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Abstract 

A biological marker (biomarker) is a physical sign or laboratory measurement that can serve 

as an indicator of biological or pathophysiological processes or as a response to a 

therapeutic intervention. An applicable biomarker possesses the characteristics of clinical 

relevance (sensitivity and specificity for the disease) and is responsive to treatment effects, 

in combination with simplicity, reliability and repeatability of the sampling technique. 

Presently, there are several biomarkers for asthma and allergic rhinitis that can be obtained 

by non-invasive or semi-invasive airway sampling methods meeting at least some of these 

criteria.  

In clinical practice, such biomarkers can provide complementary information to conventional 

disease markers, including clinical signs, spirometry and PC20methacholine or histamine. 

Consequently, biomarkers can aid to establish the diagnosis, in staging and monitoring of 

the disease activity/progression or in predicting or monitoring of a treatment response. 

Especially in (young) children, reliable, non-invasive biomarkers would be valuable.  

Apart from diagnostic purposes, biomarkers can also be used as (surrogate) markers to 

predict a (novel) drug’s efficacy in target populations. Therefore, biomarkers are increasingly 

applied in early drug development.  

When implementing biomarkers in clinical practice or trials of asthma and allergic rhinitis, it is 

important to consider the heterogeneous nature of the inflammatory response which should 

direct the selection of adequate biomarkers. Some biomarker sampling techniques await 

further development and/or validation, and should therefore be applied as a ‘’back up’’ of 

established biomarkers or methods. In addition, some biomarkers or sampling techniques 

are less suitable for (very young) children. Hence, on a case by case basis, a decision needs 

to be made what biomarker is adequate for the target population or purpose pursued. 

Future development of more sophisticated sampling methods and quantification techniques, 

such as –omics and biomedical imaging, will enable detection of adequate biomarkers for 

both clinical and research applications. 
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Pathophysiology of allergic airways disease 

 

The pathogenesis of asthma and allergic rhinitis is complex. The expression of either or both 

disorders in an individual largely depends on interactions between several susceptibility 

genes and environmental factors [1-3]. Atopy is the key factor predisposing for the 

development of allergic airways disease [4]. Despite modern technologies enabling to 

unravel several inflammatory mechanisms of allergic airway disease, presently, still many 

etiological and pathophysiological questions remain unanswered [5].  

Overall, the allergic inflammation within the bronchial and nasal tissues shows many 

similarities with some local differences (Figure 1) [6,7]. Exposure to a new allergen results in 

uptake and processing by dendritic cells (DCs). Subsequent presentation of the processed 

allergen by DCs to naïve T helper (Th) cells induces the development of Th2 cells in 

genetically predisposed individuals [8]. The Th2 cells then release interleukins (IL)-4 and IL-

13, causing the differentiation of B cells into allergen-specific immunoglobulin (Ig)-E-

producing plasma cells [9].The newly synthesized IgE binds to high affinity IgE receptors 

(FcepsilonRI) on the surface of mast cells and basophils, inducing sensitization (‘priming’). 

Upon re-exposure, the allergen binds to the cell surface-bound IgE, which results in cross-

linking of the FcepsilonRIs and subsequent degranulation of the mast cells, causing the 

release of preformed mediators (histamine, chymase and tryptase) and de novo synthesis of 

other pro-inflammatory substances (leukotrienes, prostaglandins, platelet activating factor 

and bradykinin) [9]. Recent evidence suggests that the airway epithelium also plays an 

important role in the induction of allergic airway responses by the release of thymic stromal 

lymphopoietin (TSLP), an IL-7-like cytokine that has been shown to activate DCs to induce 

Th2-cell responses and to promote the differentiation of TH-17 cells [10-12]. 

The observation of many varieties within the ‘’asthma syndrome’ in terms of clinical 

presentation, triggers and underlying immunological mechanisms, resulted in the concept of 

different disease-entities and the definition of distinct asthma phenotypes or endotypes 

[13,14]. In view of the disease heterogeneity, traditional disease markers, such as clinical 

symptoms and lung function parameters, appeared inadequate to differentiate across the 

various subsets or to monitor disease activity and the response to (targeted) therapy, since 

they appeared poorly correlated with the underlying airway inflammation [15]. In addition, 

several factor and cluster analyses revealed that symptoms and lung function, markers of 

airway inflammation and airway hyperresponsiveness provide complementary information on 

the severity and activity of asthma in both adults and children and can help to differentiate 

into different asthma phenotypes [16-19]. In this respect, the development of non-invasive 
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airways sampling methods and detection techniques, allowing identification of several 

components of the airway inflammation including the determination of useful biomarkers, has 

greatly contributed to our current insight into the inflammatory cascades within several 

asthma subsets and the link to customized, targeted therapies [13,20,21].  

 

 

Biomarkers in asthma and allergic rhinitis: definitions and criteria 

 

A biological marker (biomarker) is a physical sign or laboratory measurement that can serve 

as an indicator of biological or pathophysiological processes or a response to a 

pharmacological intervention [22]. There is an ongoing exploration of new biomarkers and 

initially, all biological compounds of the inflammatory cascade could be eligible candidates. 

Ideally, a biomarker should have the following characteristics [22]:  

 

• Clinical relevance: indicating a clear relationship between the biomarker and the 

pathophysiological events in a disorder, causing a clinical endpoint. 

• Sensitivity and specificity for intervention effects.  

• Reliability and repeatability: the biomarker should be measured in a precise and 

reproducible way. 

• Simplicity of sampling methodology and measurement/detection technique to promote 

widespread use. 

 

Biomarkers can be employed for various purposes, including diagnosis, staging and 

monitoring of disease activity/progression or predictors c.q. monitors of a treatment 

response. In addition, they can provide complementary information to traditional disease 

markers, such as clinical signs and symptoms or pathophysiological measures. Validated 

biomarkers are of major value in early clinical trials to establish “proof of mechanism” or 

“proof of efficacy’’ of novel drugs in target populations [23]. Implementation of adequate, 

validated biomarkers in early drug development has several advantages and is being 

advocated by regulatory authorities, including the EMEA and the FDA [24]. Apart from their 

clinical implications, biomarkers also enable exploration of pathophysiological mechanisms 

through targeted drug interventions. When implementing biomarkers in clinical trials or 

monitoring of asthma and/or allergic rhinitis, it is important to consider the heterogeneous 

nature of the inflammatory response which may have implications on the selection of 

adequate biomarkers [25]. In general, one single biomarker may capture only a small 
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fraction of the intervention effect and, therefore, it is important to sample multiple biomarkers 

whenever possible. In addition, it is important to ensure that changes in the selected 

biomarker(s) translate into a meaningful clinical sign or symptom translating into a clinically 

relevant improvement. Overall, samplings of the biomarker should preferably be conducted 

in the most relevant environment, i.e. the target organs, being the lungs and/or the nose, 

instead of e.g. serum or urine. In this mini-review, we aim to provide a general overview of 

biomarkers of allergic airways disease, focusing on the less invasive sampling methods of 

the upper and lower airways. In addition, we will address some potential biomarkers and 

applicable airway sampling methods applicable in children. 

