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Abstract—. This study considers a Hybrid Electrical Vehiclesupplied by a Fuel Cell stack and
supercapacitors used as Storage Element. In such application, real time energy management is of
paramount importance in order to increase autonomyand be able to deal on-line with perturbed
power demand. Many offline power flow optimizationprinciples are available but online algorithms
are preferred and should be derived for optimal maagement of the instantaneous power splitting
between the different available power sources. Badeon particle swarm optimization algorithm, this
study defines the parameters tuning of such algotitm. The final power splitting allows not only
recovering energy braking but also is robust to som disturbances occurring during the trip. The
solution provides good-quality and high-robustnessesults in a certain class of mission profile and

power disturbance.
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. INTRODUCTION

Replacing oil-based engines, and dealing with reasv sources is a challenge because the power
distribution structure change drastically. Eachetéralized production has its own properties arnghciies.
In transport applications when zero emission igdeen, Hybrid Electrical Vehicles are composed with
main sources of Energy (or Power) and storage elesrte be able to store and to restitute an additio
energy (or power) when requested [1]. In transppglications, it is obvious that energy brakingoremy
should be performed and the stored energy shoufdyéded to the powertrain not only to respondame

high power requests but also to manage the gldficibacy of the electrical system.



Maintaining the global efficiency at a maximumeééwith a dedicated energy management strategysillo

autonomy to increase, minimizing the consumptioraaiven mission profile, but allows also incregsihe
durability of the different electrical and/or elexthemical components (Fuel Cell, Supercaps oeBet...).
As for stationary applications, a transportatiopl&gation can be considered with power demand: dwkm 2-
known with perturbations or 3-unknown. Considenmaghing is known in advance about the power that ha
to be delivered in the future, it's obvious that eergy optimization can be performed; a certavellef
knowledge of the power demand is also requesteth Wis consideration two categories of optimizatio
principles can be listed [2]:

- off line global optimization

- on line ‘partial’ optimization

In fact when the whole profile to be followed isdkm and when the different elements are already
characterized, it is possible to compute a critetabe minimized off-line by existing algorithrisat work
well. There is no need of dynamic consideration at dleisision level, the computation search an optimal
splitting not so quickly with regards to electric ftuid mechanics time constants. All controlle@raknts
(Fuel Cell Current/Pressure/Flow and Supercapse@tiifoltage) are considered able to follow thistdds
can be found in [15]).

In this category, Dynamic Programming (D.P.) is ohéhe most used algorithm. Its principle is basad
the Bellman'’s principle [3] and starts computatioom the end of the profile to find an optimal pagtaching
the beginning and leaving the optimization criteras low as possible. Then, the founded path maseb
played. Some considerations should be given tonga@n accurate solution but problems arise when

constraints are added and when computer time catiuois limited.

Optimal control is also use to replay a sequenasonfrol computed optimally off-line using Pontryag
principle [4]. This technique provides good resuitisen the criterion can be expressed linearly dng t
derived. Constraints are also not obvious to ireladd some parameters are hard to be tuned to dbtai

solution.



In both cases when the power request changesetfueisce to be replayed is not the one’s that has be
considered for the optimization process and implies most cases, an increase in the forecast fuel

consumption.

Real time energy management strategies are maasdgdoon linguistic rules or artificial intelligence
[5],[6]. Commonly used in HEV, logical rules areitgueasy to define, when considering the manageofeht
or 3 sources. These rules impact directly on theswmption and must be optimized [7], [8]. Fuzzy-icog
supervisor, Neural Networks [6], System with M#lgent [5] or adding Genetic Algorithm [16] are also
used. All methods suffer from the same problemsngexity is increasing and all methods are based on

learning patterns.

In this paper a stochastic on-line optimizatiomgiple is used. Particle Swarm is a method to erpio
given space where an optimal solution is soughthis case several iterations will ensure thatapgmal
solution is found. But the computing time can beited (when the number of iteration is fixed, oremtthe
number of considered particles is low for exampléjerefore, a set of parameters can be tuned th tha
solution while keeping a low computation time. Whba power splitting should be refreshed with aaser

periodicity, this kind of algorithm can provide @bsoptimal solution or even reach the optimal one.

