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ABSTRACT 

In the present work, we propose a scheme for the fusion of different phone duration models, operating 

in parallel. Specifically, the predictions from a group of dissimilar and independent to each other 

individual duration models are fed to a machine learning algorithm, which reconciles and fuses the 

outputs of the individual models, yielding more precise phone duration predictions. The performance of 

the individual duration models and of the proposed fusion scheme is evaluated on the American-

English KED TIMIT and on the Greek WCL-1 databases. On both databases, the SVR-based 

individual model demonstrates the lowest error rate. When compared to the second-best individual 

algorithm, a relative reduction of the mean absolute error (MAE) and the root mean square error 

(RMSE) by 5.5% and 3.7% on KED TIMIT, and 6.8% and 3.7% on WCL-1 is achieved. At the fusion 

stage, we evaluate the performance of twelve fusion techniques. The proposed fusion scheme, when 

implemented with SVR-based fusion, contributes to the improvement of the phone duration prediction 

accuracy over the one of the best individual model, by 1.9% and 2.0% in terms of relative reduction of 

the MAE and RMSE on KED TIMIT, and by 2.6% and 1.8% on the WCL-1 database. 

Index Terms— Duration modelling, parallel fusion scheme, phone duration prediction, support 

vector regression, text-to-speech synthesis  

 

1. INTRODUCTION 

In Text-to-Speech synthesis (TTS) there are two major issues concerning the quality of the synthetic 

speech, namely the intelligibility and the naturalness (Dutoit, 1997; Klatt, 1987). The former refers to 
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the capability of a synthesized word or phrase to be comprehended by the average listener. The latter 

represents how close to the human natural speech, the synthetic speech is perceived. One of the most 

important factors for achieving intelligibility and naturalness in synthetic speech is the accurate 

modelling of prosody. 

Prosody can be regarded as the implicit channel of information in the speech signal that conveys 

linguistic, paralinguistic and extralinguistic information related to communicative functions. Such 

functions are the linguistic functions of prominence (stress and accent), the phrasing, the discourse 

segmentation, the information about expression of emphasis, attitude, assumptions, the emotional state 

of the speaker, the information about the identify of the speaker (particular with respect to habitual 

factors). These functions provide to the listener clues supporting the recovery of the verbal message 

(Clark and Yallop, 1995; Laver, 1980; Laver, 1994). The accurate modelling and control of prosody in 

a text-to-speech system leads to synthetic speech of higher quality.  

Prosody is shaped by the relative level of the fundamental frequency, the intensity and last but not 

least by the duration of the pronounced phones (Dutoit, 1997; Furui, 2000). The duration of the phones 

controls the rhythm and the tempo of speech (Yamagishi et al., 2008) and the flattening of the prosody 

in a speech waveform would result in a monotonous, neutral, toneless and without rhythm synthetic 

speech, sounding unnatural, unpleasant to the listener or sometimes even scarcely intelligible (Chen et 

al., 2003). Thus, the accurate modelling of phones’ duration is essential in speech processing. 

Several areas of speech technology, among which TTS, automatic speech recognition (ASR) and 

speaker recognition benefit from duration modelling. In TTS, the correct segmental duration 

contributes to the naturalness of synthetic speech (Chen et al., 1998; Klatt, 1976). In hidden Markov 

model (HMM)-based ASR, state duration models improve the speech recognition performance 

(Bourlard et al., 1996; Jennequin and Gauvian, 2007; Levinson, 1986; Mitchell et al., 1995; Pols et al., 

1996). Finally, significant improvement of the performance in the speaker recognition task was 

achieved by Ferrer et al. (2003), when duration-based speech parameters were used for the 

characterization of the speaker’s voice. 

Various approaches for segment duration modelling and many factors influencing the segmental 

duration have been studied in the literature (Bellegarda et al., 2001; Crystal and House, 1988; Edwards 

and Beckman, 1988; Riley, 1992; Shih and Ao, 1997; van Santen, 1994). The features related to these 

factors can be extracted from several levels of linguistic information, such as the phonetic, the 
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morphological and the syntactic level. With respect to the way duration models are built, the duration 

prediction approaches can be divided in two major categories: the rule-based (Klatt, 1976) and the data-

driven methods (Campbell, 1992; Chen et al., 1998; Lazaridis et al., 2007; Monkowski et al., 1995; 

Rao and Yegnanarayana, 2005; Riley, 1992; Takeda et al., 1989; van Santen, 1992). 

The rule-based methods use manually produced rules, extracted from experimental studies on large 

sets of utterances, or based on previous knowledge. The extraction of these rules requires labour of 

expert phoneticians. In the most prominent attempt in the rule-based duration modelling category, 

proposed by Klatt (1976), rules which were derived by analyzing a phonetically balanced set of 

sentences, were used in order to predict segmental duration. These rules were based on linguistic 

information such as positional and prosodic factors. Initially a set of intrinsic (starting) values was 

assigned on each phone which was modified each time according to the extracted rules. Models of this 

type and similar to this were developed in many languages such as French (Bartkova and Sorin, 1987), 

Swedish (Carlson and Granstrom, 1986), German (Kohler, 1988) and Greek (Epitropakis et al., 1993; 

Yiourgalis and Kokkinakis, 1996), as well as in several dialects such as American English (Allen et al., 

1987; Olive and Liberman, 1985) and Brazilian Portuguese (Simoes, 1990). The main disadvantage of 

the rule-based approaches is the difficulty to represent and tune manually all the linguistic factors, such 

as the phonetic, the morphological and the syntactic ones, which influence the segmental duration in 

speech. As a result, it is very difficult to collect all the appropriate (or even enough) rules without long-

term devotion to this task (Klatt, 1987). Consequently the rule-based duration models are restricted to 

controlled experiments, where only a limited number of contextual factors are involved in order to be 

able to deduce the interaction among these factors and extract the corresponding rules (Rao and 

Yegnanarayana, 2007). 

Data-driven methods for the task of phone duration modelling were developed after the 

construction of large databases (Kominek and Black, 2003). Data-driven approaches overcame the 

problem of the extraction of manual rules by employing either statistical methods or artificial neural 

network (ANN) based techniques which automatically produce phonetic rules and construct duration 

models from large speech corpora. Their main advantage is that this process is automated and thus 

significantly reduces the efforts that have to be spent by phoneticians. 

Several machine learning methods have been used in the phone duration modelling task. The linear 

regression (LR) (Takeda et al., 1989) models are based on the assumption that among the features 



  

 4 

which affect the segmental duration there is linear independency. These models achieve reliable 

predictions even with small amount of training data but do not model the dependency among the 

features. On the other hand, decision tree models (Monkowski et al., 1995) and in particular 

classification and regression tree (CART) models (Riley, 1992), which are based on binary splitting of 

the feature space, can represent the dependencies among the features but cannot insert constraints of 

linear independency for reliable predictions (Iwahashi and Sagisaka, 2000). Another technique which 

has been used on the phone duration modelling task is the sums-of-products (SOP), where the segment 

duration prediction is based on a sum of factors and their product terms that affect the duration (van 

Santen, (1992, 1994)). The advantage of these models is that they can be trained with a small amount 

of data. Bayesian networks models have also been introduced on the phone duration prediction task. 