 

Biomarkers of asthma 

Sampling techniques of the lower airways  

Overall, there are three types of sampling methodologies of the lower airways: 

invasive sampling requiring flexible bronchoscopy, semi-invasive sampling by 

induced sputum and non-invasive sampling of the volatile inflammatory 

components in exhaled air. 

 

Invasive sampling techniques 

Invasive airway samplings include submucosal or transbronchial bronchial biopsies, 

bronchial brushes and bronchoalveolar lavage (BAL) that may be performed in 

combination. These sampling techniques are useful tools to address 

pathophysiological issues as they can provide more complete information on 

several histopathological features and immunological aspects of asthma and allow 

differentiation across the different asthma-phenotypes [26-28]. Although bronchial 

biopsies may provide additional or even superior information on the components 

(and their interrelationship) of airway inflammation and airway remodeling in 

asthma, in drug efficacy trials they have largely been substituted by the less 

invasive sampling techniques, such as induced sputum and exhaled air [5,29]. 

Moreover, there is ample evidence that specimen obtained with different sampling 

techniques may be complementary as they provide information on different parts of 

the bronchial tree [30,31].   



 

6 

 

Semi-invasive sampling techniques  

Induced sputum (IS) 

Sputum is defined as secretion originating from the lower airways. Sputum induction by 

inhalations of hypertonic saline promoting expectoration is a validated method both for 

research and diagnosis. Generally, the induction protocol is performed with inhalations of 

4.5% NaCl during 3x5 minutes, although other protocols using different NaCl solutions (0.9-

7%) and/or induction times (up to 30 min) have been employed as well [32]. The thus 

obtained sputum samples can be processed according to the “entire expectorate” technique 

or the “selected plug” method [33]. Both methods yield reproducible data, but are not 

interchangeable [34]. Although splitting the sample requires certain skills, it has several 

advantages, as it contains less squamous cells, yields cells in overall better condition (higher 

viability) and higher concentrations of soluble markers (less dilution) [35]. Following 

centrifugation, the processed samples can be divided into a ‘solid’ phase or cell pellet, 

consisting of cells, and a ‘fluid’ phase containing soluble mediators. Both components can be 

quantified to assess the presence and activity of inflammatory components. Sputum 

induction can be described as a semi-invasive procedure and is safer, cheaper and 

generally easier to perform than bronchial biopsy or BAL, although more troublesome than 

exhaled nitric oxide (eNO) or exhaled breath condensate (EBC). Over the last fifteen years, 

a vast amount of research has contributed to validation and standardization of the technique. 

An ERS Task Force document has been issued relating on recommendation and guidelines 

for standardized induction, collection, processing and analysis of sputum [36]. 

 

Biomarkers in solid phase 

Sputum cell counts are reproducible and validated markers of lower airway inflammation, 

when performed according to ERS guidelines [34,36]. This especially holds for the 

eosinophil and neutrophil counts [37]. Eosinophils (and neutrophils in severe persistent 

asthma) are considered key effector cells in the asthmatic airway inflammation, as their 

numbers are related to disease severity [38-42]. (Increased) eosinophil counts have been 

demonstrated in sputum samples of asymptomatic asthmatics with (further) increases during 

spontaneous exacerbations and in exacerbation models of asthma (e.g. allergen-induced 

late response and tapering off corticosteroids) [41,43]. Alternatively, sputum eosinophils are 

the best predictors of the clinical response to corticosteroids in asthma [44] and 

(pre)treatment with these drugs has been shown to reduce sputum eosinophils both 
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following allergen challenge and in ‘wild type’ asthma [45-50]. In most clinical studies, the 

reduction in sputum eosinophils was accompanied by an improvement in symptoms scores 

and lung function parameters. Green et al. achieved superior asthma control applying a 

treatment regimen targeting sputum eosinophils versus the standard strategy aimed at 

improving symptom scores and lung function parameters [51]. In general, sputum eosinophil 

and neutrophil counts are validated biomarkers of airway inflammation in asthma/COPD 

applicable in both clinical settings (e.g. diagnostic in ‘’refractory asthma’’) and in early drug 

development (proof of efficacy), if handled by ‘’experienced hands’’. 

 

Biomarkers in fluid phase  

Presently, numerous inflammatory mediators (including a variety of granulocyte proteins, 

proteases, cytokines, chemokines, eicosanoids and leakage markers) can be quantified in 

the fluid phase of sputum (‘supernatant’). However, the validity and reproducibility of several 

techniques has not yet been established. Apart from the induction technique, there are at 

least three other reasons that can account for this. First, processing of sputum may affect 

mediator measurements. According to most processing protocols, dithiothreitol (DTT) should 

be added to the sputum sample for the recovery of mediators by dispersing the mucus layer 

through cleavage of the disulphide bonds [52]. However, DTT may also affect the disulphide 

bonds within the mediators [53]. Second, variable dilutions may account for inaccurate 

quantifications among samples and presently there is not yet a validated factor to adequately 

correct for dilution [54]. Third, certain mediators may remain below the detection limit of 

widely used commercial assays; hence, more sensitive detection techniques are required 

[55]. Eosinophil cationic protein (ECP) as an activation marker of eosinophils has been 

intensely investigated. In sputum of asthmatics, (increased levels of) ECP have been found 

to be well-correlated with the eosinophil cell counts [56]. In addition, anti-inflammatory 

treatment decreases both the eosinophils and ECP within the airways [48,57]. Unfortunately, 

myeloperoxidase (MPO) as an activation marker of neutrophils seems to be affected by 

sputum induction and/or processing technique and therefore immunoassays are not always 

reproducible [53,58,59]. In sputum supernatant it is also possible to measure proteases 

involved in the process of extracellular matrix degradation. In asthma, increased levels of 

matrix metalloproteinase-9 (MMP-9) have been found in sputum, BAL and bronchial biopsies 

[60-64]. In addition, several investigators reported an imbalance between MMP-9 and its 

counterpart, tissue inhibitor of metalloproteinases (TIMP), resulting in a disease-severity 

dependent increase of the MMP-9/TIMP ratio [60,61,65]. In conclusion, MMP-9/TIMP ratio in 
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sputum is a potential marker for monitoring effects of interventions directed against airway 

remodelling.  

Many inflammatory mediators including cytokines and chemokines are degraded by DTT. 

