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Given for instance a finite volume negatively curved Riemannian manifold M , we give a precise relation between the logarithmic growth rates of the excursions into cusps neighborhoods of the strong unstable leaves of negatively recurrent unit vectors of M and their linear divergence rates under the geodesic flow. As an application to non-Archimedian Diophantine approximation in positive characteristic, we relate the growth of the orbits of lattices under one-parameter unipotent subgroups of GL 2 ( K) with approximation exponents and continued fraction expansions of elements of the field K of formal Laurent series over a finite field. 1

Introduction

The excursions of geodesic flow lines into neighborhoods of ends of finite volume negatively curved manifolds have been studied for a long time, and Sullivan [Sul] proved a seminal almost sure logarithm law in the finite volume constant curvature case. More probabilistic aspects have been considered too (see for instance the works of Enriquez, Franchi, Guivarc'h, Le Jan, as [EFJ]). Sullivan's result has been extended by to finite volume locally symmetric spaces of non compact type, by Stratmann-Velani [SV] to geometrically finite constant negative curvature, by [START_REF] Hersonsky | A logarithm law for automorphism groups of trees[END_REF] to variable negative curvature and to trees, and by Athreya-Ghosh-Prasad [START_REF] Athreya | Ultrametric Logarithm Law, I. Disc[END_REF][START_REF] Athreya | Ultrametric Logarithm Laws, II[END_REF] to some buildings.

The ergodic theory and topological dynamics of the horocyclic flow in dimension 2 (or of the strong unstable foliation of the geodesic flow in higher dimension) has attracted a huge amount of studies (see the works in negative curvature of Hedlund, Furstenberg, Dal'Bo, Dani, Roblin, Sarig, Schapira, Smillie, as well as the recent [START_REF] Paulin | Equilibrium states in negative curvature[END_REF]Chap. 9], and in higher rank of Ratner, Kleinbock-Margulis, Benoist-Quint and many others, see for instance [Esk]). But strictly analogous problems of excursions of horocyclic flow lines or of the leaves of the strong unstable foliation have only recently started to be studied, see for instance the work of Athreya-Margulis [AM] for unipotent or horospherical actions in some locally symmetric spaces of non compact type, and also [START_REF] Athreya | Cusp excursions on parameter spaces[END_REF][START_REF] Kelmer | Logarithm laws for one-parameter unipotent flows[END_REF].

In this paper, we are interested in this problem of excursions of (projections of) horospheres into cusps neighborhoods, with Diophantine approximation applications, a component which is present in all the previous works.
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Let M be a complete, geometrically finite, Riemannian manifold with dimension at least 2 and sectional curvature at most -1. Let o : T 1 M → M be its unit tangent bundle and (φ t ) t∈R its geodesic flow. For every v ∈ T 1 M , let

W su (v) = {w ∈ T 1 M : lim t→+∞ d(o(φ -t v), o(φ -t w)) = 0}
be the strong unstable leaf of v, endowed with the naturally scaling Hamenstadt's distance d su (see Section 2, it coincides with the induced Riemannian distance when the sectional curvature is constant) and, when non compact, with the filter of the complementary subsets of its relatively compact subsets.

Our main result, Theorem 7, whose simplified version is given below, is a precise relation between the logarithmic growth rates of the strong unstable foliation and the linear divergence rates of the geodesic flow.

Theorem 1 For every v ∈ T 1 M which is negatively recurrent under the geodesic flow, we have lim sup

w∈W su (v) d(o(w), o(v)) log d su (w, v) = 1 + lim sup t→+∞ d(o(φ -t v), o(v))) t .
In the particular case when M is a finite volume orientable hyperbolic surface, we recover, by a purely geometric proof, the logarithm law for the excursions into cusps neighborhoods of the horocyclic flow due to [START_REF] Athreya | Cusp excursions on parameter spaces[END_REF]Theo. 2.8].

We may also specify a set of cusps into whose neighborhoods we want to study the excursions of the strong unstable manifolds, as follows. Recall that a cusp of M is an asymptotic class of minimizing geodesic rays in M along which the injectivity radius tends to 0. For every cusp e, let r e : [0, +∞[ → M be a representative of e, and let β e : M → [0, +∞[ be the map x → max{ 0, lim t→+∞ t-d(x, r e (t)) }. (One way to normalize β e is to ask for r e to be contained in the closure of, and start from the boundary of, a maximal open Margulis neighborhood of e (see for instance [START_REF] Buser | Gromov's almost flat manifolds[END_REF][START_REF] Bowditch | Geometrical finiteness with variable negative curvature[END_REF][START_REF] Hersonsky | Counting orbit points in coverings of negatively curved manifolds and Hausdorff dimension of cusp excursions[END_REF], it is a canonical neighborhood of the end of M to which converges e if M has finite volume).) Given a (necessarily finite since M is geometrically finite) set E of cusps, let β E = max e∈E β e .

Theorem 2 For every v ∈ T 1 M which is negatively recurrent under the geodesic flow, we have lim sup

w∈W su (v) β E (o(w)) log d su (w, v) = 1 + lim sup t→+∞ β E (o(φ -t v)) t .
We refer to Corollary 12 for almost everywhere consequences of these theorems for the excursions of the strong unstable leaves in cusp neighborhoods.

These theorems are valid when M is replaced by the quotient of any proper CAT(-1) metric space X by any geometrically finite discrete group of isometries of X, see Section 4.

Let us now give an application of our main result to non-Archimedian Diophantine approximation in positive characteristic (see for instance [Las, Sch] for nice introductions).

Let k = F q be a finite field with q elements, where q is a positive power of a prime p. Let A = k[X] be the ring of polynomials in one variable X over k and let K = k(X) be its fraction field, endowed with the absolute value

| • | = | • | ∞ defined by P Q = q deg P -deg Q .
Let K be the completion of K for this absolute value, which is the field k

((T -1 )) of formal Laurent series f = i∈Z f i T -i (where f i ∈ k is zero for i ∈ Z small enough), with absolute value | • | = | • | ∞ defined by | f | = q -sup{j∈Z : ∀ i<j, f i =0} .
For every f ∈ K -K, the approximation exponent ν = ν(f ) of f is the least upper bound of the positive numbers ν ′ such that there exist infinitely many elements P Q in K (with P, Q relatively prime) such that

f - P Q ≤ | Q | -ν ′ . Artin's continued fraction expansion of f ∈ K -K is the sequence (a i = a i (f )) i∈N in A with deg a i > 0 if i > 0 such that f = a 0 + 1 a 1 + 1 a 2 + 1 a 3 + 1 . . . . Let O = k[[X -1 ]] be the local ring of formal power series f = i∈N f i T -i (where f i ∈ k) in T -1 over k. An O-lattice is a free O-submodule of rank 2 in the K-vector space K 2 .
The linear action of GL 2 ( K) on K 2 induces an action of GL 2 ( K) on the set of O-lattices.