These models incorporate a straightforward representation of the problem domain information and 

despite their time consuming training phase, they can make accurate predictions even when unknown 

values come across in some features (Goubanova and King, 2008; Goubanova and Taylor, 2000). 

Furthermore, instance-based algorithms (Lazaridis et al. 2007) have been used in phone duration 

modelling. In instance-based approaches the training data are stored and a distance function is 

employed during the prediction phase in order to determine which member of the training set is closer 

to the test instance and predict the phone duration. In a recent study (Yamagishi et al., 2008), the 

gradient tree boosting (GTB) (Friedman, 2001; Friedman, 2002) approach was proposed for the phone 

duration modelling task as an alternative to the conventional approach using regression trees. The GTB 

algorithm is a meta-algorithm which is based on the construction of multiple regression trees and 

consequently taking advantage of them. 

On the task of syllable duration modelling various neural networks have been used, including 

feedforward neural networks (Campbell, 1992; Rao and Yegnanarayana, 2007) and recurrent neural 

networks (RNN) (Chen et al., 1998). Furthermore, in the case of syllable duration prediction the SVM 

regression model has been used in order to perform the function estimation from the training instances 

using non-linear mapping of the data onto a high-dimensional feature space (Rao and Yegnanarayana, 

2005). Iwahashi and Sagisaka (2000) proposed a scheme for statistical modelling of prosody control in 

speech synthesis. It is based on a combination of regression trees and linear regression models. It offers 

a mechanism for evading the disadvantages inherent to one algorithm by benefiting from the 
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advantages provided by another algorithm. This can be explained by the observation that different 

algorithms perform better in different conditions. 

As a result, the task of phone duration modelling based on the data-driven approaches gives the 

ability to overcome the time consuming labour of the manual extraction of the rules which are needed 

in the rule-based approaches. However, as shown by van Santen and Olive (1990), these methods are 

not always satisfactory for the task of phone duration prediction. 

All previous studies on phone and syllable duration modelling are restricted to the use of a single 

linear or non-linear regression algorithm. The only exception to this trend is the work of Iwahashi and 

Sagisaka (2000), where a hierarchical structure for syllable duration prediction using the outputs of a 

phone duration model was used. However, this structure is restricted to the post-processing of a single 

duration prediction model, and no extension to a parallel regression fusion of the duration predictions 

of multiple models has been studied. 

In the present work, aiming at improving the accuracy of the prediction of the segmental durations 

(here phone durations), we propose a fusion scheme based on the use of multiple dissimilar phone 

duration predictors which operate on a common input, and whose predictions are combined using a 

regression fusion method. The proposed scheme is based on the observation that predictors 

implemented with different machine learning algorithms perform differently in dissimilar conditions. 

Hence, we suppose that an appropriate combination of their outputs could result in a new set of more 

precise phone duration predictions. Thus, an appropriate fusion scheme that can learn how to combine 

the outputs of a number of individual predictors in a beneficial manner, will contribute to the reduction 

of the overall prediction error, when compared to the error of each individual predictor. 

Based on this assumption, we investigate various implementations of the proposed fusion scheme 

and study its accuracy for duration prediction on different levels of granularity: vowels/consonants, 

phonetic category and individual phones. In this connection, initially, we investigate the performance 

of eight linear and non-linear regression algorithms, five of them already examined in previous studies 

(Iwahashi and Sagisaka, 2000; Lee and Oh, 1999; Riley, 1992; Takeda et al., 1989; Yamagishi et al., 

2008) as individual predictors. These are based on linear regression and decision trees – model trees, 

regression trees and pruning decision trees. Furthermore, another two of them– the meta-learning 

algorithms, additive regression and bagging, using REPTrees as base classifier –are modifications of 

algorithms that were already studied in the phone duration prediction task (Yamagishi et al., 2008), and 
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finally, the support vector regression (SVR) algorithm, which to our best knowledge has not yet been 

employed on the phone duration prediction task. Next, the durations predicted by the individual 

duration models are fed as inputs to a machine learning algorithm referred to as fusion model, which 

uses these predictions and produces the final phone duration prediction. For the purpose of fusion, we 

evaluate twelve different (linear and non-linear) regression fusion techniques, which are the linear 

regression, decision trees, support vector regression, neural networks, meta-learning and lazy-learning 

algorithms, and finally average linear combination and best-case fusion. 

The present study was inspired by the work of Kominek and Black (2004), where a family of 

acoustic models, providing multiple estimates for each boundary point, was used for segmenting a 

speech database, creating synthetic speech of higher quality using a corpus-based unit selection TTS 

system. This approach was found more robust than a single estimate, since by taking consensus values 

large labelling errors are less prevalent in the synthesis catalogue, which improves the resulting 

synthetic speech. To the extent of our knowledge, a parallel regression fusion of individual models has 

not yet been studied on the phone duration prediction or on the syllable duration prediction tasks. 

Furthermore, although SVR models have been used for syllable duration prediction (Rao and 

Yegnanarayana, 2005), to this end, they have not been employed on the phone duration prediction task. 

The remainder of this article is organized as follows. In Section 2 we outline the proposed fusion 

scheme. In Section 3 we briefly outline the individual phone duration modelling algorithms, the 

algorithms used in the fusion scheme, the speech databases and the experimental setup used in the 

evaluation. The experimental results are presented and discussed in Section 4 and finally this work is 

concluded in Section 5. 

 

2. FUSION SCHEME FOR DURATION MODELLING AND PREDICTION 

Phone duration modelling, which mainly relies on regression algorithms, suffers from specific types of 

errors. The most commonly occurring type of error is the bias (systematic) error (Freedman et al., 

2007). This error is a constant shift of the predicted phone durations from the real ones and can be 

estimated as the difference between the real and predicted mean durations. Other prediction errors that 

may occur in the phone duration modelling task are small miss-predictions and gross errors (outliers) 

(Freedman et al., 2007). Small miss-predictions in phone duration, i.e. less than 20 milliseconds, apart 

from the cases of short-duration phones such as schwas and flaps, do not significantly affect the quality 
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of the synthetic speech signal. However, larger than 20 ms errors have been reported to degrade the 

quality of synthetic speech (Wang et al., 2004). Here, we assume that an appropriate combination of the 

predictions of a number of dissimilar phone duration prediction models will improve the overall phone 

duration prediction accuracy. This is because different phone duration models will err in a dissimilar 

manner, and the fusion of their outputs, through a machine learning technique, would be able to learn 

and compensate some of these errors. Especially, we suppose that such a fusion scheme, apart from 

improving the overall accuracy of duration prediction, will be able to reduce the amount of gross errors. 