Several research groups have investigated modified sputum processing techniques to 

optimize biomarker recovery [66-68]. However, these processing techniques are not fully 

validated and most of them prevented recovery of other mediators from the samples. As an 

exception, IL-8, a potent neutrophil chemoattractant, seems less affected and can be 

quantified by a validated immunoassay [53,69]. In several studies, increased levels of IL-8 

have been demonstrated during asthma exacerbations and in more severe disease [69,70]. 

Eicosanoids are involved in the pathophysiology of asthma [71,72]. Increased levels of 

cysteinyl leukotrienes (Cys-LTs) can be detected in several body fluids of asthmatic 

subjects, including sputum [73,74]. Moreover, sputum concentrations of Cys-LTs were found 

to correlate with disease-severity and failed to be unaffected by corticosteroids [75]. 8-

Isoprostane is the most extensively studied eicosanoid and reproducible levels have been 

measured in sputum and exhaled breath condensate (EBC) of both healthy controls and 

asthmatic patients, with increased levels in more severe disease and during asthma 

exacerbations [76]. 

 

Recommendations 

Sputum induction is a semi-invasive sampling procedure of the lower airways allowing to 

explore components of airway inflammation. Although not fully interchangeable with BAL and 

bronchial biopsies, it has been shown to provide useful and consistent information on 

several inflammatory markers whilst being safer, cheaper and generally easier to perform 

[30,31,77]. Nevertheless, many subjects experience this procedure as a burden. Another 

drawback holds that the overall percentage of analysable sputum samples, even in 

specialized centers, fails to reach 100% [78]. Finally, many inflammatory markers in sputum 

supernatant are affected by the (standard) processing techniques and more sensitive 

(sophisticated) assays are needed for optimal biomarker detection [67].  

However, many advantages by far outrange those few cons of induced sputum. A major 

advantage of sputum sample analysis is the possibility of evaluating multiple inflammatory 

biomarkers. In the solid phase (i.e. the cell pellet), inflammatory cell differentials can be 

evaluated. The predominant inflammatory cell types (eosinophils or neutrophils) can be 

reproducibly measured in both the entire and the selected expectorate and help to 
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characterize the asthma phenotype [25,34]. In addition, sputum eosinophils provide 

information on the inflammatory status within the airways and can also predict 

responsiveness to corticosteroids and subsequently be used to monitor treatment effects 

[44,51,79]. More recently, RT-PCR allowed extraction of mRNA from sputum cells [80,81]. 

Compared with healthy controls, an increased expression of several inflammatory cytokines 

(IL-4, 5 and 13) was shown in sputum cells from asthmatics, with further increase in this 

inflammatory profile expression following low dose allergen exposure, that could be blocked 

by inhaled corticosteroids [80,81]. In the fluid phase of sputum, several inflammatory 

mediators are readily measurable, whilst some measurements are unreliable due to the 

denaturant effects of sputum processing with DTT and/or limited sensitivity of most 

traditional detection assays. Erin et al developed a dialysis technique, in which the DTT was 

removed from the sputum sample, thus enhancing the recovery of DTT-sensitive cytokines 

and chemokines [55]. A more simple alternative is to perform mechanical homogenization of 

the samples (by ultra-centrifugation), which results in a good recovery of spiked cytokines 

and chemokines [67]. A drawback of this unrefined technique arises from the disruption of 

cells and subsequent spilling of the intracellular content into the homogenate – which of 

course, can partly account for higher biomarker concentrations [54]. Similarly to RNA 

expression profiling in the sputum cell pellet, recovery and quantification of multiple 

inflammatory markers from sputum supernatant is a valid method to study several aspects of 

the airway inflammation in asthma. Applying this multi-facetted approach, Brasier et al were 

able to identify distinct asthma phenotypes based on cytokine expression patterns in BAL 

fluid [82]. Applying optimized processing and detection methods, comparable data can be 

obtained from sputum supernatant.  

In conclusion, induced sputum is a useful semi-invasive sampling tool which allows 

concomitant evaluation of multiple components of the lower airways inflammation. Prior to 

implementation of this technique, appropriate biomarkers should be selected that are 

insensitive to the processing techniques and readily detectable or validation of a novel 

processing or detection technique is required.  
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Non-invasive sampling techniques  

 

Exhaled breath condensate (EBC) 

Collection of exhaled breath condensate (EBC) is a fully non-invasive sampling technique of 

the lower airways. Exhaled breath consists of two phases: the gaseous phase, containing 

volatile substances, such as nitric oxide (NO) and carbon dioxide (CO2), and a liquid phase 

containing nonvolatile components, including various water-soluble inflammatory markers 

[83]. The non-volatile ions and proteins originate from the airway lining fluid. When 

aerosolized due to local turbulence, these biological entities become liquid constituents of 

EBC [84]. So far, there is no complete standardization of EBC sample collection or analysis 

hampering its clinical applicability. However, an ATS/ERS task force addressed several 

issues resulting in novel EBC guidelines [85]. Several collectors and condensers are 

currently available [86-90]. All devices are easy to use and subsequent exhaled breath 

collection can be simply obtained from both young and elderly individuals. Following 

acclimatization, subjects breathe through a mouthpiece into a non-rebreathing valve 

connected to a tube for approximately 15–30 min by tidal breathing [85]. During the 

procedure, the exhaled breath travels through the tube that serves as a cooling chamber and 

the thus formed condensate is collected (usually around 2 mL/sample) in a cooled collection 

chamber. Cooling of the samples is advised to preserve ‘‘thermo-labile’’ markers [85]. 

Subsequently, samples can be directly analyzed or frozen pending analysis. 

 

Biomarkers in EBC 

Multiple biomarkers have been measured in EBC. So far, H2O2, leukotrienes (LTs), 8-

isoprotane and pH have shown the most consistent results. Reproducibly increased EBC-

concentrations of H2O2, biomarker of oxidative stress, have been measured in active 

smokers and patients with more severe asthma [91-94]. In steroid-naïve patients with 

uncontrolled allergic asthma, an inverse correlation has been demonstrated between FEV1 

and/or PC20histamine and exhaled H2O2 [92]. Alternatively, in patients with similar asthma 

characteristics, anti-inflammatory therapy with ICS effectively reduced exhaled H2O2 along 

with improvement in FEV1 [91,95]. The eicosanoids LTs and 8-isoprostane can be measured 

in EBC by an enzyme immunoassay (EIA) or by gas chromatography/mass spectrometry 

[96]. Increased levels of Cys-LTs have been detected in EBC of asthmatic patients. In 

agreement with sputum data, Cys-LTs levels in EBC appeared to be correlated with disease 

severity [97] and were effectively reduced by anti-inflammatory drugs [98]. Being a stable 

and well-detectable biomarker both in health and disease, 8-isoprostane is the most 



 

11 

 

extensively studied prostanoid in EBC [99]. In asthma, 8-isoprostane levels appeared to 

correlate with disease severity [100]. Unlike eNO, 8-isoprostane is not completely 

suppressed by corticosteroid treatment and thus, may be a potential indicator for ongoing 

airway inflammation despite anti-inflammatory treatment [98-101]. Moreover, recent data 

suggest a link between 8-isoprostane concentration in EBC and small airways inflammation 

[102]. Using different collection devices, several research groups found an average pH of 7.8 

in the EBC of healthy subjects, whereas in asthma the average pH was found below 7.5 

[103-107]. Asthma exacerbations have been shown to result in further decline of pH with 

reversal following corticosteroid treatment [107]. The low costs, good reproducibility in 

combination with the availability of reference values are advantages of pH measurements in 

EBC over the other inflammatory markers. Most other inflammatory markers measured in 

EBC, including cytokines and chemokines, showed poor reproducibility so far. 