For every O-lattice Λ, let ∆(Λ) be the unique n ∈ N such that there exists γ ∈ SL 2 (A) and λ ∈ K such that λγΛ = O × X -n O. For every f ∈ K -K, let (u g = u g (f )) g∈ K be the maximal one-parameter unipotent subgroup of SL 2 ( K) whose projective action on the projective line P 1 ( K) = K ∪ {∞} fixes f . Using the geometric approach of [START_REF] Paulin | Groupe modulaire, fractions continues et approximation diophantienne en caractéristique p[END_REF] and the Bruhat-Tits building of (PGL 2 , K), we have the following result, relating, for a given irrational formal Laurent series f , the growth of the orbit of any O-lattice under the one-parameter unipotent subgroup of SL 2 ( K) fixing f with the approximation exponent of f and with the continued fraction expansion of f . Theorem 3 For every f ∈ K -K, we have

lim sup |g|→+∞ ∆(u g O 2 ) log q |g| = 2 - 2 ν = 1 + lim sup n→+∞ log |a n | log a n n-1 i=0 a 2 i .
We give versions of this result for Diophantine approximation with congruence conditions in Section 5.

Background on CAT(-1) spaces

We refer to [BH] for the definitions and basic properties of CAT(-1) spaces, and the knowledgeable reader may skip this section.

Let (X, d) be a proper CAT(-1) geodesic metric space, and X geo = X ∪ ∂ ∞ X its cone-topology compactification by the asymptotic classes of its geodesic rays. We denote by T 1 X the space of geodesic lines in X, that is, of isometric maps v : t → v t from R into X. To simplify the notation, we will denote by v t instead of v(t) the image by v ∈ T 1 X of t ∈ R. When X is a (complete, simply connected) Riemannian manifold (with dimension at least 2 and sectional curvature at most -1), this notation coincides with the usual one, upon identifying a unit tangent vector and the geodesic line it defines. We denote by v ± ∈ ∂ ∞ X the points at ±∞ of any v ∈ T 1 X. The geodesic flow (φ t ) t∈R is the action of R on T 1 X by translations at the source:

φ t v : s → v s+t for all s, t ∈ R and v ∈ T 1 X. The Busemann cocycle is the continuous map β : ∂ ∞ X × X × X → R, defined by (ξ, x, y) → β ξ (x, y) = lim t→+∞ d(x, ξ t ) -d(y, ξ t ) ,
where t → ξ t is any geodesic ray converging to ξ. For every ξ ∈ ∂ ∞ X, the horospheres centered at ξ are the level sets f -1 (λ) for λ ∈ R of the map f : y → β ξ (y, x 0 ) from X to R, and the (closed) horoballs centered at ξ are its sublevel sets f -1 (] -∞, λ]) for λ ∈ R, for some (hence any) x 0 ∈ X.

If C is a nonempty closed convex subset of X and ξ ∈ ∂ ∞ X -∂ ∞ C, the closest point to ξ on C is the unique point of C which minimizes the map y → β ξ (y, x 0 ), for some (hence any) given x 0 ∈ X.

Let Γ be a discrete group of isometries of X. We denote by π : X → Γ\X the canonical projection of X onto its quotient metric space Γ\X, whose distance is again denoted by d.

The limit set of Γ will be denoted by ΛΓ, and the convex hull of this limit set by C ΛΓ. Recall that Γ is nonelementary if Card(ΛΓ) ≥ 3. The conical limit set Λ c Γ of Γ is the set of points ξ ∈ ∂ ∞ X such that there exists a sequence of orbit points of some (hence any) x 0 ∈ X under Γ converging to ξ while staying at bounded distance from a geodesic ray converging to ξ. The points in Λ c Γ are called the conical limit points.

A point p ∈ ∂ ∞ X is a bounded parabolic point of Γ if it is the fixed point of a parabolic element of Γ and if its stabilizer Γ p in Γ acts properly with compact quotient on ΛΓ -{p}. A discrete nonelementary group of isometries Γ of X is called geometrically finite if every element of ΛΓ is either a conical limit point or a bounded parabolic point of Γ.

Let Par Γ be the set of fixed points of parabolic elements of Γ. If Γ is a geometrically finite group of isometries of X, then (see for instance [Bow]) the action of Γ on Par Γ has only finitely many orbits, and there exists a Γ-equivariant family (HB p ) p∈Par Γ of pairwise disjoint closed horoballs, with HB p centered at p, such that the quotient

Γ\ C ΛΓ - p∈Par Γ HB p
is compact, and any geodesic ray from the boundary of HB p to p injects isometrically by the canonical projection π : X → Γ\X.

For every v ∈ T 1 X, the strong unstable leaf of v is

W su (v) = {w ∈ T 1 X : lim t→+∞ d(v -t , w -t ) = 0} .
The set {w 0 : w ∈ W su (v)} is exactly the horosphere centered at v -through v 0 .

For every v ∈ T 1 X, let d su be Hamenstädt's distance on the strong unstable leaf of v, defined as follows (see [START_REF] Hersonsky | On the rigidity of discrete isometry groups of negatively curved spaces[END_REF]Appendix], compare with [Ham], see also [START_REF] Hersonsky | On the almost sure spiraling of geodesics in negatively curved manifolds[END_REF]§2.2] for a generalisation when horoballs are replaced by arbitrary nonempty closed convex subsets): for all w, w ′ ∈ W su (v),

d su (w, w ′ ) = lim t→+∞ e 1 2 d(w -t ,w ′ -t )-t .
This limit exists, and Hamenstädt's distance is a distance inducing the original topology on W su (v). We will denote by B su (w, r) the ball of center w and radius r in the metric space (W su (v), d su ). For all t ∈ R and w, w ′ ∈ W su (v), and for every isometry γ of X, we have

γW su (v) = W su (γv), φ t W su (v) = W su (φ t v), d su (γw, γw ′ ) = d su (w, w ′ ) and d su (φ t w, φ t w ′ ) = e t d su (w, w ′ ) . (1) 
Remark.