In Fig. 1, we present the block diagram of the proposed fusion scheme, which relies on the 

combination of predictions that are produced by multiple dissimilar phone duration models, which 

operate on a common input. As the figure presents, the predictions of the individual models are 

introduced into the fusion stage, where a machine learning algorithm uses them for obtaining more 

precise phone duration predictions. The training and the operational phases of the proposed fusion 

scheme is discussed in the following subsections. 

___________________________ 

Figure 1 

____________________________ 

 

2.1 Training of the fusion scheme 

The training of the proposed fusion scheme is an off-line two-step procedure, which relies on two non-

overlapping datasets: the training and the development data. The training process can be summarized 

concisely as follows. During the first training step, the individual phone duration models are created 

using the training dataset. Subsequently, at the second step, these models are employed to process the 

development dataset. The outcome of this processing is a set of predictions, which together with the 

ground truth labels (manually annotated tags) serve as input for training the adjustable parameters of 

the fusion algorithm. This procedure can be formalized as follows: 

Let us define a set of N individual phone duration prediction models, DMn, with 1�n�N. The input 

feature vector, p
jX , for the jth instance (1�j�J) of the phone p, which is used for training the N 

individual phone duration models, DMn, is defined as: 

[ ]1 2, ,..., ,..., Tp
j m MX θ θ θ θ= , j=1,2,…,J,   (1) 



  

 8 

where MX ∈�  (�  is the feature space) and �m is the mth feature (1�m�M) of the feature vector p
jX . 

Once the individual duration models are trained, they are fed with the development dataset. The 

outcome of its processing is the set of phone duration predictions, ,p n
jy , of the nth duration model for 

the jth instance of the phone p, to be predicted: 

, ( ),p n p p
j DMn jy f X=  j=1,2,…,J,   (2) 

where ,p n N
jy ∈� . The vector, p

jY , formed by appending the individual phone duration predictions, 

, ,p n
jy  is 

{ }, ,
j

Tp p n
jY y=  j=1,2,…,J,   (3) 

where 1�n�N, for the jth instance of the phone p, together with the ground truth labels, are used in the 

training of the fusion algorithm. Once the fusion stage is trained, the proposed composite phone 

duration modelling scheme, shown in Fig. 1, is ready for operation. 

 

2.2 Operation of the fusion scheme 

In the operational mode, the input vector, p
jX , for the jth instance of the phone p of the test dataset, 

appears as input to the N individual phone duration prediction models, DMn, with 1�n�N (refer to 

Fig.1). Their outputs, ,p n
jy , as computed in eq. 2, form the vector of predictions p

jY , which serves as 

input for the fusion stage. At the fusion stage the vector p
jY  is processed by the fusion algorithm, 

which computes the final phone duration prediction for the jth instance as: 

( )
j

p p p
jO g Y= , j=1,2,…,J,    (4) 

with p
jO ∈� . 

The fusion of multiple different predictions is expected to contribute to the reduction of the types of 

errors described above (first paragraph in section 2), and consequently to contribute to the decrease of 

the overall error rate. This expectation is based on the observation that different predictors, which rely 

on different machine learning algorithms, err in a dissimilar manner. Employing an appropriate fusion 

scheme, which is capable to learn the proper mapping between a set of noisy predictions and the true 

phone duration values, could turn out beneficial in terms of improved accuracy. 
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3. EXPERIMENTAL SETUP 

To investigate the practical usefulness of the proposed approach, we trained several individual phone 

duration models, and then employed them in the fusion scheme described in Section 2. The various 

individual phone duration models and the fusion algorithms involved in the phone duration prediction 

fusion scheme, as well as the speech databases used in the experiments and the experimental protocol 

that was followed, are described in the following subsections. 

 

3.1 Individual phone duration models  

In the present work we consider eight different machine learning algorithms for phone duration 

modelling, the outputs of which are then fed to the fusion model. These algorithms are well known and 

have successfully been used over the years, in different modelling tasks. One exception is the support 

vector regression (SVR) based modelling, which to this end has not been employed on the phone 

duration modelling task. In brief, the eight individual phone duration modelling algorithms that we 

consider here are:  

(i) the linear regression (LR) (Witten and Frank, 1999) using Akaike’s Information Criterion (AIC) 

(Akaike, 1974) in backward stepwise selection (BSS) (Kohavi and John, 1997) procedure 

eliminating unnecessary variables of the training data,  

(ii)  the m5p model tree, using a linear regression function on each leaf, and the m5pR regression 

tree, using a constant value on each leaf node instead (Quinlan, 1992; Wang and Witten, 1997). 

(iii) two additive regression algorithms (Friedman, 2002) and two bagging algorithms (Breiman, 

1996) were used, by using two different regression trees (m5pR and REPTrees) (Kaariainen and 

Malinen, 2004; Quinlan, 1992; Wang and Witten, 1997) as base classifiers in each case. The 

latter four algorithms are meta-learning algorithms (Vilalta and Drissi, 2002) using regression 

trees as base classifiers. 

During the training process, the additive regression algorithm builds a regression tree in each 

iteration, using the residuals of the previous tree as training data. The regression trees are 

combined together creating the final prediction function. In these two cases of additive 

regression meta-classification, the shrinkage parameter, �, indicating the learning rate, was set 

equal to 0.5 and the number of the regression trees, rt-num, was set equal to ten. These values 
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were selected after grid-search experiments (�={0.1, 0.3, 0.5, 0.7, 0.9}, rt-num={5, 10, 15, 20}) 

on a randomly selected subset of the training data, of size approximately equal to 20% of the 

size of the training set. 

In the bagging algorithm, the dataset was split in multiple subsets using a regression tree for 

each of them. The final prediction value is the average of the values predicted from each 

regression tree. In a similar manner, the number of the regression trees (rt-num) was set equal to 

ten after a number of grid-search experiments (rt-num={5, 10, 15, 20}) on the randomly selected 

subset of the training data mentioned above. 

(iv) Finally, the support vector regression (SVR) model (Platt, 1999), which employs the 

sequential minimal optimization (SMO) algorithm for training a support vector classifier (Smola 

and Scholkopf, 1998), was used. Many kernel functions have been used in SVR such as the 

polynomial, the radial basis function (RBF) and the Gaussian functions (Scholkopf and Smola, 

2002). In our experiments the RBF kernel was used as mapping function. The � and C 

parameters, where 0ε ≥  is the maximum deviation allowed during training and 0C >  is the 

penalty parameter for exceeding the allowed deviation, were set equal to 10-3 and 10-1 

respectively. This was done after a grid search (�={10-1, 10-2, …, 10-5}, C={0.05, 0.1, 0.3, 0.5, 

0.7, 1.0, 10, 100}) on the randomly selected subset of the training data mentioned above. 

