-
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~ 1
parameter unipotent subgroup of SLg(K) fixing oo is g +— < g > Hence the maximal

0 1

= 1
one-parameter unipotent subgroup (ug)gel? of SLy(K) fixing f is g — ug = 7y (0 { > vy

We fix the parametrization of the geodesic lines starting from f so that they cross at time
t = 0 through 70 HBo,. Note that there exists a constant ¢’ € R such that for all g € K,
we have

‘ AQ*(ugwfﬁQ) — AQ*(ugﬁz) ‘ <.

By [Paul, Coro. 5.2|, for all g € K , Hamenstadt’s distance between the geodesic lines

starting from oo and ending at 0 and at g, passing through d HB,, at time 0, is ]g\@.
Since v¢ is an isometry and v7§ = ug - 0, with 6,(-,-) defined in Corollary 14, we hence
have

0+ (ug - 0,0) =log, |g] -

The map from K to 0Tz — {f} sending g to n = ugy - 0 is a homeomorphism, and
n(0) = uyys[0?]. Hence

A 2
lim sup 7Ae(77(0)) = lim sup 7@(1@0’ ) .

(10)
nedaT—{e} 0x(1Mx)  |gjmdoo 1084 9]

Let us denote by v : K —7ZU {+00} the valuation associated to the absolute value
| - |, so that for all f € K, we have

[ fl=q W),

By [Paul, §6.3], the geodesic line starting from oo and ending at f (passing at time
t = 0 through 0HB,) enters successively the interiors of the horoballs of the SLa(A)-
equivariant family of maximal horoballs with pairwise disjoint interiors which are centered
at the convergents of f. Furthermore, if x,, is its entering vertex in HB n and y,, its point

the closest to Q_ then

1
d(xnayn) - 5 d(xnaanrl) - _Uoo(an+1) .

In particular,

n

9007% Z 27}00 az — Voo an-l—l logq ‘an-l—l Ha | .
i=1

By the definition of Ag,, we are only interested in the penetration of the geodesic line
|oo, f] in the horospheres HB p with P, @ € A relatively prime and @ = 0 mod Q.. Since
Q

the geodesic ray from Wf[ﬁQ] to f coincides, for times big enough and up to translation,
with the geodesic line Joo, f[, we have

Ae(n(=1))

. logq |an+1|
limsup ———= = lim sup
t—+o00 t n—+o00 : Q=0 mod Q. 10gq ‘an—l—l i=1 a; ‘

(11)
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By [Paul, §6.3], with the above notation, we also have

and

P

d(anyn) :Uoo(f_ &) = _logq|f_ Q_

@n

)

d(x0, Tn) = —2000(Qn) = 2log, | Qn | .

Since | f —g | is at least 1 if g is not a convergent of f, we hence have, by the definition
of the approximation exponent vgq,,

— lim inf

2log | Q| 2log, | Qy |

lim inf

vQ. - |Q|—+00 : Q=0 mod Q. —10g|f—g| :n*)+OO:QnEO mod Q. —logq’f— %‘

_ . d(zo, Tn)
— lim inf -
n—-+oo : QnEO mod Q* d(l‘O? yn)

2 izt —2Voo(ai)

= lim inf
n——+00 : Qrn=0 mod Q« Z?:l —QUOO(GZ') — voo(an+1)
log, |a
=1- lim sup 8| ntll‘ 5T - (12)
n—+00 : Qn=0 mod Q. logq |an+1 Hizl a; |
Now Theorem 15 follows from Equation (10), Equation (11), and Equation (12). O

Remark. Note that the definition of Ag, is related to the choice of one of the ends of
F%*\T # (the one corresponding to the geodesic ray in Tz with vertices [¢ x X" 0] for

n € N). Other choices of ends give analogous Diophantine approximation results.
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