(1) When X is a Riemannian manifold with constant sectional curvature, then Hamenstädt's distance is the induced Riemannian distance on the horosphere of base points of vectors of W su (v) (see for instance [START_REF] Hersonsky | Diophantine approximation for negatively curved manifolds[END_REF]). When X is a complex hyperbolic space H n C , then Hamenstädt's distance is a multiple of Cygan's distance, see [START_REF] Hersonsky | Diophantine Approximation on Negatively Curved Manifolds and in the Heisenberg Group[END_REF]§3.11]).

(2) When X is a metric tree, then

d su (v, w) = min{t ∈ R : v -t = w -t }.
(3) Here is a coarse interpretation of Hamenstädt's distance. Let κ > 0 be fixed. Let τ be the map defined on the set of couples of elements of T 1 X in the same strong unstable leaf, with values in [0, +∞[ , by

τ (v, w) = min{t ∈ R : d(v -t , w -t ) ≤ κ} .
Then is its easy to prove that there exists a constant c ≥ 0, depending only on κ, such that

| log d su (v, w) -τ (v, w) | ≤ c .
Finally, we denote by log the natural logarithm, with log(e) = 1.

Penetration in horospheres

We regroup in this section the geometric lemmas concerning the behavior of horospheres that we will need to prove our main theorem. We refer for instance to [START_REF] Parkkonen | Prescribing the behaviour of geodesics in negative curvature[END_REF] for more information on the penetration properties of geodesic lines in convex subsets of CAT(-1) spaces.

Let X be a CAT(-1) geodesic metric space. We will use several times without mention the first of the following lemmas, which is well known and follows by comparison with a geodesic triangle with an obtuse angle in the real hyperbolic plane

H 2 R . Lemma 4 Let x ∈ X and y, z ∈ X ∪ ∂ ∞ X be such that x is the closest point to z on [x, y].
Let q ′ ∈ [x, z] and let q be the intersection point of [y, z] with the sphere or horosphere centered at z and passing through q ′ . Then

d(x, [y, z]) ≤ c 1 = log(1 + √ 2) , d(q, q ′ ) ≤ c 2 = 2 log 1 + √ 3 2 . x q ′ z q y
For instance by [PP1, Lem. 2.9], for every horosphere H with center ξ, for every η ∈ ∂ ∞ X -{ξ}, for every x, y ∈ H such that the geodesic rays [x, η[ and [y, η[ meet H only at x and y respectively, we have d(x, y) ≤ 2 c 1 .

(2)

Lemma 5 Let x, y ∈ X be two points in a horosphere centered at ξ ∈ ∂ ∞ X, let z be the closest point to ξ on [x, y] , and let z ′ be the closest point to y on [x, ξ[ . Then

| d(x, z) -d(y, z) | ≤ 2c 1 and | d(z ′ , x) -d(z ′ , y) | ≤ c 2 .
Proof. This is well known, we only prove the second statement. If ξ t is the point at distance t from x on [x, ξ[ , and if q t is the intersection with [y, ξ t ] of the sphere centered at ξ t through z ′ , then d(z ′ , q t ) ≤ c 2 by Lemma 4 and

| d(z ′ , x) -d(z ′ , y) | ≤ | d(z ′ , x) -d(q t , y) | + d(z ′ , q t ) ,
and

lim t→+∞ d(z ′ , x) -d(q t , y) = β ξ (x, y) = 0. x y z z ′ ξ Lemma 6 Let v ∈ T 1 X and w ∈ W su (v). If d su (v, w) > e c 2
2 , then the closest point v tw to w 0 on the geodesic line ]v -, v + [ belongs to the geodesic ray ]v -, v 0 ], and

| log d su (v, w) -|t w | | ≤ 5c 1 + c 2 2 .
Proof. By the triangle inequality, we have

d su (v, w) ≤ e 1 2 d(v 0 ,w 0 ) .
If v tw does not belong to the geodesic ray ]v -, v 0 ], then d(v 0 , w 0 ) ≤ c 2 by Lemma 4, which contradicts the assumption that d su (v, w) > e c 2 2 . Then, using Lemma 5 for the last equality, writing

A = B ± C instead of |A -B| ≤ C, we have d(v t , w t ) -2t = d(v 0 , w 0 ) ± 4c 1 = d(v 0 , v tw ) + d(v tw , w 0 ) ± 5c 1 = 2|t w | ± (5c 1 + c 2 ) .
By dividing by 2 and by taking the limit as t tends to +∞, this proves the result.

v 0 w 0 v t w t v tw v - ≤ c 1 ≤ c 1 ≤ c 1 |t w |

Horospherical logarithm laws

Let X be a proper CAT(-1) geodesic metric space, let Γ be a geometrically finite group of isometries of X, and let π : X → Γ\X be the canonical projection. For all v ∈ T 1 X, consider the nondecreasing map 

Θ v : [0, +∞[ → [0, +∞[ defined by Θ v (s) = sup w∈B su (v, s) d(π(w 0 ), π(v 0 )) . A map ψ : ]0, +∞[ → ]0,
ψ(t) = 1 for all c ∈ R. Let a ψ = lim t→+∞ t ψ(t) ∈ [0, +∞].
For instance, for all a > 0 and α ∈ ]0, 1], the map t → a t α is slowly increasing with a ψ = a if α = 1 and a ψ = +∞ otherwise. From now on, we fix such a map ψ. We use the convention that

+∞ + t = +∞ for all t ∈ [0, +∞]. Note that ψ(t) ∼ 1 a ψ t as t → +∞ if a ψ = 0, +∞, where f (t) ∼ g(t) as t → +∞ is Landau's usual notation for f (t) -g(t) = o(g(t)) as t → ∞.
Theorem 7 For all v ∈ T 1 X such that v -is a conical limit point of Γ, we have

lim sup s→+∞ Θ v (s) ψ(log s) = a ψ + lim sup t→+∞ d(π(v -t ), π(v 0 )) ψ(t) .
Proof. We start the proof by making some reductions. Let us fix v ∈ T 1 X and denote by H v the horosphere with center v -through v 0 . Let (HB p ) p∈Par Γ be a Γ-equivariant family of pairwise disjoint closed horoballs as in Section 2, let H p = ∂ HB p be the horosphere bounding HB p , and let X Par = p∈Par Γ

•

HB p be the union of the interiors of the horoballs HB p for p ∈ Par Γ . Let ∆ be the diameter of Γ\(C Λ -X Par ).