Our motivation to select these algorithms was based on previous research (Iwahashi and Sagisaka, 

2000; Lee and Oh, 1999; Riley, 1992; Takeda et al., 1989; Yamagishi et al., 2008), where these 

algorithms were reported successful on the segmental duration modelling task. Along with the phone 

duration prediction task, many of these algorithms have also been used in syllable duration prediction 

task, supporting different languages and databases (cf. supra Section 1). 

 

3.2 Fusion algorithms 

The outputs of the eight individual duration models, outlined in Section 3.1, serve as the input for the 

fusion stage, which combines and disambiguates their predictions (refer to Fig. 1). The fusion stage can 

be implemented through different linear or nonlinear machine learning techniques. In this work in order 

to select the most advantageous fusion method, we evaluate twelve different algorithms for numerical 

prediction. These include the eight algorithms outlined in Section 3.1, as well as (i) the radial basis 

function neural network (RBFNN) with Gaussian kernel (Park and Sandberg, 1993), (ii) the instance-
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based algorithm (IBK) (Aha and Kibler, 1991), which is a k-nearest neighbours classifier, (iii) the 

average linear combination, where the mean value of all individual prediction estimations of the first 

stage duration models is regarded as the final phone duration prediction value, and (iv) the best-case 

selection method, where for each instance the best prediction is selected among the predictions of all 

first-stage individual phone duration models. The selection of the best duration model per instance can 

be performed for different categories of clusters, such as voiced/unvoiced, vowels/consonants, phonetic 

category, individual phones, diphones and triphones. The last two methods, namely the average linear 

combination and the best case selection are well-known fusion schemes, and therefore in the present 

study they serve as intuitive reference points. In all the implementations listed above, the fusion 

method takes as input the predictions of the individual phone duration models, ,p n
jy , obtained at the 

first stage and combines them for obtaining the final prediction ( )p p
j jO X . 

The functioning of the first eight machine learning techniques was already outlined in Section 3.1, 

therefore here we focus on the other four techniques. In the case of RBFNN, the k-means algorithm is 

used as a first step in the training process, for the estimation of the centres of the radial basis units in 

the hidden layer on the network. The outputs of the hidden layers are combined with linear regression. 

The number of clusters (num-cl) for the k-means to generate and the minimum standard deviation (cl-

std) for the clusters were set equal to 135 and 10-2 respectively. These parameters were determined 

after a grid search (num-cl={5,10, …, 200}, cl-std={0.001, 0.01, 0.1, 0.5}) on a randomly selected 

subset of the training set, consisting of approximately 20% of the set. 

In the case of IBK a linear nearest neighbours search algorithm was used, employing the Euclidean 

distance as a distance function. Leave-one-out cross-validation was used to select the best value for k, 

under the restriction, k�35, i.e. an upper limit of 35 nearest neighbours. The predictions from the k 

nearest neighbours were weighted according to the inverse distance. 

In the best-case selection fusion scheme, we relied on the root mean square error (RMSE) of each 

phone prediction algorithm over the development data as the criterion for the selection of the best 

model for each case (Chen et al., 1998; Goubanova and King, 2008; Yamagishi et al., 2008). 

Specifically, the duration model prediction with the lowest RMSE for the cluster (vowels/consonants, 

phonetic category and individual phones) of each instance was selected. 
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3.3 Databases and feature set 

In the evaluation experiments we used two databases: the American-English speech database CSTR US 

KED TIMIT (CSTR, 2001) and the Modern Greek speech prosodic database, WCL-1 (Zervas et al., 

2008). KED TIMIT consists of 453 phonetically balanced sentences (3400 words approximately) 

uttered by a Native American male speaker. The WCL-1 prosodic database consists of 5500 words 

distributed in 500 paragraphs, each one of which may be a single word, a short sentence, a long 

sentence, or a sequence of sentences uttered by a female professional radio actress. The final corpus 

includes 390 declarative sentences, 44 exclamation sentences, 36 decision questions and 24 “wh” 

questions. 

For the experiments on the KED TIMIT database, we adopted the phone set provided with the 

database (CSTR, 2001) which consists of 44 phones. For the experiments using the WCL-1 database 

we adopted the phone set provided with the database (Zervas et al., 2008) consisting of 34 phones. In 

all experiments, the manually labelled phone durations were used as the ground truth (reference) 

durations. In this work, a number of features, which have been reported successful in the literature 

(Crystal and House, 1988; Campbell, 1992; Klatt, 1987; Goubanova and King, 2008; Riley, 1992; van 

Santen, 1994), are considered for the task of phone duration modelling. From each utterance we 

computed 33 features, and for some of them we also used their temporal neighbours, defined on the 

level of the respective feature, i.e. phone-level, syllable-level, word-level. These features are 

summarized in the following: 

(i) eight phonetic features: the phone class (consonants/non-consonants), the phone types (vowels, 

diphthongs, schwa, consonants), the vowel height (high, mid or low), the vowel frontness (front, 

central or back), the lip rounding (rounded/unrounded), the manner of production (plosive, 

fricative, affricate, approximant, lateral, nasal), the place of articulation (labial, labio-dental, 

dental, alveolar, palatal, velar, glottal), the consonant voicing. Along with the aforementioned 

features, which concern each current instance, the two previous and the two next instances 

(temporal context information) were also used, 

(ii) three segment-level features: the phone name with the temporal context information of the 

neighbouring instances (previous, next), the position of the phone in the syllable and the onset-

coda type (if the specific phone is before or after the vowel in the syllable). 
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(iii) thirteen syllable-level features: the position type of the syllable in the word (single, initial, 

middle or final) with the temporal context information of the neighbouring instances (previous, 

next), the number of all the syllables in the word, the number of the accented syllables and the 

number of the stressed syllables since the last and to the next phrase break (i.e. the break index 

tier of ToBI with values, 0, 1, 2, 3, 4,) (cf. below, item (v)), syllable’s onset-coda size (the 

number of phones before and after the vowel of the syllable) with the temporal context 

information of previous and next instances, the onset-coda type (if the consonant before and 

after the vowel in the syllable is voiced or unvoiced) with the temporal context information of 

previous and next instances, the position of the syllable in the word and the onset-coda 

consonant type (the manner of production of the consonant before and after the vowel in the 

syllable). 

(iv) two word-level features: the part-of-speech (noun, verb, adjective, etc) and the number of 

syllables of the word. 