 

Recommendations 

EBC is an appealing method enabling repeated samplings from the lower airways in a 

completely non-invasive and patient-friendly fashion [108]. Presently, commercially available 

devices (so far, most widely used are the EcoScreen (CardinalHealth) and the RTube 

(Respiratory Research)) may help to overcome drawbacks arising from the use of the early 

‘self-made’ collectors using different collecting protocols. An ATS/ERS taskforce issued 

guidelines aimed at standardization of collecting procedures allowing comparison across 

research centers [85]. So far, studies comparing commercially available devices have shown 

mixed data. Following identical collection, levels of total protein, eotaxin and cysteinyl 

leukotrienes were found to be significantly higher in EBC samples collected with the 

EcoScreen collector compared to the RTube device [109,110]. In addition, the volume of 

EBC collected with the EcoScreen was found to be consistently higher compared to the 

RTube samples (1.8 ± 0.1 and 1.4 ± 0.1 mL, respectively) [109,110]. This may be due to the 

differences in cooling the exhaled air: the EcoScreen has a refrigeration device at a constant 

temperature of -20 0C, while the RTube uses a cooling sleeve (at -20 0C), that heats up to 15 
0C after a 10 minute collection period. This ‘warming process’ may cause the degradation of 

heat labile substances, which may also account for the differences in protein and lipid levels 

found between the two devices. A clear advantage of the RTube is its small size, which 

enables a more universal application.  

Apart from these sampling issues, problems with detection/quantification of inflammatory 

biomarkers in EBC is of even greater concern [108,111]. This may be due to a limited 

sensitivity of the ELISA technique to measure inflammatory compounds in the EBC [112]. 
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Novel, sensitive multiplexed immunoassays should allow increased detection of biomarkers 

in EBC [113]. Furthermore, metabolomic analysis of EBC may be another analytical 

approach both in adults and children [114-116]. This detection technique, using high-

resolution proton nuclear magnetic resonance (NMR) spectroscopy or mass spectroscopy, 

enables characterization of the metabolic compounds in even small EBC volumes, by 

producing a ‘fingerprint’ of the individual samples. This approach seems promising since it 

can distinguish across the heterogeneous spectrum of asthma and help to predict a drug’s 

clinical efficacy.  

In addition, several techniques have been studied to improve the sample biomarker yield, 

e.g. coating of the collecting tube or employing glass tubing. Tufvesson et al found that 

coating the plastic surfaces with Tween 20 detergent or BSA improved the detection of 

eicosanoids and cytokines, respectively [117]. However, these coating substances 

potentially interfere with several detection assays, and therefore, a superior approach may 

be to employ a glass condenser, as has been shown in a study in healthy volunteers [118]. 

In this study, significantly more EBC volume yielding detectable biomarkers was recovered 

using an optimized glass condenser compared to a silicone condenser and the EcoScreen 

collector [118].  

Conclusively, despite several attempts in recent years aimed at optimization of the EBC 

technique, in terms of collection and biomarker detection, this sampling technique still awaits 

full validation and standardization before it can be reliably implemented into research or 

clinical practice. For this purpose, it is worthwhile to incorporate EBC along with more 

established biomarker sampling techniques in clinical trials and asthma management to aid 

the development and validation of this promising non-invasive sampling technique. 
 

Exhaled nitric oxide (eNO) 

In 2005, the American Thoracic Society (ATS) published recommendations for the 

measurements of nitric oxide (NO) from the upper and lower respiratory tract [119]. Although 

various methods have been reported, the online measurement during a single-breath 

exhalation against a fixed resistance is currently the recommended sampling technique. This 

highly reproducible and repeatable sampling method can be performed by the stationary 

chemiluminescence analyzers (Niox Flex, Ecomedics) and the more versatile hand-held 

electrochemical device (Niox Mino) and is now widely used in both adults and children 

[120,121]. 

 



 

13 

 

Exhaled NO as a biomarker 

 

eNO is a sensitive marker of acute airway inflammation in (allergic) asthma, which can be 

indicative of loss of disease control or exacerbation. Allergen challenge, especially the late 

asthmatic response (LAR), is a well-known inducer of airway inflammation [122]. A clear 

correlation has been shown between the size of the allergen-induced LAR and the increase 

in eNO at 8-10 h post-allergen [123]. Similarly, several studies have demonstrated that loss 

of asthma control is associated with an increase in eNO [51,124,125]. These studies also 

demonstrated that the change in eNO is a better predictor for loss of asthma control than 

baseline eNO per se. However, Leuppi et al found no increase in eNO during asthma 

exacerbations as a result of tapering off inhaled corticosteroids (ICS) [126]. This aberrant 

observation may be due to measuring eNO offline in contrast with online measurements 

used in other studies.  

eNO is very responsive to anti-inflammatory therapy. ICS and other anti-inflammatory 

therapies for asthma, including leukotriene receptor antagonists (LTRA) and omalizumab 

(anti-IgE), have been shown to reduce eNO both in children and adults [127-130]. 

Furthermore, several studies found a correlation between eNO and other markers of airway 

inflammation and/or airway hyperresponsiveness in asthma which adds to its applicability as 

a valid, non-invasive biomarker for clinical monitoring and early drug development. 

Jatakanon et al. [131] showed significant correlations between eNO, sputum eosinophils and 

the provocative concentration causing a 20% fall in FEV1 (PC20)methacholine in steroid 

naïve patients with mild persistent asthma. In contrast, this correlation between the different 

markers of airway inflammation and airway hyperresponsiveness is lost in asthmatics using 

ICS [132,133]. This is probably due to a fast decrease of eNO attaining a maximal response 

even on low dose ICS therapy, resulting in almost normal eNO levels, while airway 

inflammation and hyperresponsiveness are still present. Therefore, eNO should probably not 

be used as the sole marker of airway inflammation in asthmatics using corticosteroids.  