Since ΛΓ has no isolated point and since v -∈ ΛΓ, the strong unstable leaf W su (v) is non compact. We endow W su (v) with the filter of the complementary subsets of its relatively compact subsets, and we will consider limits and upper limits of functions defined on W su (v) along this filter. What we have to prove is lim sup

w∈W su (v) d(w 0 , Γv 0 ) ψ(log d su (w, v)) = a ψ + lim sup t→+∞ d(v -t , Γv 0 ) ψ(t) . ( 3 
)
Since ψ is slowly varying and by the triangle inequality, the validity of this formula is unchanged if we replace v by any other given element of W su (v). We may hence assume that v 0 ∈ C ΛΓ (note that ΛΓ is not reduced to {v -}). Since v -∈ ΛΓ, the negative geodesic ray v ]-∞, 0] is therefore contained in C ΛΓ. Since ψ is slowly varying, by Equation (1) and by the triangle inequality, the validity of Equation ( 3) is unchanged by replacing v by φ -t 0 v for any fixed t 0 ≥ 0. Since v -is a conical limit point, we may thus assume that v 0 ∈ C ΛΓ -X Par .

Let us now introduce some more notation.

v 0 v 0 v tp v t + p v tp v t - p v p 0 H p H p v p 0 H v H v p p z p z p q p q p q ′ p v - v - s p
For every p ∈ Par Γ , let t p ∈ ] -∞, 0] be such that v tp is the closest point to p on the geodesic ray v ]-∞,0] , let z p be the intersection point with H v of the geodesic ray [v tp , p[ , let q p be the closest point to v -on H p , and let v p be the unique element of W su (v) such that v p + = p. Note that the intersection with H v of the geodesic line v p is its time 0 point v p 0 . For all p ∈ Par Γ such that v tp / ∈ HB p , let q ′ p be the closest point to v tp on H p . For all p ∈ Par Γ such that v tp ∈ HB p , let t ± p ∈ ] -∞, 0] be such that v tp (respectively v t + p ) is the entering (respectively exiting) point of the geodesic line v in (respectively out) of HB p , and let s p = t pt - p ≥ 0. By Lemma 6, for every p ∈ Par Γ such that d su (v, v p ) > e c 2 2 , we have

| log d su (v, v p ) -|t p | | ≤ 5c 1 + c 2 2 . (4) 
By the initial reduction, for every p ∈ Par Γ such that v tp ∈ HB p , we have

d(v t - p , Γx 0 ) ≤ ∆, t + p ≤ 0 and d(v t + p , Γx 0 ) ≤ ∆.
The following estimate will also be useful.

Lemma 8 Let p ∈ Par Γ . If v tp ∈ HB p , then | d(v p 0 , Γv 0 ) -(|t p | + s p ) | ≤ 5 c 1 + c 2 + ∆ . ( 5 
) If v tp / ∈ HB p , then | d(v p 0 , Γv 0 ) -(|t p | -d(v tp , HB p )) | ≤ 2 c 1 + 2 c 2 + ∆ . (6) 
Proof. If v tp ∈ HB p , since the geodesic ray [q p , p[ isometrically injects in Γ\X and since q p belongs to C ΛΓ and is the closest point to v p 0 on H p , by Equation (2), and by the second part of Lemma 5 for the last equality, writing

A = B ± C instead of |A -B| ≤ C, we have d(v p 0 , Γv 0 ) = d(v p 0 , q p ) ± ∆ = d(z p , v t - p ) ± (∆ + 4 c 1 ) = d(z p , v tp ) + d(v tp , v t - p ) ± (∆ + 5 c 1 ) = |t p | + s p ± (∆ + 5 c 1 + c 2 ) .
The proof of the second assertion is similar: If v tp / ∈ HB p , then

d(v p 0 , Γv 0 ) = d(v p 0 , q p ) ± ∆ = d(z p , q ′ p ) ± (∆ + 2 c 1 + c 2 ) = d(z p , v tp ) -d(v tp , q ′ p ) ± (∆ + 2 c 1 + c 2 ) = |t p | -d(v tp , HB p ) ± (∆ + 2 c 1 + 2c 2 ) .
Now that the notation is in place, let us prove Equation (3) by reducing both sides to computations inside the horoballs HB p , using the above notation.

Let us endow the set Par Γ , and any infinite subset of it, with the Fréchet filter of the complementary subsets of its finite subsets. We also consider limits and upper limits of functions defined on this set along this filter. We denote by • HB p the interior of HB p .

Lemma 9 If {p ∈ Par Γ : v tp ∈ • HB p } is finite, then lim sup t→+∞ d(v -t , Γv 0 ) ψ(t)
= 0, and otherwise lim sup

t→+∞ d(v -t , Γv 0 ) ψ(t) = lim sup p∈Par Γ : vt p ∈ • HBp s p ψ(|t p |) .
Proof. 

For all t ∈ ] -∞, 0] such that v t / ∈ X Par = p∈Par Γ • HB p , we have d(v t , Γv 0 ) ≤ ∆,
= B ± C instead of |A -B| ≤ C, we have d(v t , Γv 0 ) = d(r, Γv 0 ) ± c 1 = d(r, v t - p ) ± (c 1 + ∆) = d(v t , v t - p ) ± (2c 1 + ∆) = |t -t - p | ± (2c 1 + ∆) . v t + p v t - p v t r p v tp ≤ c 1 H p Similarly,
w∈W su (v) d(w 0 , Γv 0 ) ψ(log d su (w, v)) = a ψ + lim sup p∈Par Γ : vt p ∈ • HBp s p ψ(|t p |) . Proof. Since v -∈ Λ c Γ, there exist C > 0 and a sequence (γ n ) n∈N in Γ such that lim n→+∞ d(v 0 , γ n v 0 ) = +∞ and sup n∈N d(γ n v 0 , v ]-∞, 0] ) ≤ C.
In particular, since the family of pairwise disjoint horoballs (HB p ) p∈Par Γ is locally finite in X, there exists a sequence (p n ) n∈N in Par Γ such that lim n→+∞ t pn = -∞ and sup n∈N d(v tp n , HB pn ) ≤ C +∆. By Equation (4) and Lemma 8, since ψ is eventually nondecreasing, for all p ∈ Par Γ such that d su (v, v p ) is big enough, we have

d(v p 0 , Γv 0 ) ψ(log d su (v p , v)) ≥ min |t p | -d(v tp , HB p ) -2c 1 -2c 2 -∆ ψ(|t p | + 5c 1 +c 2 2 ) , |t p | -5c 1 -c 2 -∆ ψ(|t p | + 5c 1 +c 2 2 ) .
In particular, lim sup

w∈W su (v) d(w 0 , Γv 0 ) ψ(log d su (w, v)) ≥ lim sup n→+∞ d(v pn 0 , Γv 0 ) ψ(log d su (v pn , v)) ≥ a ψ . (7) Let w ∈ W su (v) with d su (w, v) > e c 2 
2 . Let v tw be the closest point to w + on the geodesic line v, which belongs to v ]-∞, 0] by Lemma 6 (see the picture below). Let z w be the intersection point with H v of the geodesic ray [v tw , p[ , which satisfies d(z w , w 0 ) ≤ 2c 1 by Equation (2).