In part Il, the HEV powertrain is described and aiaracteristics of the different onboard souraes a
given. In part Ill, the problem formulation is diéda to minimize the criterion and to respect &kdd
constraints. In part IV attention is focused onadages of the proposed particle swarm algorithant ¥
presents the complete study of parameters tunidgesults obtained using different actual profilegh or

without perturbations. Analysis, limitation and crsion are given in Part VI.

II.  PROBLEM DESCRIPTION

A. Power flows and Energy Onboard

In this paper a classical Hybrid Electrical Vehideonsidered. Different power trains can be dsfiand
sizing of all elements should be optimized as W}@]l[10]. To not treat ‘systemic’ problem, a given
hybridization is fixed here and only two electricaurces are linked to the same DC bus with them o

choppers. Figl describes the considered serialrieldcstructure. It can be noticed that an eleatrhode



appears between the different subsystems.
The Hydrogen Tank, the Fuel Cell and its ancile@ompressor, Valves and local control...) andhitre

reversible chopper are grouped constituting thd Pa#l System and considered as the primary sources

FCS.

Hydrogen:> Fuel

Tank Cell

Energy | . > Electric
Managemernit Motor

Storage

Element

Fig 1: serial electrical structure for HEV with @d SE
On the other hand, Supercaps Elements and thesiieleebuck/boost chopper allow constituting a secon
electrical source - SSE — which can store or peeidergy.
The moto-propulsion group is here simplified beeaasly the electrical power demand is considered.
With this consideration if the powertrain architeet changes (boggy or wheels, synchronous or DC
machine...) only the electrical power demand shoelddmputed when leaving all the other elementhén t

optimization algorithm.

Chemical
Energy
Storage

Electric
Energy
Storage

Fig 2 : Multi-source system problem formulation
Fig 2 presents the composition of the 2 main saufoeusing on different efficiencies (losses) which
should also be easily adapted if some elementangihg (different FC size, different switching camnpnts
in chopper etc.). Fig 2 also represents the etadtriode and the power and efficiency data reqddstée

able to run an optimization algorithm in such apligation.

B. Efficiency of the main elements

Algorithms, solving the optimal energy managemeawobfem are fed with data describing the efficiency

of all elements. Each source has its own behaveanimg that it presents a different efficiency dejieg on



the power delivered [11],[12]. Local controls arensidered effective. Fuel Cell Stack stay at a mive
temperature and pressure and hygrometry are suppode well-maintained [13],[14]. Homogenous catre
repartition in the FCS allows dealing with a gloB&lS efficiency behavion.. , described in Fig 3. Storage
element is commonly made with several commercipkstaps in serial and parallel to obtain the System

Storage Element (SSE). Balance between supercepseels is also considered effective and just one

constant global equivalent resistafRecand capacitanc€scare considered with losses only depending on

losses in chopper, therefore SSE global efficiemgy is given in Fig 4.
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Fig 4 : Reversible Storage Element global efficieagrve

Note that the Maximum Efficiency Point for a FueliCSystem is allocated at about 25% to 30% of the
nominal power (22kW here for a 60kW FCS).

Fig 3 and 4 provide the efficiency maps to be abergd by the algorithm to compute the efficiencyhef
powertrain through a criterion to be minimized.

Moreover some constraints should also be verifiedabse FCS and SSE have a given power size
limitation and also a given Min and Max State Ofa@je to avoid limited durability or even destruntié
condition fixing equal initial and final State Oh@rge is commonly added in order to compare théralon

strategies each other.



The optimal use of the energy braking recoveryge@d way to minimize the vehicle consumption. gsin
the considered power profile, anpriori sizing as been made and is given in Table |. W power
demands used are presented in fig 5 - INRETS isirdan profile for a personal vehicle and fig 6 -
ESKISEHIR is the name of a power profile measumrea ecramway line in Turkey [14],[15].