 

The mostly applied single flow technique cannot discriminate from what part of the bronchial 

tree the eNO originates. Alternatively, if measured at multiple expired flow rates, eNO can be 

portioned into NO from the central bronchial parts versus NO from the more peripheral 

(alveolar) compartment. It has already been demonstrated that alveolar NO is increased in 

severe asthma in comparison with mild to moderate persistent asthma, while there is no 

difference in eNO between the latter groups [134]. In the same study it was also shown that 

alveolar NO is refractory to inhaled corticosteroids, but responsive (i.e. decreased) to oral 
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corticosteroids. Another study found a decrease in alveolar NO and a reduction in air 

trapping after treatment with a small-particles ICS-formulation [135]. In a recent study in 

asthmatic children, increases in the distal NO fractions (CANO) revealed a distinct asthma 

phenotype, related to poor asthma control and morbidity independent of other disease 

markers, including spirometry or atopic status [136]. These data suggest that alveolar NO is 

a potential marker of distal airway inflammation and sensitive to (systemic) anti-inflammatory 

therapy. 

 

Recommendations  

Exhaled NO is widely perceived as a potential biomarker of inflammatory airways disease, 

particularly of allergic asthma. Major advantages of standardized eNO samplings are 

reproducible, non-invasive, online measurements achievable in almost all patients of over 4-

5 years [137]. The drawbacks consist of many (endogenous and exogeneous) factors 

affecting NO measures [119, 138]. Another important disadvantage of eNO measurements is 

the bulkiness and costs of the equipment. In this respect, the recently introduced hand-held 

and relatively inexpensive NO electrochemical analyzer (MINO®) seems an asset, 

promoting widespread use of eNO in both clinical and research settings [139]. Exhaled NO 

values measured with the MINO® were found to be reproducible and in agreement with the 

stationary units [139-141]. Conclusively, most technical issues surrounding eNO 

measurements appear to be resolved or manageable and the remaining question is the 

clinical relevance (and disease specificity) of this biomarker [142].  

When compared to induced sputum or EBC, the clear disadvantage is that only one 

component from the airways is sampled even though this single biomarker is related to the 

underlying airway inflammation [143-147]. Baseline eNO levels can also aid to establish the 

diagnosis of asthma. A cut-off value of >20 ppb has a sensitivity and specificity of 

approximately 70% which is superior to spirometry (FEV1) measurements [148,149]. 

Nevertheless, in day-to-day asthma management the role of eNO is controversial [142]. On 

one hand, it seems that low levels of eNO can predict a successful dose reduction in inhaled 

corticosteroids while maintaining asthma control [145]. In children, a treatment regimen 

based on eNO and symptoms, compared to symptoms alone, resulted in a significant 

reduction in disease-related parameters, including the severity of airway 

hyperresponsiveness, with a concomitant (but non-significant) reduction in asthma 

exacerbations requiring oral prednisone [150]. Alternatively, a recent study reported that 

addition of eNO as an indicator of asthma control on top of standard disease monitoring 

resulted in the prescription of higher doses of inhaled corticosteroids, without additional 
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clinically relevant improvements in asthma control [151]. The multiple flow technique is 

laborious and has not been fully standardized but in the future measuring NO at different 

flow rates may further refine this biomarker. 

Overall, eNO could serve as a biomarker of allergic airway inflammation in clinical trials. In 

clinical practice, it can help to establish the diagnosis of asthma. However, its applicability as 

a guide to optimal asthma control is open for debate [142,152,153].  

 

Electronic nose: exhaled molecular profiles  

Exhaled air contains a complex mixture of organic compounds derived from systemic as well 

as local metabolic, inflammatory and oxidative activity [154-156]. These volatile organic 

compounds (VOCs) may be used to monitor pulmonary or even systemic diseases. The 

technique is completely non-invasive and allows high-throughput metabolomic analysis. The 

standard detection technique of molecular compounds in exhaled air is gas chromatography 

coupled to mass spectrometry (GC-MS) [157,158]. This identifies individual molecular 

constituents in exhaled air. This technique is suitable for pathophysiological research. For 

diagnostic assessment, powerful empirical approaches can be applied using pattern 

recognition algorithms aimed at providing a signature or fingerprint of exhaled mixtures of 

biomarkers in particular diseases.  

Pattern recognition of complex VOC mixtures can also be obtained by using handheld and 

(close to) real-time electronic noses [159]. eNoses are using an array of sensors with 

partially different sensitivities for multiple VOCs based on various technologies: conducting 

polymers, metal oxide, metal oxide field effect transistors, surface or bulk acoustic waves, 

optical sensors, colorimetric sensors, ion mobility spectrometry, infrared spectroscopy, gold 

nanoparticles, or even GC-MS [159,160]. eNoses cannot distinguish individual VOCs, but 

can provide a fingerprint (breathprint) of  complex VOC mixtures. Clinicall application of 

eNoses is emerging [159,161,162] along with rapid instrumental and statistical 

developments. 

Breath collection is critical for eNose assessments and includes standardization of expiratory 

flow, expired volume, water vapour, either or not filtering inspired air with VOC-filter and total 

versus late expired sampling [163,164]. The data analysis uses normalisation methods, 

followed by pattern recognition algorithms and classification techniques such as principal 

component analysis [165]. This is essentially integrative, coming close to ‘system medicine’ 
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[166]. The downside is that it is essential to carefully deal with the risk of false discoveries, 

for which explicit recommendations have to be obeyed [167]. Finally, there is still an unmet 

need of mapping between eNoses [168].  

Cross-sectional studies using eNoses have shown discriminative power in respiratory 

medicine. This holds for lung cancer patients versus controls [169-172] and versus patients 

with COPD [173]. Interestingly, asthmatics can also be discriminated from healthy controls 

and COPD patients (cross-validated accuracy 80-100%) [163,164,174]. In addition, eNoses 

are an attractive screening method for infectious diseases [175,176]. It is important to notice 

that all these data are based on cross-validation procedures in so-called ‘training sets’. 

According to the STARD Guidelines for establishing diagnostic accuracy, the next step 

needs to be external validation [177-179]. Preliminary data using external ‘validation sets’ of 

patients with asthma and COPD have only recently become available, and are showing 

successful identification of newly recruited patients [180]. This suggests that eNoses can 

have a role in differential diagnosis of respiratory diseases.  