If v tw /

∈ X Par = p∈Par Γ • HB p , then respectively by the triangle inequality, since v tw ∈ C ΛΓ, by the second claim of Lemma 5, and by Lemma 6, we have

d(w 0 , Γv 0 ) ≤ d(z w , Γv 0 ) + 2c 1 ≤ d(z w , v tw ) + 2c 1 + ∆ ≤ |t w | + 2c 1 + c 2 + ∆ ≤ log d su (w, v) + 9c 1 + 3c 2 2 + ∆ .
In particular, if {p ∈ Par Γ : v tp ∈

• HB p } is finite, since ψ is slowly incrasing, we have lim sup

w∈W su (v) d(w 0 , Γv 0 ) ψ(log d su (w, v)) ≤ lim sup w∈W su (v) log d su (w, v) ψ(log d su (w, v))
is at most a ψ , hence is equal to a ψ by Equation ( 7). This proves the first claim of Lemma 10.

We may hence assume that {p ∈ Par Γ : v tp ∈

• HB p } is infinite. In particular, lim sup

w∈W su (v) d(w 0 , Γv 0 ) ψ(log d su (w, v)) = lim sup w∈W su (v) : vt w ∈ X Par d(w 0 , Γv 0 ) ψ(log d su (w, v)) ≥ lim sup p∈Par Γ : vt p ∈ • HBp d(v p 0 , Γv 0 ) ψ(log d su (v p , v)) . (8) 
Let us prove that the converse inequality holds. Since ψ is slowly increasing, by Equation (4) and the first part of Lemma 8, this will prove Lemma 10. 2). Then, again using the second claim of Lemma 5 for the final inequality,

d(w 0 , Γv 0 ) ≤ d(z ′ w , Γv 0 ) + 2c 1 ≤ d(z ′ w , v t + p ) + 2c 1 + ∆ ≤ d(z w , v t + p ) + 4c 1 + ∆ ≤ d(z w , v tw ) + d(v tw , v t + p ) + 5c 1 + ∆ ≤ |t w | + |t w -t + p | + 5c 1 + c 2 + ∆ . v 0 v tp v t + p v tw H v H p p w + z w z ′ w w 0 v - The map from [t p , t + p [ to [0, +∞[ defined by t w → |tw|+|tw-t + p | ψ(|tw|) = t + p -2tw ψ(-tw) is nonincreasing if t +
p is small enough, with maximum reached at t w = t p . This maximum is at least

|tp|+sp-c 2 ψ(|tp|)
by the first assertion of Lemma 5. Since lim t→+∞ ψ(t) = +∞, this proves the converse part of Equation ( 8), thus proves Lemma 10. Now Equation (3), hence Theorem 7, follows immediately from Lemma 9 and Lemma 10.

For every p ∈ Par Γ , let β p : X → [0, +∞[ be the (well-defined and 1-Lipschitz) map

β p : x → max{0, lim t→+∞ t -d(x, r p (t))} ,
where r p : [0, +∞[ → X is any geodesic ray from a point of H p to p. For every Γ-invariant subset E of Par Γ , let

β E = max p∈E β p ,
which is a Γ-invariant 1-Lipschitz map from X to [0, +∞[ . The proof of the following result is the same as the one of Theorem 7, up to replacing the full family (HB p ) p∈Par Γ by the subfamily (HB p ) p∈E .

Theorem 11 For every Γ-invariant subset E of Par Γ , for every v ∈ T 1 X such that v -∈ Λ c Γ, we have lim sup

w∈W su (v) β E (w 0 ) ψ(log d su (w, v)) = a ψ + lim sup t→+∞ β E (v -t ) ψ(t) .
Theorem 2 in the introduction is a corollary of Theorem 11, since replacing β p by β p + c p for any constant c p ∈ R depending only on the orbit of p under Γ does not change its validity.

Note that under the hypothesis of an almost sure logarithm law for an invariant measure of the geodesic flow, the right hand sides of the equations in Theorem 7 and Theorem 11 are an easily computed constant for almost every v, hence so are the left hand sides. In particular, the following result follows from [START_REF] Hersonsky | Counting orbit points in coverings of negatively curved manifolds and Hausdorff dimension of cusp excursions[END_REF]Coro. 6.1] and [START_REF] Hersonsky | A logarithm law for automorphism groups of trees[END_REF]Coro. 1.2]. The new assumptions are satisfied in particular if the Riemannian metric of X is locally symmetric in at least one horoball centered at each parabolic point. We refer for instance to [Rob] for the definitions and properties of the critical exponents and of the Bowen-Margulis measure.

Corollary 12 Let (X, Γ) be as above, with Par Γ nonempty. Let δ be the critical exponent of Γ. Assume furthermore that either X is a locally finite tree, or X is a Riemannian manifold with pinched sectional curvature such that, for every p ∈ Par Γ , if δ p is the critical exponent of the stabilizer Γ p of p in Γ, then δ p < δ and there exists c > 0 such that

1 c e δpn ≤ Card{α ∈ Γ p : d(x 0 , αx 0 ) ≤ n} ≤ c e δpn for all n ∈ N.
Then for almost every v ∈ T 1 X for the Bowen-Margulis measure of Γ on T 1 X, we have

lim sup s→+∞ Θ v (s) ψ(log s) = a ψ .
Proof. Let δ 0 = max p∈Par Γ δ p < δ. First note that, by [START_REF] Roblin | Ergodicité et équidistribution en courbure négative[END_REF]§2], the set of elements v ∈ T 1 X such that v + ∈ Λ c Γ has full measure for the Bowen-Margulis measure. Also note that since ψ is slowly varying, if a ψ = +∞, then lim t→+∞ log t ψ(t) = 0. Hence if a ψ = +∞, by Theorem 7, we have, for almost every v ∈ T 1 X for the Bowen-Margulis measure, if lim sup t→+∞ d(v -t , Γv 0 ) log t is finite, then

lim sup s→+∞ Θ v (s) ψ(log s) = a ψ + lim sup t→+∞ d(v -t , Γv 0 ) log t lim t→+∞ log t ψ(t) = a ψ , (9) 
a formula which is also true if a ψ = +∞.