TABLE |
SYSTEM POWER ANDENERGY CONSTRAINTS

Symbol Quantity
Value
PSEmin -60kwW
PSEmax 60 kW
PFCmin 0 kW

PFCmax 70 kW
SOEmin 400 kKW.s
SOEmax| 1600 kW.s

This sizing is made to let the power splitting expl all possible solutions and let emerge if pdssib
solutions using only FCS or only SSE, or all comlion to supply the power demand. No ‘systemic’
hybridization linked to size or weight is considiia this approach [10],[12] to provide efficiengarithms
whatever the HEV characteristic is.

Considering a given requested power profile (cfufes 5 and 6), this paper proposes to respontkto t
following question: what is the optimal power dptity in order to obtain a maximal efficiency of thehicle

(and thus the lowest fuel consumption) on the dgwycle?
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Fig. 5. INRETS : Power profile of a hybrid vehigheurban area
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Fig. 6. ESKISEHIR : Power profile of a tram on thme of Eskisehir (Turkey)



Using the complete knowledge about these profillesva running off-line optimal algorithm (based for
example on Dynamic Programming DP). Consumptioremiin table Il shows that more than 30% of
consumption can be earned on a given profile usptgnally the storage element, instead off no gfera
capability if Fuel Cell is alone. These results anéy provided here as reference and dynamic prograg
is well known [3] but only computable off-line andt in real time.

TABLE Il
Energy storage improvement
D.P. F.C. alone | Gain
INRETS 9189.7 kW.§ 14891 kW. 38.28%
ESKISEHIR | 31826 kW.s| 48043 kW.s 33.75X%

\"2)

.  ALGORITHMS AND ENERGY MANAGEMENT

The energy management problem is formulated hera gwbal dynamic optimization problem under
constraints. The hydrogen consumption is quantdie@ cost function to be minimized. The cost fiomcis

evaluated over a defined period of time.

The system’s dynamic equation is:

Where the energy level storgdis the state variable and the po®ghe control variable.

The cost function to minimize is the "total consuhemergy" of hydrogelEHZ over a period of timetft].

E,, = jttF)':C—(t)dt (1)

i e (Pec (1)
Energy EHz consumed is the integration of pow&t in the fuel cell side (not in the DCbus side

where there is the power demarg so the efficiency of the Fuel Cell Stagk. (P-. (t)) (inverter and also
the fuel cell behavior provided by fig3) is intramhd to ‘modelized’ the losses of energy passinguiin the
FCS.

Using the previously defined efficiency, the castecion is therefore:

) P (1)

ERCAD) ?



The system is subject to non linear constrainta@duality related to the constraints linked to ¢tesign

of the stack, the storage element power and stateange resumed in (3):

<P (t)=P

SE_min < SE(t) < PSI;max ! PFCfmin FC_ max

E <E()<E (3)

Satisfying the power demand imposes an equalitgtcaimt (4):

P.+P.-P_=0 4)

SE FC dem
An additional condition (5) is imposed artificially order to ensure that the state of charge istaisied
at the end of the cycle and to facilitate the opation procedure and cycling the power demandawitiany

more consideration from an energy management pbiiew.

E(t,)=E(t) 5)

A. Off line principles : Dynamic Programming (D.P.)a&a@ptimal Control (O.C.)

The principle of Dynamic Programming (D.P.) is lthea the Bellman’s principle [3]. This principlerca
be resumed saying: if an optimal path reaches la waich is optimal the total path is optimal. Se th
algorithm starts computation from the end of thefife to find an optimal path reaching the begimgnand

letting the considered optimization criterion aw ks possible during the optimal path.

Therefore the power demand is sampled both in tiameain and in energy level. The algorithm computes
at each time all possible solution linking levet, ; to optimal levelE, minimizing the criterion. All results
and paths must be stored and the optimal patidsted only when the algorithm reaches the origid with
the fixed initial conditionE(0). So, it is clear that accuracy depends on éimeping and when the profile is
long or when the energy level is divided in litdeeps, the computation time is exploding. Problammse
critically when non linear constraints are added aien computer time computation must be limited to

respect to real time power reference generation.

Off-line optimization provides the optimal poweligmg which provides the minimal criterion if rigyed

with the same power to follow. So the whole profilast be known in advance and unchanged to stayaipt



and this solution is commonly used to give theroptireference only for comparison purposes witteioth

algorithms.