 

Biomarkers in allergic rhinitis  

The signs and symptoms of allergic rhinitis are the result of an IgE-mediated allergic reaction 

involving different cells, mediators, cytokines, chemokines, neuropeptides, chemokines and 

other components in a complex immunological network [1].In clinical practice or trials of 

allergic rhinitis, most evaluation methods of clinical symptoms (by  composite symptom 

scores) and  measurements techniques of nasal patency (by rhinomanometry and acoustic 

rhinometry)  are hampered by the lack of validation,  a limited reproducibility, due to patient- 

and observer-related factors and/or equipment-related factors [181]. Assessment of the 

nasal inflammation by biomarkers offers a more objective and direct read-out that can 

contribute to our understanding of the mechanisms of allergic rhinitis, to monitor disease 

severity and to evaluate the effects of (novel) treatments. Although similar sampling methods 

are being applied as in the lower airways, most of these techniques and biomarkers still 

await validation.  

 



 

17 

 

Sampling techniques of the upper airways  

Several tools and techniques are available for sampling of the upper airway biomarkers. 

Similarly to the lower airways, there are 3 fractions that can be sampled for biomarkers: 

cellular, soluble and volatile fractions.  

 

Overview of sampling techniques 

Soluble substances such as mediators and cytokines can be obtained by nasal lavage (NAL) 

techniques. Two methods are being used to obtain NAL fluid: first, the head-back method 

introduced by Naclerio [182]. In this method, NaCl 0.9% is instilled into the nose while the 

subject is closing off the nasopharynx. Another NAL technique is the so-called ‘’head-

forward’’ method where a nasal pool device is used to instill saline into the nose [183]. When 

comparing the methods, the first has been shown to yield more reproducible ECP levels, 

while the latter allows a higher and more reproducible recovery of cell counts [184]. Overall, 

with the exception of IgE, NAL-biomarkers show substantial intra- and intersubject variability 

and most inflammatory markers remain below the detection limit of the commonly applied 

quantification assays [184,185]. Attempts to improve the biomarker yield have been 

undertaken by increasing the dwelling time of the lavage fluid in the upper airways [186], by 

reducing the dilution factor using a filter paper [187] or a synthetic absorptive matrix (SAM) 

[188] for the absorption of nasal secretions/epithelial lining fluid or by optimizing the nasal 

fluid collection by a nasal secretion collector with polyurethane absorption foams [189] and 

by the development of more sophisticated detection techniques including multiplex, mRNA 

analysis, metabolomics and proteomics. However all techniques have their specific 

limitations and most of them await further validation.  

Although cells can be found in the NAL fluid, cellularity, cellular profiles including mRNA 

patterns can be more accurately assessed by nasal brushes (NAB) and nasal biopsies. 

Nasal brushing is a simple, relatively patient-friendly method to obtain cells from the nasal 

mucosa. And despite variability in the individual cell counts, NAB may be particularly suitable 

for studies in children, large groups and pathophysiological or intervention studies requiring 

multiple samplings. Furthermore, NAB enables to pick up signals from inflammatory stimuli, 

including nasal allergen challenge, and may therefore be a valuable tool in the assessment 

of the effects of anti-inflammatory interventions [185].  
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Nasal biopsies provide more reproducible information than nasal brushings on the nasal 

epithelium and the musosa, and additionally on the submucosa as well, however, the 

methodology does not allow frequently repeated samplings within one individual [190]. 

Moreover, the methodology requires specialized centers with ample experience. In analogy 

to the lower airways, more recently attempts have been made to assess nasal inflammation 

by measuring nasal nitric oxide (nNO) [191,192]. 

 

Overview of biomarkers in allergic rhinitis 

Mast cell-derived markers 

Histamine is the most prominent mediator released from mast cells and basophils during the 

early phase allergic reaction (Figure 1). This release is reflected by a peak in the NAL level 

of histamine which is maximal at 15-20 minutes after nasal challenge [193]. A late peak can 

be found during the late phase reaction between 6-8 hours post-challenge [194]. 

Unfortunately, high baseline levels of histamine (along with substantial variability) preclude 

its use as a biomarker of disease severity. Therefore, pre-nasal allergen challenge, nasal 

washings are needed to remove pre-existent histamine [195]. 

Other mast cell-derived mediators present in nasal lavage during the early reaction include 

tryptase [185,195], PGD2 [182], and leukotrienes [196] (Figure 1). These mediators are 

probably more stable and hence more reliable markers of mast cell degranulation. More 

recently, chymase along with its inhibitor, cleaved secretory leucocyte protease inhibitor 

(cSLPI), have been quantified in NAL fluid of allergic rhinitics with increased levels following 

nasal allergen challenge as compared to sham challenge [197]. In this study, cSLPI 

appeared to reflect the activity of chymase recovered from the NAL and sputum of patients 

with allergic rhinitis and asthma, respectively [197].  

 

Eosinophil derived markers 

Eosinophils can be found in the cell pellet of the NAL fluid. In addition, NAB and biopsies are 

a source of BMK13 positive (activated) eosinophils [198]. Soluble markers of eosinophil 

activation are among other ECP and EPX. These mediators appear in the NAL fluid 

approximately 6-10 hours post-nasal allergen challenge [199]. Despite a substantial inter-

subject variability, the rise in ECP levels after nasal grass pollen challenge has been shown 
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to correlate with nasal symptoms during pollen season (r=0.53) [200]. Moreover, ECP in the 

NAL fluid is increased in allergic patients during season compared with an out-season 

assessment [194]. In addition, using ECP post-challenge allows to study the efficacy of 

topical corticosteroids. Treatment with intranasal fluticasone resulted in 76% reduction in the 

late phase nasal symptoms and 83% reduction in ECP levels in NAL of patients with allergic 

rhinitis [195]. While an early increase in LTB4 and LTC4 in the NAL fluid reflects mast cell 

degranulation [193], a late increase in LTC4 points at activation of eosinophils and possibly 

basophils as well.  

 

Markers of nasal permeability 

Albumin and α2 macroglobulin are leakage markers indicative of nasal permeability following 

allergen challenge [201]. Albumin has been used to characterize the early and late phase 

nasal response [195,196,202]. However, albumin is also produced by nasal glands [203]. 

Therefore, α2 macroglobulin might be a more specific leakage marker of the nasal allergic 

response. Plasma exudation or leakage is a result of inflammatory mediators promoting 

nasal permeability. Efficacy of drugs targeting components of inflammation (including these 

mediators) can be evaluated by albumin and α2 macroglobulin levels. Antihistamines 

effectively suppress the α2 macroglobulin peaks in NAL fluid following nasal allergen 

challenge [204]. Topical corticosteroids reduce the recovery of α2 macroglobulin and albumin 

in NAL fluid during active disease [205] and following nasal allergen challenge [195,206]. In 

a more recent nasal allergen challenge study, vascular endothelial growth factor (VEGF) has 

been found in the NAL during the early phase of the nasal allergic reaction [207]. This 

growth factor is a potent inducer of endothelial cell growth and angiogenesis and is 

responsible for increased capillary permeability [208]. 