In the locally finite tree case, [START_REF] Hersonsky | A logarithm law for automorphism groups of trees[END_REF]Coro. 1.2] applies directly, since it proves that lim sup t→+∞ d(v -t ,Γv 0 ) log t

= 1 δ for almost every v ∈ T 1 X for the Bowen-Margulis measure. Assume hence that X is a Riemannian manifold as in the statement. The only assumption of [START_REF] Hersonsky | Counting orbit points in coverings of negatively curved manifolds and Hausdorff dimension of cusp excursions[END_REF]Coro. 6.1] that is not an assumption of Corollary 12 is that there exists c ′ > 0 such that 1 c ′ e δn ≤ Card{γ ∈ Γ : d(x 0 , γx 0 ) ≤ n} ≤ c ′ e δn for all n ∈ N. By [DOP], the assumptions that Γ is geometrically finite and that δ p < δ for all p ∈ Par Γ imply the finiteness of the Bowen-Margulis measure on Γ\T 1 X. By [Dal] since Par Γ = ∅, the set of the translation lengths of the hyperbolic elements of Γ is not contained in a discrete subgroup of R. By [Rob], the extra assumption above is satisfied (and there is even an asymptotic equivalent Card{γ ∈ Γ : d(x 0 , γx 0 ) ≤ n} ∼ c ′ e δn as n → +∞). Since the conclusion of [START_REF] Hersonsky | Counting orbit points in coverings of negatively curved manifolds and Hausdorff dimension of cusp excursions[END_REF]Coro. 6.1] 

is that lim sup t→+∞ d(v -t , Γv 0 ) log t = 1 2(δ-δ 0 )
for almost every v ∈ T 1 X for the Bowen-Margulis measure, Corollary 12 follows from Equation (9).

Remark. Since the results [START_REF] Hersonsky | Counting orbit points in coverings of negatively curved manifolds and Hausdorff dimension of cusp excursions[END_REF]Coro. 6.1] and [START_REF] Hersonsky | A logarithm law for automorphism groups of trees[END_REF]Coro. 1.2] are valid cusp by cusp, a statement analogous to Corollary 12 for a prescribed set of cusps is also valid.

As another application of our main theorem, here is another consequence, for the behavior of strong unstable leaves, of properties of the geodesic flow.

Corollary 13 If Γ is convex-cocompact, then for every v ∈ T 1 X such that v -∈ ΛΓ, we have lim sup s→+∞ Θv(s) log s = 1. If Γ is not convex-cocompact and if X is a Riemannian manifold of dimension at least 3, then for every α ∈ [1, 2], there exists v ∈ T 1 X such that lim sup s→+∞ Θv(s) log s = α.

Proof. The first claim is immediate from Theorem 1. The second one follows from the techniques of [START_REF] Parkkonen | Prescribing the behaviour of geodesics in negative curvature[END_REF]§5.4].

Given α ∈ ]1, 2], it would be interesting to study the Hausdorff dimension of the set of elements v ∈ T 1 X such that lim sup s→+∞ Θv(s) log s = α.

An application to non-Archimedian Diophantine approximation

For all n ≥ 2, let H n R be the upper halfspace model of the real hyperbolic space of dimension n. Applications to Archimedian Diophantine approximation may be obtained, as in the case of X = H 2 R and Γ a congruence subgroup of PSL 2 (Z) (see for instance [AM]), by taking for instance X = H 3 R and Γ = PSL(O) where O is an order in the ring of integers of an imaginary quadratic number field, or X = H 5 R and Γ = PSL(O) where O is an order in a definite quaternion algebra over Q (see for instance [START_REF] Parkkonen | On the arithmetic and geometry of binary Hamiltonian forms[END_REF]). But in this paper, we concentrate on the applications to non-Archimedian Diophantine approximation.

We start this section by restating a version of Theorem 11 in the particular case of trees, which will be more directly applicable for our arithmetic applications.

Let T be a localy finite tree (endowed with the maximal distance making each edge isometric to [0, 1], which is CAT(-1)). Let V T be its set of vertices and Aut(T ) its locally compact automorphism groups (which is contained in its isometry group). Let Γ be a geometrically finite subgroup of Aut(T ). Up to taking the first barycentric subdivision of T and rescaling, we assume that Γ acts without inversion (that is, no element of Γ maps an edge of T to its opposite edge), so that Γ\T has a unique structure of graph such that the canonical projection T → Γ\T is a morphism of graphs. By the structure theorem of [START_REF] Paulin | Groupes géométriquement finis d'automorphismes d'arbres et approximation diophantienne dans les arbres[END_REF] (improving on the algebraic cases of Serre [Ser] and Lubotzky [Lub]), with E the finite set Γ\ Par Γ , there exist a finite subgraph G of Γ\C ΛΓ and for every e ∈ E, a geodesic ray ρ e : [0, +∞[ → Γ\C ΛΓ with origin a vertex, which lifts to a geodesic ray in T converging to any representative of e in Par Γ , such that Γ\C ΛΓ is the disjoint union of G and the open rays ρ e (]0, +∞[) for e ∈ E.

For every e ∈ E, define a map ∆ e : V T → [0, +∞[ by ∆ e (x) = n if Γx = ρ e (n) (such an n is unique if it exists), and ∆ e (x) = 0 otherwise. Note that if e is an element of Par Γ whose image in Γ\ Par Γ is e, since ρ e lifts to a geodesic ray converging to e, there exists a constant c ∈ R such that β { e} (t) = ∆ e (t) + c for t big enough, with the notation before Theorem 11. Also note that two geodesic lines in T , starting from the same point at infinity, coincide up to translation on a neighborhood of -∞. For every non-isolated point ξ * ∈ ∂ ∞ T , we endow ∂ ∞ T -{ξ * } with the filter of the complementary subsets of its relatively compact subsets. Therefore, the following result follows immediately from the definition of Hamenstädt's distance and Theorem 11. Let us now give our applications to non-Archimedian Diophantine approximation. We follow the notation of [START_REF] Paulin | Groupe modulaire, fractions continues et approximation diophantienne en caractéristique p[END_REF], in particular as recalled in the introduction for k

= F q , A = k[X], K = k(X), K = k((X -1 )), O = k[[X -1 ]], |•| = |•| ∞
and, for every f ∈ K-K, its continued fraction expansion (a n = a n (f )) n∈N and its approximation exponent ν = ν(f ).