It can be noticed that Optimal Control (O.C.) theisranother way to compute the optimal controflioié
and to be replayed. This technique using Pontrypgittiple provides good results when the criterdan be
expressed linearly and thus derived [4]. This oj@tion based on the minimization/cancelation & th
Hamiltonian of the criterion shows linear and dation assumption problems. Constraints are diffitwil

include, and some parameters dealing with Lagrahggplier are hard to be tuned to obtain the solut

In both cases, when the power demand changesedfuersce to be replayed is not the correct oneetnd |
the fuel consumption increase and sometimes tHmef§equence provides a worse result than even the
control proposed considering no optimization at &lll the study should be done again even if the

disturbance has little magnitude or is only local.

B. Online principles : Rules-Fuzzy-Al

Based on expert knowledge, logical rules are eaggtablish. In fact it is easy to say the systhaukl
use the FC when SE is empty or should use bothrdCS& when power is high and SE in its averages Stat
Of Charge etc.

These rules are impacting directly on the consumnpind the expert should come up with a way to pass
from one rule to the other. So the fuzzy approadch solution to define each rule, the membershptions
and the universe of discourse [7]. Moreover posiitd all membership functions can be optimized on a
given profile. In fact, Genetic Algorithm [15] or édral Network [6] can ‘learn’ the profile and the
optimization is still made off-line on a given pitefbut the supervisor build in this way is ablgtopose an
optimal or near-optimal solution even if the prefis not exactly the one known.

Artificial intelligence and expert analyzes shoblElmixed to have not only an accurate optimal swiyt
respecting constraints but also an algorithm kegpinder control the complexity and the computeretim

requested to reach the solution in real time.

C. On-line stochastic : Particle swarm

Considering that computing all solutions is notgiole online and in real time (with actual procegsso

Considering that rule-based algorithm must stillopéimized offline and using them online can somes



not respect important constraints, the idea is herese both advantages using particle swarm ogdition

principle. Particle Swarm Optimization (PSO) prieiis based on (6) and (7):

\7k+1=é_D\7k+515F15(f’1‘7<k) 6)
+b, 0T, D(ﬁz‘xk)

Y(k+1 =cl )?k + a 0 \7k+1 (7)

Where V is a vector of particles speed, their positions andl represents terms by terms vector

multiplication [16],[17].

This stochastic algorithm explores randomly thecspaf solution and depending on the number of
particles and the number of iterations made, emginan fix accuracy and limit the requested contputa
time.

This evolution (6) is based on bee behavior (randlights of bee swarm) and to the optimal solution
after some iteratiok-> infinity, the swarm conserves the better value seen iprtheous iteratiorpl and
the best value ever sep@ to update velocities and thus particle positigkttracting coefficients, b, c, d
ensure exploration and convergence form (zigzaggisgillating, exponentially converging...). In this
considered classical case (no abrupt optimal orogtional minima) values found in literature are dise
a=0.729 b=1.494 and without loss of generakly1, d=1 andrl andr2 are randomly chosen in [0 1],

[16],[17].

IV. PARTICLE SWARM ANDON-LINE HEV ENERGY MANAGEMENT

In the HEV online energy management problem, thaber of particlesib_part the number of iteration
nb_it, and the number of swanmnt_swarmshould be fixed. Moreover to limit the number afaulus and the
computing time, the problem should be reduced to@timization in a given window size, so, the whole
power profile demand should be dividgdg7 shows the different loops requested by P.&l@orithm
(defined with nb_swarm, nb_it values), and alscs@nts the parameters that define the complexitphef
problem to be solved (window'size, nb_part). Théuga of each particle change iteratively to fouhd t

optimal path in the windows defined gl E,.1].



A certain number of particleb_part is fixed randomly at different energy level atled@me in a window
[tk tk+1]. The sampling timett and window’s size increase the computation timi particles are free to
explore all energy level from [0 100%] with a stepabout 1%, thisZE is chosen to be as accurate as
possible taking into account the possible choppersource capacity to maintai and also to preserve a

realistic computation time.

nb_part
nh_swarm { \
b Jf : ) .
( 1 .t
Fixed bounded — E Eis
values for Energy .