(v) one phrase-level feature: the syllable break (i.e. the phrase break after the syllable) with the 

temporal context information of the neighbouring (two previous, two next) instances. The 

syllable break feature is implemented based on the break index tier of ToBI (0, 1, 2, 3, 4). The 

break index specifies an inventory of numbers expressing the strength of a prosodic juncture. 

The prosodic association of words is shown using the break index tier, by labelling the end of 

each word for the subjective strength of its association with the next word on a scale from 0 

(strongest perceived conjoining) to 4 (most disjoint), defined as follows (Beckman and Ayers, 

1994; Silverman et al., 1992; Huang et al., 2001): 

a. 0 for cases of clear phonetic marks of clitic groups, 

b. 1 most phrase-medial word boundaries, 

c. 2 a strong disjuncture marked by a pause or virtual pause, but with no tonal marks; i.e. 

a well-formed tune continues across the juncture or a disjuncture that is weaker than 

expected at what is tonally a clear intermediate or full intonation phrase boundary, 

d. 3 intermediate intonation phrase boundary; i.e. marked by a single phrase tone 

affecting the region from the last pitch accent to the boundary, 

e. 4 full intonation phrase boundary; i.e. marked by a final boundary tone after the last 

phrase tone. 
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(vi) six accentual features: the ToBI accents and boundary tones with the temporal context 

information of the neighbouring (previous, next) instances, the last-next accent (the number of 

the syllables since the last and to the next accented syllable) and we also included the stressed-

unstressed syllable feature (if the syllable is stressed or not) and the accented-unaccented 

syllable feature (if the syllable is accented or not) with the temporal context information of the 

neighbouring (two previous, two next) instances. 

The overall size of the feature vector, which was used for the individual phone duration models, 

including the aforementioned features and their temporal context information as reported above (one or 

two previous and next instances on the level of the respective feature, phone-level, syllable-level, 

word-level) is 93. 

In all experiments we followed an experimental protocol based on 10-fold cross-validation. 

Specifically, in each fold the training data were split in two portions, the training dataset and the 

development dataset. The former, amounting to approximately 60% of the full dataset, was used for the 

training of the individual phone duration predictors, and the latter, amounting to approximately 30% of 

the full dataset, for the training of the fusion algorithm. Furthermore, the test dataset, amounting to 

approximately 10% of the full dataset, was used for evaluating the performance of the eight individual 

duration prediction algorithms, as well as the performance of the fusion scheme. 

 

3.4 Performance metrics 

The experimental results were evaluated using the two most commonly used figures of merit, namely 

the mean absolute error (MAE) and the root mean squared error (RMSE), between the predicted 

duration and the actual (reference) duration of each phone (Chen et al., 1998; Goubanova and King, 

2008; van Santen, 1992; Yamagishi et al., 2008). Due to the squaring of values in the RMSE, large 

errors (outliers) are weighted heavily, which makes this figure of metric more sensitive to outliers than 

the MAE (Witten and Frank, 1999). This sensitivity of the RMSE makes it a more illustrative 

measurement concerning the outliers, e.g. the gross errors, in comparison to the MAE. 

 
4. EXPERIMENTAL RESULTS 

In the present work, we consider clustering of the instances on the basis of (i) vowels/consonants 

categorization, (ii) phonetic categories and (iii) individual phones. This offers different degree of detail 

and allows us to gain insights about the advantages and disadvantages of each algorithm. The same 
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clustering of the instances is used in the best-case selection fusion model. In this fusion model, as 

mentioned in Section 3.2, the criterion for the selection of the best model for each case is the RMSE of 

each phone duration prediction algorithm over the development data, as in Chen et al. (1998), 

Goubanova and King (2008) and Yamagishi et al. (2008). Specifically, the phone duration model 

prediction with the lowest RMSE per cluster (vowels/consonants, phonetic categories, individual 

phone) of each instance is selected. 

 

4.1 Duration prediction with individual phone duration models  

As a first step we examined the performance of the eight individual algorithms on both databases using 

the entire feature set described in Section 3. The RMSE, the MAE and the standard deviation of the 

absolute error (STD of AE) for all individual algorithms specified in Section 3.1 are shown in Table 1, 

where Table 1 (a) presents the results obtained on KED TIMIT and Table 1 (b) the ones on the WCL-1 

database. The results of the best performing model, among the eight individual prediction models, are 

in bold. As can be seen, on both databases, the proposed support vector regression (SMOreg) model, 

implemented with the SMO regression algorithm, outperforms all the other models. Specifically, on the 

KED TIMIT database the SMOreg model outperformed the second-best model, i.e. the meta-classifier 

additive regression using m5pR model, by approximately 5.5% and 3.7% in terms of MAE and RMSE 

respectively. On the WCL-1 database the SMOreg model outperformed the second-best model, i.e. the 

Linear Regression model, by approximately 6.8% and 3.7% in terms of MAE and RMSE respectively. 

This advantage of the SMOreg models, on both databases, is owed to the advantage of SVMs to cope 

better with high-dimensional feature spaces (Vapnik, 1995; Vapnik, 1998), when compared to the other 

classification and regression algorithms. 

 

Table 1 (a) 

 

Table1 (b) 

 

In Table 2 we present the performance per phonetic category as well as for the vowel/consonant 

categorization of the eight individual phone duration models, implemented by different algorithms, on 

the KED TIMIT (Table 2 (a)) and the WCL-1 (Table 2 (b)) databases. As can be seen, the SMOreg 
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model demonstrates the lowest RMSE on both databases, in all cases except for the Affricates on KED 

TIMIT, where the lowest RMSE is observed for the REPTrees and the SMOreg achieves the second-

best performance. 

 

Table 2 (a) 

 

Table 2 (b) 

 

In Table 3 the phone duration prediction results obtained on the level of individual phones are 

presented. Specifically, Table 3 (a) shows the RMSE for the 44 phone set of the KED TIMIT database 

and Table 3 (b) for the 34 phone set of the WCL-1 database. The results for the best performing 

algorithm are in bold. As shown in the tables, despite the fact that the SMOreg model demonstrates the 

highest overall performance on both databases (refer to Table 1), in one phonetic category (Affricates 

in Table 2 (a)) and in some particular phones, such as ch, ay, etc (Table 3), other models offer a higher 

phone duration prediction accuracy. For instance, on the KED TIMIT database, the highest accuracy 

for the phone ch is observed for the Linear Regression model, while for the phone ay the highest 

accuracy is for the m5p model (refer to Table 3 (a)). These specific results, and other similar cases 

shown in the Table 3, are in support of our observation that different algorithms perform better in 

different phonetic categories and phones. This indicates that an appropriate fusion of the outputs of the 

individual phone duration prediction models could be beneficial for reducing the overall error rate. 

Experimental results for various implementations of the fusion stage are presented in Section 4.2. 