For every f = i∈Z f i T -i ∈ K, the integral part [f ] of f is i≤0 f i T -i ∈ A and its fractional part {f } is i>0 f i T -i ∈ X -1 O. Artin's map Ψ : X -1 O -{0} → X -1 O is defined by f → {1/f }. Given f ∈ K -K, we have a 0 = [f ] and if n ≥ 1, then a n = [ 1 ψ n-1 (f -a 0 ) ]. Consider the sequences (P n ) n∈N∪{-1} and (Q n ) n∈N∪{-1} in A inductively defined by P -1 = 1, Q -1 = 0, P 0 = a 0 , Q 0 = 1
and for every n ∈ N

P n+1 = a n+1 P n + P n-1 and Q n+1 = a n+1 Q n + Q n-1 .
Then P n and Q n are relatively prime, and

P n Q n = a 0 + 1 a 1 + 1 a 2 + 1 . . . a n-1 + 1 a n
is called the n-th convergent of f . The sequence ( Pn Qn ) n∈N converges to f (for the above, see for instance [Las, Sch], as well as [START_REF] Paulin | Groupe modulaire, fractions continues et approximation diophantienne en caractéristique p[END_REF] for a geometric explanation).

The action of GL 2 ( K) on the set of O-lattices induces an action of K * by homotheties on this set, and we will denote by [Λ] the homothety class of an O-lattice Λ.

Remarks. (1) Note that O-lattices Λ in K 2 behave, from the topological viewpoint, very differently than Z-lattices in R 2 : they are compact open additive subgroups of K 2 , and hence K 2 /Λ is infinite and discrete (thus non compact). Furthermore, for any norm

• on K 2 , we have inf x∈Λ-{0} x = 0.

(2) The set V T K (see below for an explanation of this notation) of homothety classes of O-lattices in K 2 can be endowed with the quotient of Chabauty's topology on closed subgroups of the (additive) locally compact group K 2 , or, equivalently, with the topology of an homogeneous space under the transitive (linear) action of PGL 2 ( K). Note that this topology is discrete since PGL 2 (O) is open in PGL 2 ( K), again a major difference from the case of Z-lattices in R 2 . The map ∆ defined in the introduction induces (by passing to the quotients) a proper map from PSL 2 (A)\V T K to N. This map is an ultrametric analog of the inverse of the systole map on Z-lattices with covolume 1 in R 2 , whose properness is called Mahler's criterion.

Let us fix a nonzero element Q * of A. Consider Hecke's nonprincipal congruence subgroup

Γ 0 Q * = a b c d ∈ SL 2 (A) : c ≡ 0 mod Q * , which has finite index in SL 2 (A). For every O-lattice Λ, define ∆ Q * (Λ) = n if there exists γ ∈ Γ 0 Q * such that [γΛ] = [O × X -n O] and ∆ Q * (Λ) = 0 otherwise. For every f ∈ K -K, recall that (u g = u g (f )) g∈ K is the maximal one-parameter unipotent subgroup of SL 2 ( K) whose projective action on P 1 ( K) = K ∪ {∞} fixes f . For every f ∈ K -K, the approximation exponent ν Q * = ν Q * (f ) of f relative to Q * is
the least upper bound of the positive numbers ν ′ such that there exist infinitely many elements P Q in K with P and Q relatively prime and

Q ≡ 0 mod Q * such that f - P Q ≤ | Q | -ν ′ .
Theorem 15 For every f ∈ K -K, we have

lim sup |g|→+∞ ∆ Q * (u g O 2 ) log q |g| = 2 - 2 ν Q * = 1 + lim sup n→+∞ : Qn≡0 mod Q * log |a n+1 | log a n+1 n i=1 a 2 i .
Theorem 3 in the introduction follows by taking Q * = 1.

Proof. We will apply Corollary 14 with T the Bruhat-Tits tree of (PGL 2 , K), whose definition and useful properties we start by recalling (following [Ser]).

The Bruhat-Tits tree T K of (PGL 2 , K) is the graph whose vertices are the homothety classes of O-lattices in K 2 , two vertices x and x ′ being joined by an edge if and only if there exist representatives Λ, Λ ′ of x, x ′ respectively such that Λ ′ ⊂ Λ and Λ/Λ ′ is isomorphic to O/X -1 O.

We identify as usual the projective line P 1 ( K) with K ∪{∞} by the map K * (x, y) → x y . We denote by (g, x)

→ g • x the projective action of g ∈ GL 2 ( K) on x ∈ P 1 ( K) = K ∪ {∞}.
The action of GL 2 ( K) on the set of O-lattices induces an isometric action of GL 2 ( K) on T K . Note that SL 2 ( K) acts with two orbits on the set of vertices of T K . There exists one and only one homeomorphism between ∂ ∞ T K and P 1 ( K) such that the (continuous) extension to ∂ ∞ T K of the isometric action of GL 2 ( K) on T K corresponds to the projective action of GL 2 ( K) on P 1 ( K). From now on, we identify ∂ ∞ T K and P 1 ( K) by this homeomorphism.

We denote by HB ∞ the horoball in T K with center ∞ whose boundary contains the vertex [O 2 ]. Note that SL 2 (A) is a geometrically finite group of isometries of T K , with only one orbit of parabolic points, and that (γ HB ∞ ) γ∈SL 2 (A)/ SL 2 (A)∞ is the associated SL 2 (A)-equivariant family of maximal horoballs with pairwise disjoint interiors (see [START_REF] Paulin | Groupe modulaire, fractions continues et approximation diophantienne en caractéristique p[END_REF]§6.2]. The geodesic ray from

[O 2 ] to ∞ ∈ ∂ ∞ T K , whose sequence of consecutive vertices is ([O × X -n O]) n∈N , injects onto the quotient SL 2 (A)\T K .
Let us fix f ∈ K -K. We are now going to apply Corollary 14 with ψ = id (so that a ψ = 1), T = T K , Γ the image of Γ 0 Q * in Aut(T ) (which is also a geometrically finite subgroup with Par Γ = Par PSL 2 (A) = P 1 (K) = K ∪ {∞}), ξ * = f (which is a conical limit point, since f is irrational and the limit set of PSL 2 (A), hence of Γ, is the whole boundary at infinity), η * = 0, and e = Γ∞.