Time window size

Fig 7 : set of parameters of the particle swarnoritigm

The criterion is minimized on the window size armhsumption is minimized optimally using energy
levelsE, andE,.; equal to the one computed by Dynamic Programmiggrahm. It can be noticed that this
approach mixes the offline optimization and their@iminimization which can be seen as an adaptation
capacity. In fact, if no disturbance occurs, p&tswarm optimization should converge to the saatl ps
Dynamic Programming. In case of disturbance, tlection is ensured by particle swarm to locally rudpe
the path and return, if possible, to the optimargp level k., that ensure an optimal ending (with no more
disturbance).

All set of parameters can be tested on a profike finst step to be roughly defined. The correttsbeuld
ensure almost 50% of swarm funding the optimal @t delivering a result in a time lower than the

refreshing reference period;tty.

A. Simulation based tuning

Running some simulations with different sets ofapagters allows establishing the values shown ineTab
lll. Clearly, the higher are theb_swarmor nb_it or nb_parthigher is the computation time but the higher is
the probability to find the best path. If 3 on S5asms have found the optimal path means the pdttursd

with 60% of chance, therefore the path can be denst always found. It can also be seen that using



swarms and 20 particles is correct because thigreeides the optimal path with 60% of chance lava and
feasible actual computing time. Lower values preMigss than 50% path found and are consideredsiop r
to be used in the real time optimization problem.

The code should be also optimized so values givarable Il should be used only in a relative way.

NB: program executed in Matlab® R2007a on a Windo{#pro environment dedicated to calculus

(processor: PowerEdge 6850, Quadri Xeon, 3.2GHzp3Ram, 2x150 Go Scsi UTRA 320).

TABLE 1lI

Set of parameters and solution found

Average | Optimal
nb_swarm nb_part| nb_it | computation| path
time (s) found
5 50 100 4.28s 5
5 50 50 1.78s 5
5 40 100 3.42s 5
5 40 50 1.38s 4
5 30 100 2.46s 4
5 30 50 1.06s 4
5 20 100 1.56s 3
5 20 50 0.76s 3

B. Validation on actual profiles

Using sampling time afit=2s,AE=1kWSs, the power demand is satisfied and statbafge of the storage
element is shown in Fig 8.

In this figure with no perturbation on the profilecan be noticed that D.P. path is the same e®ite
found in each Particular swarm window, the curvetimed with fuzzy logic is only provided to see th
possible different energy managements and detarisbe seen in [4fhe use of the proposed P.S.0. on a
different profile is analyzed in the next section.

It has to be noticed that both optimization prosidgite the same consumption of energy on the whole

profile (Part. Swarm/D.P.= 10362kW.s and Fuzzy=58KW.s) but fuzzy leaves some power demands not



furnished (due to saturation at low SOC) and is/ @ilown for comparison purposes. Storage element is
considered to be charged at 900kWs and respeauiritand max S.O.C. during the trip and allows marag

optimally the energy on board.

Energy management State of Charge -INRETS Profile - AE=1kWs et 4=2s

>~ Part. Swarm/D.P.
—— Fuzzy

Storage Element State of Charge (Energy level) (KW.s)
p A
1
<
-
—

g
g

100 150 200 250 300
Sampled time

Fig 8 : Energy management State of Charge -INRETS Profile=1kWs etAdt=2s

V. VALIDATION AND COMPARISON

Previous sections demonstrate that particular svedgorithm is capable of finding the optimal, winedo
by windows, using the offline energy level computedexample with D.P on a given profile as a refee.
This section tests the proposed algorithm on diffemprofiles and with an unknown perturbation added

artificially to characterize the robustness of santapproach.