 

Table 3 (a) 

 

Table 3 (b) 

 

4.2 Duration prediction with the proposed fusion scheme 

In the following, we report the evaluation results for the twelve fusion algorithms outlined in Section 

3.2. In Table 4, we present the results obtained in the evaluation of the average linear combination and 

the best-case selection techniques for different cases: overall performance, vowel/consonant categories, 
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phonetic categories and individual phones. The results for the best individual phone duration prediction 

model (SMOreg) are duplicated from Table 1 for the purpose of direct comparison. We consider the 

average and the best-case selection techniques as intuitive reference points against which the 

performance of the other ten fusion algorithms, evaluated here, is compared. As can be seen in Table 4 

(a), for KED TIMIT, and in Table 4 (b), for the WCL-1 database, in the cases of vowel/consonant 

categories and phonetic categories the best-case selection algorithm did not offer advantage over the 

best individual model, SMOreg, since the SMOreg outperforms the other individual predictors in all 

categories (Table 2). As discussed above the only exception is Affricates on KED TIMIT, where the 

additive regression with REPTrees algorithm is the best, but is not sufficient for significant advantage 

of the fusion scheme. 

Concerning the clustering according to individual phones, the best-case selection method slightly 

outperformed the best individual duration model on both databases. In detail, the best-case selection 

outperformed the SMOreg model by approximately 0.2% and 0.9% in terms of MAE and RMSE on the 

KED TIMIT database, and by approximately 0.6% and 0.5% on the WCL-1 database. As can be seen 

in Table 3, this is owed to the fact that, for both databases, in approximately 35-40% of the phones the 

best performing algorithm is not the SMOreg. Consequently, the best-case selection fusion scheme 

outperforms the best individual phone duration prediction model (SMOreg). 

 

Table 4 (a) 

 

Table 4 (b) 

 

In Table 5, we present results for the remaining ten fusion algorithms (refer to Section 3.2): the 

Linear Regression, the m5p model tree, the m5pR regression tree, the additive regression algorithms 

based on m5pR and REPTrees, the bagging algorithms based on m5pR and REPTree, the instance 

based learning (IBK), the support vector regression (SVR) which implements the sequential minimal 

optimization (SMO) algorithm, and the radial basis function neural network (RBFNN). The best fusion 

result is shown in bold. For the reason of comparison, in Table 5 we duplicate the results for the best 

individual phone duration model, SMOreg. As can be seen from the results on the KED TIMIT (Table 

5 (a)) and the WCL-1 (Table 5 (b)) databases, the SMOreg fusion model outperformed all the other 
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fusion models that were evaluated here. It is also noteworthy to mention that only the SMOreg fusion 

model outperformed the best individual duration prediction model. Specifically, the SMOreg fusion 

model outperformed the individual SMOreg predictor by approximately 1.9% and 2.0% in terms of 

MAE and RMSE on KED TIMIT, and by approximately 2.6% and 1.8% on the WCL-1 database, 

respectively. Furthermore, we should point out that the SMOreg fusion model apart from reducing the 

overall error also reduced the outliers. Specifically, in comparison to the best individual predictor, i.e. 

the SMOreg model, the SMOreg fusion model reduced the standard deviation of the absolute error 

(STD of AE), by approximately 2.1% on KED TIMIT and by approximately 1.2% on the WCL-1 

database, respectively. 

 

Table 5 (a) 

 

Table 5 (b) 

 

Finally, in order to investigate the statistical significance of the difference between the results for 

the best individual phone duration model (SMOreg) and the results for the best fusion scheme (fusion 

with SMOreg algorithm) the Wilcoxon test (Wilcoxon, 1945) was carried out. The Wilcoxon test 

showed that on both databases, the difference between the results for the best individual model and 

these for the fusion scheme is statistically significant. Specifically, for a significance level of 0.05 the 

Wilcoxon test estimated a p-value equal to 5.77e-09 and 3.5e-11 on KED TIMIT and WCL-1 databases, 

respectively. Consequently, the fusion scheme contributes to the improvement of the accuracy of phone 

duration prediction, in comparison to best predictor among all evaluated individual phone duration 

prediction models. 

 

5. SUMMARY AND CONCLUSIONS 

In this work we studied the accuracy of various machine learning algorithms on the task of phone 

duration modelling. The experimental results showed that on this task, Support Vector Machines 

(SVM), as a regression model, outperforms various other machine learning techniques. Specifically, in 

terms of relative decrease of the mean absolute error and root mean square error, the SMO regression 
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model outperformed the second-best model by approximately 5.5% and 3.7% on KED TIMIT, and by 

approximately 6.8% and 3.7% on the WCL-1 database, respectively. 

Furthermore, the proposed fusion scheme, which combines predictions from multiple individual 

phone duration models, operating on a common input, takes advantage of the observation that different 

prediction algorithms perform better in different situations. The experimental validation demonstrated 

that the fusion scheme improves the accuracy of phone duration prediction. The SVM-based fusion 

algorithm was found to outperform all other fusion techniques. Specifically, the fusion scheme based 

on the SVM regression algorithm outperformed the best individual predictor (SVM regression) by 

approximately 1.9% and 2.0% in terms of relative reduction of the mean absolute error and root mean 

square error respectively, on the KED TIMIT database, and by 2.6% and 1.8% on the WCL-1 database, 

respectively. 
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Fig. 1.  Block diagram of the proposed fusion scheme, which exploits multiple 

dissimilar phone duration predictors, operating on a common input. 
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Table 1.  Mean Absolute Error (MAE), standard deviation of absolute error (STD of AE) and 
Root Mean Square Error (RMSE) (in milliseconds) for the eight individual phone 
duration prediction algorithms on: (a) the KED TIMIT database, and (b) the WCL-1 
database. 

(a) results on the KED TIMIT database 

Individual models (KED TIMIT database) MAE (ms) STD of AE (ms) RMSE (ms) 

SMOreg 14.95 14.11 20.56 

Add. Reg. m5pR (Yamagishi et al., 2008) 15.82 14.34 21.35 

Add. Reg. REPTrees 16.29 15.06 22.19 

Bagging m5pR (Lee and Oh, 1999) 16.51 14.76 22.14 

m5p (Iwahashi and Sagisaka, 2000) 16.62 14.77 22.23 

Bagging REPTrees 16.69 15.89 23.04 

m5pR (Riley, 1992) 16.93 15.16 22.72 

Linear Regression (Takeda et al., 1989) 17.15 15.16 22.89 
 

(b) results on the WCL-1 database 
 

Individual models (WCL-1 database) MAE (ms) STD of AE (ms) RMSE (ms) 

SMOreg 16.78 18.81 25.21 

Linear Regression (Takeda et al., 1989) 18.00 19.02 26.19 

Add. Reg. REPTrees 18.08 19.97 26.94 

Add. Reg. m5pR (Yamagishi et al., 2008) 18.13 19.16 26.38 

Bagging m5pR (Lee and Oh, 1999) 18.14 19.63 26.72 

m5p (Iwahashi and Sagisaka, 2000) 18.31 20.08 27.17 

Bagging REPTrees 18.93 20.32 27.77 

m5pR (Riley, 1992)  19.07 20.10 27.71 
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Table 2. Root Mean Square Error (in milliseconds) per phonetic category for the eight individual phone 
duration prediction algorithms on: (a) the KED TIMIT database, and (b) the WCL-1 database. 