γ f [O 2 ] u g γ f [O 2 ] HB ∞ f 0 u g • 0 = γ f • g γ f log q |g| [O × X -1 O] [O × X -n O] [O 2 ] g ∞ 0 log q |g| The sequence ([O × X -n O]) n∈N of consecutive vertices of the geodesic ray in T K from [O 2 ] to ∞ isometrically injects in SL 2 (A)\T K , hence in Γ 0 Q * \T K .
Therefore, there exists a constant c ∈ R such that for every O-lattice Λ, we have

| ∆ e ([Λ]) -∆ Q * (Λ) | ≤ c .
The element γ f = 1 0 1/f 1 ∈ SL 2 ( K) maps projectively ∞ to f (hence sends the horospheres centered at ∞ to the horospheres centered at f ) and fixes 0. The maximal one-parameter unipotent subgroup of SL 2 ( K) fixing ∞ is g → 1 g 0 1

. Hence the maximal one-parameter unipotent subgroup (u g ) g∈ K of SL 2 ( K) fixing f is g → u g = γ f 1 g 0 1 γ -1 f . We fix the parametrization of the geodesic lines starting from f so that they cross at time t = 0 through γ f ∂ HB ∞ . Note that there exists a constant c ′ ∈ R such that for all g ∈ K, we have

∆ Q * (u g γ f O 2 ) -∆ Q * (u g O 2 ) ≤ c ′ .
By [START_REF] Paulin | Groupe modulaire, fractions continues et approximation diophantienne en caractéristique p[END_REF]Coro. 5.2], for all g ∈ K, Hamenstädt's distance between the geodesic lines starting from ∞ and ending at 0 and at g, passing through ∂ HB ∞ at time 0, is |g| 1 log q . Since γ f is an isometry and γ f ġ = u g • 0, with δ * (•, •) defined in Corollary 14, we hence have δ * (u g • 0, 0) = log q |g| . 

| f | = q -v∞(f ) .
By [START_REF] Paulin | Groupe modulaire, fractions continues et approximation diophantienne en caractéristique p[END_REF]§6.3], the geodesic line starting from ∞ and ending at f (passing at time t = 0 through ∂ HB ∞ ) enters successively the interiors of the horoballs of the SL 2 (A)equivariant family of maximal horoballs with pairwise disjoint interiors which are centered at the convergents of f . Furthermore, if x n is its entering vertex in HB Pn Qn and y n its point the closest to Pn Qn , then

d(x n , y n ) = 1 2 d(x n , x n+1 ) = -v ∞ (a n+1 ) .
In particular,

d(x 0 , y n ) = n i=1 -2 v ∞ (a i ) -v ∞ (a n+1 ) = log q a n+1 n i=1 a 2 i .
By 

By [START_REF] Paulin | Groupe modulaire, fractions continues et approximation diophantienne en caractéristique p[END_REF]§6.3], with the above notation, we also have

d(x 0 , y n ) = v ∞ f - P n Q n = -log q f - P n Q n , and d(x 0 , x n ) = -2 v ∞ (Q n ) = 2 log q | Q n | .
Since | f -P Q | is at least 1 if P Q is not a convergent of f , we hence have, by the definition of the approximation exponent ν Q * ,

2 ν Q * = lim inf |Q|→+∞ : Q≡0 mod Q * 2 log | Q | -log | f -P Q | = lim inf n→+∞ : Qn≡0 mod Q * 2 log q | Q n | -log q | f -Pn Qn | = lim inf n→+∞ : Qn≡0 mod Q * d(x 0 , x n ) d(x 0 , y n ) = lim inf n→+∞ : Qn≡0 mod Q * n i=1 -2v ∞ (a i ) n i=1 -2v ∞ (a i ) -v ∞ (a n+1 ) = 1 - lim sup n→+∞ : Qn≡0 mod Q * log q |a n+1 | log q a n+1 n i=1 a 2 i . ( 12 
)
Now Theorem 15 follows from Equation (10), Equation ( 11), and Equation ( 12).

Remark. Note that the definition of ∆ Q * is related to the choice of one of the ends of Γ 0 Q * \T K (the one corresponding to the geodesic ray in T K with vertices [O × X -n O] for n ∈ N). Other choices of ends give analogous Diophantine approximation results.

Corollary 14

 14 Let ξ * ∈ Λ c Γ and η * ∈ ∂ ∞ T -{ξ * }. For every η ∈ ∂ ∞ T -{ξ * }, let t → η(t) be the geodesic line from ξ * to η such that η * (0) ∈ V T and η(t) = η * (t) for t small enough. Let δ * (η, η * ) = inf{t ∈ N : ∀ s ≥ t, η(-t) = η * (-t)}. Then for all e ∈ E and ψ : ]0, +∞[ → ]0, +∞[ slowly increasing, we have lim sup η∈∂∞T -{ξ * } ∆ e (η(0)) ψ(δ * (η, η * )) = a ψ + lim sup t→+∞ ∆ e (η * (-t)) ψ(t) .

  The map from K to ∂ ∞ T K -{f } sending g to η = u g • 0 is a homeomorphism, andη(0) = u g γ f [O 2 ]. Hence lim sup η∈∂∞T -{ξ * } ∆ e (η(0)) δ * (η, η * ) = lim sup |g|→+∞ ∆ Q * (u g O 2 ) log q |g| . (10)Let us denote by v ∞ : K → Z ∪ {+∞} the valuation associated to the absolute value | • |, so that for all f ∈ K, we have

  the definition of ∆ Q * , we are only interested in the penetration of the geodesic line ]∞, f [ in the horospheres HB P Q with P, Q ∈ A relatively prime and Q = 0 mod Q * . Since the geodesic ray from γ f [O 2 ] to f coincides, for times big enough and up to translation, with the geodesic line ]∞, f [ , we have lim sup t→+∞ ∆ e (η * (-t)) t = lim sup n→+∞ : Qn=0 mod Q * log q |a n+1 | log q a n+1 n i=1 a 2 i .

  +∞[ will be called slowly increasing if t → ψ(t) and t → t ψ(t) are nondecreasing for t big enough, if lim t→+∞ ψ(t) = +∞, and if lim t→+∞ ψ(t+c)

  which in particular proves the first claim, since lim t→+∞ ψ(t) = +∞. Let p ∈ Par Γ be such that v tp ∈ . For all t ∈ [t - p , t p ], let r be the closest point to v t on the geodesic ray [v t - p , p[ . Since d(v tp , [v t - p , p[) ≤ c 1 and by convexity, since the geodesic ray [v t - p , p[ isometrically injects in Γ\X and since v tp belongs to C ΛΓ and is the closest point to r on H p , writing A

• HB p

  HB p . Assume for instance that v tw ∈ [v tp , v t + p [ . Let z ′w be the intersection point with H v of the geodesic ray [v t +

	c 2 2 and v tw ∈

Let w ∈ W su (v) and p ∈ Par Γ such that d su (w, v) > e • HB p . In particular, v tp ∈ p , p[ , which satisfies d(z ′ w , w 0 ) ≤ 2c 1 by Equation (
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