A. First comparison

In fact, depending on the power profile, paramatiustment must be made. Of courde, partandnb_it
are linked to the convergence velocity and thuspbssibility to adapt the particle speed quicklytie
profile variation. So using ESKISEHIR profile inatk of INRETS with the set of parametds_part=50,
nb_it=50,nb_swarm5 is not sufficient. By analyzing where the praobteare located, it was noticed that no
solution where found in some specific windows (titeer are computed without any problem). For these
windows the power variation is greater as in INREISfile and is shown in Fig9. This profile present
some section with a higher power variation sorthepartor nb_it must be increased to be able to find the
optimal path. So as for many other methods, anadyihe power demand in terms of max power, mean
power and power variation demand, not only provideng information but also information to tune

accurately optimization parameters in the algorithm
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Fig 9 : Power variation occurrence in differentgas of magnitude
Using nb_part20, nb_it=50, nb_swarm=7 is convenient for both profilese dame study should be

made on other profiles to be sure to be able tonigp the criterion.

Even if the optimization is not optimal, the pddicwarm algorithm provides a solution better than
optimization following offline references. Adding perturbation on a given profile may justify the

adaptation ability of particle swarm algorithm.

B. Performance and robustness comparison

To verify the possible adaptation of the propodgdrithm, a perturbation is added to the known powe
demand INRETS limited to the 8Girst point (50s) Fig11. In fig 11 a non expecfamsitive power demand
is added during 5s (higher acceleration requiradefcample due to the road traffic). In fig 11lbise th
disturbance is proposed to be negative to simalatenexpected braking. The perturbation occursxduss

which is the size of the optimization window; testsuld be made for longer disturbances but areobut

scope of this paper.

100

100

Power demand (kW)

5 10 15 20 25 30 35 40 45 50
100

! I I I I I I I I

5 10 15 20 25 30 35 40 45 50
Sampled time for INRETS profile (points with 4t=2s)

Fig 11 : Initial profile, sequence selected anstfitisturbance injected Dist=50kW (case dist>0).
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Fig 11b : second disturbance type : Dist=-40kW &Cdist<0)

From the start point O to point 50, with no distumbe, the optimal energy consumption is 790kW4d) wit
positive disturbance used, the consumption is 1W&knd when the unexpected braking energy is used
(negative disturbance) the consumption is 592kWs.

Depending on the position and here mainly on thiuggation magnitude, it is possible or not to oyte
the criterion in a given window size. In the caseler study, the profile does not present high power
demands after the disturbance point [25-28] andetiergy recovered can not be delivered in the éamres
windows. Moreover, if the energy stored is quicllsed in this phase, the Fuel Cell power may deereas
decreasing its efficiency, thus a bad criterioroigained. Using a window twice larger (Fig 11b)e th
algorithm can find a solution to return to the @yestate imposed respecting constraints of theesyst
Increasing the optimization window size means iasigg the computation time and the necessity tdyver
real time constraintsib_swarm1 solves partially this issue but 4 tests on Ii¥iples no optimal path (only

with an increase of fuel consumption limited to 1%)

TABLE IV

Set of parameters and robustness

Ideal Dist >0 Dist<0
Window size
5 5 12
(nb points)
nb_swarm 7 1 7
nb_part 20 20 100
nb_it 50 50 50




This last study means that an adaptation is regdest line when a disturbance is detected to be tabl
switch the strategy (different set of parameterstlie particular swarm — resumed in Table V) toadb a
good result. Of course, a prediction or a stafstdata-base can be used to classify the diffgveasible

disturbances as well as the requested analyslagsify the profile.

VI. CONCLUSIONS

Particle swarm optimization is an efficient solatifor on-line energy management for Hybrid Eleetric
Vehicle. It did not pass over common problems ichsapplication: the profile must be studied andsifeed
to find accurate set of tuning parameters. Perfanes are better when references are provided \ffime
global optimization. Disturbances must be prediatedh degree of freedom must be used to cancal thei
influences.

This approach is not really an Artificial Intelligee approach using learning phase, but using optima
references, the particular swarm optimization atgor is able to compute, in a limited computationg,
the optimal path in terms of fuel consumption.

Particles are able to compute in real time thenagitipath with some capacity to reject disturbarares
in each case to adapt the optimal path to a sulrappath respecting real time computing constgint

Implementation on an actual vehicle should be niadenext step in order to validate the approach.
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