(a) results on the KED TIMIT database 

Additive Regression Bagging KED TIMIT 
database LR m5p m5pR 

m5pR REPTrees m5pR REPTrees 
SMOreg 

Vowel 24.56 24.18 25.46 23.67 24.87 24.78 26.34 22.72 

Consonant 21.72 20.86 20.74 19.69 20.24 20.24 20.60 19.02 

Additive Regression Bagging 
Phonetic category  LR m5p m5pR 

m5pR REPTrees m5pR REPTrees 
SMOreg 

Vowel 24.56 24.18 25.46 23.67 24.87 24.78 26.34 22.72 
Affricate 22.44 24.41 23.48 22.86 21.72 22.96 23.34 21.88 

Approximant 22.23 22.44 23.09 21.77 22.56 22.59 24.07 20.42 
Fricative 22.51 21.67 21.10 20.19 20.69 20.63 20.96 19.63 

Lateral 21.16 20.98 21.18 20.29 21.16 20.52 21.89 19.77 

Nasal 18.59 17.88 17.80 17.11 16.94 17.28 17.57 16.53 

Plosive 23.39 22.07 21.62 20.26 20.97 21.04 20.80 19.61 

 
(b) results on the WCL-1 database 

Additive Regression Bagging 
WCL-1 database LR m5p m5pR 

m5pR REPTrees m5pR REPTrees 
SMOreg 

Vowel 24.22 24.68 26.04 24.51 25.18 24.91 26.62 23.12 

Consonant 27.86 29.25 29.13 27.97 28.44 28.27 28.77 26.57 

Additive Regression Bagging 
Phonetic category  LR m5p m5pR 

m5pR REPTrees m5pR REPTrees 
SMOreg 

Vowel 24.22 24.68 26.04 24.51 25.18 24.91 26.62 23.12 

Affricate 24.72 27.61 24.62 22.22 20.74 25.83 23.57 20.73 
Fricative 25.67 27.04 26.93 25.79 26.23 25.57 26.45 23.95 

Liquid 19.46 19.19 19.55 18.84 17.83 18.47 18.02 16.38 

Nasal 22.44 22.94 23.11 22.27 22.15 22.18 22.27 20.62 

Plosive 34.22 36.33 36.03 34.62 35.64 35.48 36.14 33.69 
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Table 3 (a).  Root Mean Square Error (in milliseconds) per phone for the eight individual phone duration 
prediction algorithms on the KED TIMIT database 

Additive Regression Bagging KED TIMIT 
database 

IPA 
Symbols LR m5p m5pR 

m5pR REPTrees m5pR REPTrees 
SMOreg 

aa � 27.81 25.57 28.01 24.57 27.27 26.71 29.22 25.64 

ae � 31.40 30.97 31.67 29.75 31.19 31.64 33.13 29.23 

ah � 19.67 22.34 22.27 20.31 21.50 20.88 22.27 19.38 

ao �� 32.79 29.21 32.95 30.54 32.11 32.66 33.29 29.65 

aw �� 33.46 32.89 37.35 34.55 38.49 37.25 40.02 33.07 

ax � 16.10 15.66 16.06 15.16 15.56 15.54 15.93 14.80 
ay �	 37.12 32.78 38.37 34.43 34.04 36.64 37.23 34.51 

b 
 23.89 22.36 23.42 22.24 23.03 22.52 21.19 21.33 

ch �� 19.69 23.34 21.17 20.48 20.43 19.89 22.36 20.57 

d 
 20.77 19.36 19.66 19.12 20.05 19.32 20.54 18.26 
dh � 17.56 16.03 15.72 15.19 14.57 15.16 15.30 15.14 

dx 
�� 11.08 10.38 11.30 9.99 8.78 9.54 8.86 9.63 

eh � 20.94 20.39 22.50 21.41 21.44 21.32 22.61 19.05 

el �� 21.39 27.24 21.52 20.79 18.98 19.97 21.05 22.32 

em �� 13.61 15.31 10.51 10.44 10.13 10.28 13.99 11.58 

en �� 22.26 24.60 25.01 23.18 20.67 22.44 21.80 21.01 

er �� 28.41 29.28 28.73 27.09 27.77 28.15 29.87 25.29 

ey �	 27.76 26.99 29.43 28.12 29.90 28.72 31.36 26.73 

f � 22.84 23.90 21.52 20.09 21.05 21.08 22.43 18.91 

g � 18.23 17.14 18.73 17.04 17.65 17.88 17.62 16.22 

hh � 19.13 18.79 18.82 18.52 18.73 18.28 18.73 17.54 

ih 	 19.38 19.76 20.16 19.09 19.81 19.82 20.86 17.53 
iy �� 23.04 23.06 23.87 22.05 24.93 23.27 25.39 20.99 

jh 
� 24.36 25.22 25.14 24.56 22.68 25.08 24.07 22.85 

k � 22.18 21.82 20.62 18.65 18.63 19.94 18.93 17.64 

l � 21.13 20.18 21.14 20.24 21.39 20.58 21.98 19.47 

m � 16.07 15.32 16.20 15.45 16.19 15.81 17.04 14.38 

n � 18.69 17.65 17.29 16.70 16.18 16.80 16.32 16.19 

ng � 22.38 20.86 20.13 19.90 20.88 20.61 22.41 20.91 

ow �� 28.12 28.98 28.93 27.20 28.85 27.73 30.68 25.54 

oy �	 25.45 30.16 34.58 28.81 30.61 33.13 34.72 31.19 

p � 25.06 24.90 22.50 21.05 21.32 21.94 21.25 20.45 

r  �� 19.20 18.84 20.18 19.28 20.11 19.92 21.18 18.25 
s ! 26.37 24.47 24.31 23.46 24.45 24.36 24.54 23.21 

sh � 19.71 21.72 19.28 18.30 20.53 18.49 20.27 16.41 

t � 28.18 25.60 25.06 23.64 25.14 24.72 24.93 23.37 
th " 24.09 26.39 29.14 25.58 21.31 25.21 22.59 22.05 

uh � 20.64 20.61 23.10 20.45 25.35 22.68 26.16 19.88 
uw #� 27.65 27.73 29.05 28.00 30.35 29.40 33.64 24.97 

v $ 17.26 17.31 16.72 16.93 17.15 16.66 17.34 16.26 

w % 20.28 20.09 22.35 19.81 20.93 20.89 22.59 19.12 
y & 18.36 19.08 18.85 18.80 19.42 19.22 20.56 16.34 

z ' 22.38 20.42 19.94 19.07 19.37 19.24 19.10 18.99 

zh � 25.60 28.40 25.25 22.62 26.38 23.95 27.28 24.66 
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Table 3 (b). Root Mean Square Error (in milliseconds) per phone for the eight individual phone duration prediction 
algorithms on the WCL-1 database 