 

Various biomarkers of upper airway inflammation 

Although several studies have demonstrated clinically relevant cytokines and chemokines 

(e.g. GM-CSF, IL-1, IL-3, IL-5, IL-6, IL-8, RANTES, MIP-1) in NAL fluid of patients with 

allergic rhinitis, these data are difficult to interpret due to variability of the samplings and 

different detection techniques [194].  For this purpose, nasal biopsies may allow a more 

accurate cytokine profiling of the upper airways. 
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Nasal nitric oxide (nNO) 

Similarly to exhaled NO in asthma, nasal NO (nNO) has been thought to be a useful marker 

of upper airways inflammation in allergic rhinitis. Standard operation procedures have been 

established to measure NO in both upper and lower airways [119]. More recently, nNO 

measurements by the portable NO-analyzer, MINO, were validated against the gold 

standard chemiluminescence NO-analyzer in both healthy volunteers and patients with AR 

[209].Hence, this totally non-invasive, simple, fast and repeatable upper airways sampling 

methodology could be added to the existing diagnostic and research tools. 

Normal levels of nasal nNO range from approximately 400 to 900 ppb [210,211]. Paranasal 

sinuses substantially contribute to nNO measurements by a continuous production of high 

levels of nNO (up to 25 ppm) by inducible NO-synthases expressed in the epithelium [212]. 

The role of NO in the sinuses is likely to increase local host defense by direct inhibition of 

pathogen growth and by stimulation of mucociliary activity. In contrast, conditions with a low 

nNO production, including cystic fibrosis and primary ciliary diskinesia (PCD), are associated 

with a high susceptibility to sinus infections [212]. In addition, local application of an NO-

synthase inhibitor  to a healthy volunteer was found to be associated with a drop in nNO 

levels and the development of a maxillary sinusitis 3 days later [212].  

Apart from the endogenous source, ambient NO may also substantially affect nNO 

measurements [212,213]. Both endogenous and exogenous ‘’high-output’’ nNO sources may 

interfere with the interpretation of nNO measurements. 

Overall, (active) allergic inflammation induces higher NO production and several studies 

report increased nNO levels in both symptomatic and asymptomatic allergic rhinitics as 

opposed to non-allergic controls [210,214]]. In contrast, low(er) nNO levels may be found in 

conditions such as nasal blockage and nasal polyps [212,215].  

In daily practice, nNO measurement seems a less attractive candidate for disease 

monitoring or treatment evaluation due to substantial variability in long-term intra-subject 

nNO levels (as a result of the aforementioned endogenous and exogenous factors) in 

combination with only a marginal effect of anti-inflammatory therapy reported by some 

researchers [216,217].  

In clinical trials involving nasal allergen challenge, nNO levels can be reliably measured after 

the massive nasal congestion and rhinorrhoea present in the early phase have subsided 

[191].  
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In conclusion, apart from assessments of clinical signs and symptoms, various biomarkers 

can be obtained by several more or less non-invasive sampling methods to evaluate the 

nasal allergic response and disease activity in allergic rhinitis. So far, none of the 

assessment methods or biomarkers has been validated and both endogenous and 

exogenous factors introduce a substantial variability. Presently, nasal biomarkers cannot be 

readily implemented in the daily clinical practice. However, some of these biomarkers may 

be useful for evaluation of the efficacy of novel treatment modalities in early clinical studies 

of allergic rhinitis. Nasal lavage and nasal brushings can be relatively easily implemented in 

nasal provocation studies. The applicability and long-term reproducibility of nNO awaits 

further investigation. 

 

Biomarkers in childhood asthma            

Like in adults, asthma in children is characterised by chronic airway inflammation, 

based on evidence from bronchial biopsies [218], BAL [219] and sputum [220]. Even 

during asymptomatic disease episodes, airway inflammation can be demonstrated 

[221]. A Dutch bronchial biopsy study demonstrated chronic airway inflammation in 

asymptomatic adolescents, who were thought to have outgrown their early 

childhood asthma, possibly indicating a risk of disease relapse later in life [222]. 

Therefore, monitoring of airway inflammation by adequate biomarkers can aid the 

diagnosis and hence, may positively affect clinical outcomes. 

In general, samplings of airway inflammation in (very young) children must be non-invasive, 

reproducible and easy to perform [223]. Collection of exhaled breath condensate (EBC) e.g. 

for detection of leukotriene E4 (LTE4)
 [224] and measurements of fractional exhaled nitric 

oxide (FeNO) are totally non-invasive biomarker sampling techniques that can be easily 

performed already in very young children [225,226]. In contrast, bronchial biopsies and BAL 

are too invasive for the assessment of airway inflammation, especially in young children. 

Similarly, bronchoprovocation tests to assess airway hyperresponsiveness or hypertonic 

saline-induced sputum to demonstrate airway eosinophilia require a patient’s collaboration 

and hence, cannot be performed in very young children.  

Assessment of airway hyperresponsiveness (AHR) to direct stimuli such as methacholine 

(PC20methacholine) or histamine (PC20histamine) can be performed from the age of 5 years. 

In children, interpretation of the bronchoprovocation tests (AHR) depends on the child’s age. 
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In asthmatic children under the age of 12 years, AHR is mainly associated with airway 

inflammation (increased FeNO), while in children older than 12 years, AHR possibly reflects 

airway remodelling [227].   

Sputum can be induced in children of >6 years with a success rate varying from 68 to 100% 

[228]. Although not fully validated in this patient population, sputum eosinophil counts may 

provide additional diagnostic information and can predict exacerbations in asthmatic children 

[229]. Furthermore, sputum eosinophils appeared to be correlated with disease severity in 

steroid-naieve children with asthma and in severe persistent asthma [228]. In children with 

moderate to severe persistent asthma, a modest agreement has been found between FeNO 

and eosinophils in sputum and BAL but a poor correlation between FeNO and eosinophils in 

distal bronchial biopsies [230,231].  

In asthmatic children treated with moderate doses of ICS, FeNO showed a weak correlation 

with sputum eosinophils, but related well to sputum ECP and urinary EPX levels [232]. 

Another study in adolescents diagnosed with mild persistent asthma, reported a (better) 

relationship between FeNO and sputum eosinophils [233]. In this study (population), FeNO 

appeared to be a useful indicator of atopy and airway inflammation with a negative 

predictive value for asthma of 83% and a positive predictive value of 54%; this is consistent 

with most other diagnostic tests for asthma [233]. 