Additive Regression Bagging 
WCL-1 database IPA 

Symbols LR m5p m5pR 
m5pR REPTrees m5pR REPTrees 

SMOreg 

a � 24.25 25.85 25.76 24.07 24.57 24.83 26.07 22.71 

b 
 21.05 24.66 24.41 21.84 22.05 22.33 22.53 20.20 

c ( 24.16 28.40 25.43 22.48 20.29 26.62 23.62 20.85 

D � 22.64 23.08 25.08 24.24 24.39 24.00 26.25 22.64 

d 
 19.33 20.40 23.54 21.01 21.44 21.39 24.61 20.10 

e � 25.05 25.11 26.69 25.62 26.79 25.71 26.48 24.05 

f � 30.13 34.11 30.41 29.95 33.13 29.50 31.94 29.56 

G ) 30.72 37.75 37.14 31.68 31.56 33.82 33.99 29.89 

g � 34.43 38.79 34.94 35.14 40.05 34.30 37.80 33.85 

h � 24.73 25.91 26.39 24.69 24.87 23.78 25.88 23.50 

i � 24.17 24.30 25.54 24.27 24.68 24.68 26.98 23.09 

j 
� 25.65 26.18 23.13 21.75 20.52 24.39 23.48 21.50 

K * 45.75 44.50 45.47 43.94 46.86 45.73 45.82 43.28 

k � 42.27 46.15 44.65 43.31 44.58 43.90 47.61 43.61 

ks �! 22.50 24.00 42.80 39.97 26.32 42.34 27.10 23.16 

L + 24.98 32.86 32.93 29.20 28.64 29.98 29.43 26.64 

l � 19.95 19.34 20.63 19.85 20.17 19.65 20.96 18.31 

m � 22.90 22.82 23.74 22.56 23.46 22.67 23.96 22.27 

N , 26.99 33.30 36.39 33.22 24.13 34.11 24.37 21.26 

n � 21.76 22.14 21.58 21.21 21.07 20.96 20.88 19.38 

o - 23.70 23.81 25.99 24.18 25.08 24.36 25.85 22.72 

p � 29.65 32.71 31.57 28.65 30.51 29.80 30.04 28.24 

Q " 23.08 25.82 25.22 23.49 24.99 23.82 26.83 23.85 

r �. 18.64 17.53 17.30 17.06 14.94 16.41 14.53 13.85 

s !. 26.93 27.65 27.28 26.10 24.75 25.47 25.11 23.49 

t �. 34.70 36.84 34.98 34.31 36.09 34.96 36.04 34.07 

u #. 23.24 22.63 27.51 24.78 25.11 25.37 29.45 23.12 

v $. 23.87 24.11 26.09 25.80 34.70 25.56 27.08 24.86 

w �!. 20.83 25.71 40.93 42.47 25.92 42.98 29.62 23.66 

X /. 22.75 24.38 26.33 24.45 23.44 25.03 25.95 21.44 

x 0. 20.33 24.82 26.45 23.35 21.87 24.98 25.06 21.58 

Y 1. 26.68 28.56 29.65 28.08 27.41 28.37 28.39 26.82 

y 2. 20.77 20.35 22.98 21.03 21.35 21.38 21.64 19.68 

z '. 23.05 22.38 23.31 22.64 23.13 22.98 24.68 21.58 
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Table 4.  Mean Absolute Error (MAE), standard deviation of absolute error (STD of AE) and 
Root Mean Square Error (RMSE) (in milliseconds) for the fusion scheme, 
implemented with the average linear combination and the best-case selection fusion 
algorithms on: (a) the KED TIMIT database, and (b) the WCL-1 database. 

(a) results on the KED TIMIT database 

Fusion algorithms on the KED TIMIT 
database MAE (ms) STD of AE (ms) RMSE (ms) 

Overall (average linear combination) 15.32 14.01 20.76 

Vowel/consonant (best-case selection) 14.95 14.11 20.56 

Phonetic category (best-case selection) 14.94 14.11 20.54 

Phone (best-case selection) 14.92 13.87 20.37 

No fusion – best individual model, SMOreg 14.95 14.11 20.56 

 
(b) results on the WCL-1 database 

Fusion algorithms on the WCL-1 database MAE (ms) STD of AE (ms) RMSE (ms) 

Overall (average linear combination)  16.91 18.72 25.29 

Vowel/consonant (best-case selection) 16.78 18.81 25.21 

Phonetic category (best-case selection) 16.78 18.81 25.21 

Phone (best-case selection) 16.68 18.65 25.08 

No fusion – best individual model, SMOreg 16.78 18.81 25.21 

 



  

 30 

 

Table 5.  Mean Absolute Error (MAE), standard deviation of absolute error (STD of AE) 
and Root Mean Square Error (RMSE) (in milliseconds) for the various fusion 
techniques on: (a) the KED TIMIT database, and (b) the WCL-1 database. 

(a) results on the KED TIMIT database 

KED TIMIT database MAE (ms) STD of AE (ms) RMSE (ms) 

SMOreg 14.66 13.82 20.14 

IBK 15.19 14.69 21.02 

Linear Regression 15.49 14.45 21.18 

RBFNN 15.53 14.49 21.24 

m5p 15.56 14.60 21.34 

Add. Regr. m5pR 15.72 14.94 21.69 

Add. Regr. REPTrees 15.79 14.94 21.74 

Bagging m5pR 15.81 15.09 21.86 

Bagging REPTrees 15.88 15.15 21.95 

m5pR 15.97 15.28 22.10 
No fusion – best individual model, SMOreg 14.95 14.11 20.56 

 
(b) results on the WCL-1 database 

WCL-1 database MAE (ms) STD of AE (ms) RMSE (ms) 

SMOreg 16.35 18.59 24.76 

IBK 16.98 18.85 25.47 

RBFNN 17.34 19.51 26.10 

Add. Regr. m5pR 17.69 19.84 26.58 

Bagging m5pR 17.72 19.84 26.60 

m5p 17.84 20.51 27.18 

m5pR 17.91 20.00 26.85 

Bagging REPTrees 17.99 20.45 27.23 

Add. Regr. REPTrees 18.00 20.56 27.32 

Linear Regression 18.32 20.19 27.26 

No fusion – best individual model, SMOreg 16.78 18.81 25.21 

 