Consequently, FeNO has often been used as a surrogate marker of (eosinophilic) airway 

inflammation in children (>4 years) with asthma [234,235], e.g. to diagnose worsening of 

disease control or exacerbation after discontinuation of ICS [234,235] or to monitor the effect 

of anti-inflammatory therapy [150]. In the past years, several randomized, controlled studies 

examined the utility of FeNO to guide management strategies. A study in asthmatics (12-75 

years), showed that tailoring ICS on FeNO levels in this cohort was associated with overall 

fewer exacerbations and a lower mean ICS dose compared to standard strategy based on 

symptoms [236]. In a study in asthmatic children (6-18 years), titrating ICS on FeNO levels 

versus conventional strategy resulted in improved airway responsiveness to methacholine, 

less airway inflammation and fewer severe exacerbations in the FeNO group, with no 

differences in ICS doses and symptom scores between the two strategy arms [150]. 

However, not all studies using FeNO to guide asthma management resulted in improvement 

in disease control [237]. In children with clinically stable, atopic asthma and elevated FeNO 

levels despite ICS, further increase in ICS dose failed to reduce FeNO [238].  
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A recent Cochrane review evaluated the results of 6 studies (2 in adults and 4 in 

children/adolescents) tailoring the dose of ICS according to FeNO levels versus clinical 

symptoms [153]. The meta-analysis did not show any significant differences in asthma 

exacerbations, clinical symptoms, FeNO level or spirometry between the two strategy 

groups. However, a post-hoc analysis of the paediatric studies revealed a significant ICS-

increase in the FeNO arm versus the conventional strategy arm, leading to the conclusion 

that, at this stage, FeNO cannot be routinely recommended to tailor the ICS dose in children 

[153].  

In patients with acute or chronic rhinosinusitis nasal nitric oxide (nNO) levels are significantly 

decreased.  Nasal NO has been proposed as a functional test to evaluate sinus ventilation. It 

is significantly reduced in primary ciliary dyskinesia and can be a screening tool for this 

condition [239]. 

Exhaled breath condensate (EBC) can be easily collected and is a totally non-invasive 

airway sampling method. Therefore, this methodology seems promising for application in 

children [240]. However, like in the adults, sofar, EBC awaits further evaluation and 

validation [241]. Similarly, the electronic nose seems a promising tool for future evaluation of 

a disease’s activity or even for diagnostic purposes [159].  

 

Recommendations 

In children, measurements of inflammatory markers are inconsistent across the different 

(sampling) techniques, possibly reflecting disease heterogeneity, methodological limitations 

or varying sensitivity of the biomarker detection techniques. Hence, at this stage, biomarkers 

cannot be generally recommended as reliable tools to evaluate or treat an asthmatic child. 

Nevertheless, measurements of (at least some) airway inflammatory markers can aid 

diagnosis, monitoring and/or management of asthma, even if it is yet unclear which 

inflammation marker is most useful. Despite the aforementioned limitations, repeated FeNO 

measurements in individual patients may offer valuable information in specialized settings 

[231]. EBC and electronic nose are promising non-invasive airway sampling techniques 

awaiting further evaluation and validation in children. 
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Overall conclusion 

Non-invasive and semi-invasive sampling methods of the upper and lower airways 
offer a large variety of potential biomarkers of asthma and allergic rhinitis. In view of 
the complex inflammatory airway response in both asthma and allergic rhinitis, 
multiple biomarkers should be sampled, whenever possible. Biomarkers can be 
useful tools in both clinical practice (diagnosis, disease monitoring) and clinical 
research including drug development. Further development and validation of 
sophisticated non-invasive sampling methods and biomarker detection techniques 
is warranted and should enable general application across target populations of all 
ages.  
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Table 1:  

Pros and cons of non-invasive lower airways sampling techniques 

 
 Induced Sputum  Exhaled NO  Exhaled Breath Condensate  Electronic Nose 

Pros 

 

 

 

• Multiple biomarkers 
• Reproducible cell 

differentials on 
cytospins 

• Valid tool for diagnosis 
(e.g. ‘refractory 
asthma’) or assessment 
of anti-inflammatory 
therapy 

• Non-invasive 
• Reproducible 
• Inexpensive 

measurements 
• Direct results 
• Allows serial 

measurements 
• Tool for 

diagnosis/assessment of 
anti-inflammatory therapy 
in (allergic) asthma 

• Non-invasive 
• Multiple biomarkers 
• Allows serial 

measurements 
• Potential tool for 

diagnosis and 
assessment of anti-
inflammatory therapy 

 

 

• Non-invasive and 
portable 

• Almost realt-time 
• Uses high-dimensional 

biomarker signal 
• Produces individual 

signature: ‘breath’print 
• Allows serial 

measurements 
• Potential tool for 

diagnosis and 
monitoring of anti-
inflammatory therapy 
 

Contras 

 

 

• Representative 
samples available in 
approx. 80-90% of 
subjects 

• Soluble markers 
subject to dilution 

• Non-repeatable over 
short time-period (<12-
18 h) 

• Expertise & experience 
required (staff/lab) 

• Rescue medication 
needed 

• Contraindicated in 
severe persistent 

• Expensive equipment 
• Many perturbing factors 
• Longitudinal samplings 

within 1 patient are more 
informative than single 
measurements- 

 

 

• Detection assays not fully 
reproducible 

• Expensive & time-
consuming procedure/ 
assays 

• Soluble markers subject 
to dilution 

• Specialized lab needed 
 

 

 

• Sensor technology still 
developing 

• Mapping between 
eNoses required 

• Off-line SPSS- or R-
analysis still required 

• External validation not 
completed yet 
 



 

asthma/copd/active 
cardiovascular 
disorders 

Overall 
assessment 

 

 

 

 

• Validated tool for 
monitoring of the 
effects of (novel) anti-
inflammatory drugs 

• Lengthy, expensive 
procedure requiring 
expertise/experience 

• Not suitable for patients 
with severe 
bronchoconstriction 
/comorbidities 

• Validated tool for 
diagnosis/monitoring of 
anti-inflammatory drug-
effects 

• Patient & researcher-
friendly method 

• Procedure awaits further 
validation 

• Patient & researcher-
friendly method 

• Patient & researcher-
friendly method 

• Promising technique for 
both clinical and 
research applications 

Refs* 32, 34, 36, 52, 54  119, 153 85, 108 159, 174 

* Position papers and reviews 
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Figure 1. Allergic airway response 

 

Figure 1: Cells and mediators involved in the allergic responses in asthma and allergic 

rhinitis. ECP = eosinophilic cationic protein, GM-CSF = granulocyte-macrophage colony 

stimulating factor, IgE = immunoglobulin-E, IL = interleukin, MBP = major basic protein, PAF 

= platelet activating factor, TGF-α = transforming growth factor alpha, Th = T helper, TNFα = 

tumor necrosis factor alpha, TSLP = thymic stromal lymphopoietin (JD Boot, PhD thesis, 

2009). 

 




