
HAL Id: hal-00699013
https://hal.science/hal-00699013v1

Submitted on 11 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Parallel Reduction in Resource Lambda-Calculus
Michele Pagani, Paolo Tranquilli

To cite this version:
Michele Pagani, Paolo Tranquilli. Parallel Reduction in Resource Lambda-Calculus. 7th Asian Sym-
posium on Programming Languages and Systems (APLAS 2009), Dec 2009, Seoul, South Korea.
pp.226-242, �10.1007/978-3-642-10672-9_17�. �hal-00699013�

https://hal.science/hal-00699013v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Parallel Reduction in Resource
Lambda-Calculus?

Michele Pagani1 and Paolo Tranquilli2

1 Dipartimento di Informatica – Università di Torino
pagani@di.unito.it

2 Laboratoire PPS – Université Paris Diderot
ptranqui@pps.jussieu.fr

Abstract. We study the resource calculus – the non-lazy version of
Boudol’s λ-calculus with resources. In such a calculus arguments may
be finitely available and mixed, giving rise to nondeterminism, modelled
by a formal sum. We define parallel reduction in resource calculus and
we apply, in such a nondeterministic setting, the technique by Tait and
Martin-Löf to achieve confluence. Then, slightly generalizing a technique
by Takahashi, we obtain a standardization result.

1 Introduction

In the ‘90s Boudol introduced resource calculus [1] – an extension of λ-calculus
where arguments may come in limited availability and mixed together. Boudol’s
main motivation was studying a finer observational equivalence, arriving in par-
ticular to the one given by π-calculus via Milner’s translation [2].

The main difference with ordinary λ-calculus is the renewal of the application
of a function to an argument along two directions: on the one hand by introducing
depletable arguments that must be used exactly once, on the other by letting
the arguments come in multisets. Resource calculus is similar to Ehrhard and
Regnier’s differential λ-calculus [3]: the application of a function f to a linear
argument corresponds, in the terminology of [3], to applying the derivative of f
in 0 (which is a linear map) to that argument. Indeed, the second author shows
in [4] that resource calculus corresponds to the intuitionistic minimal fragment
of differential nets with promotion [5], exactly as λ-calculus corresponds to the
intuitionistic minimal fragment of linear logic proof-nets [6]. This translation
is therefore built on top of the proofs-as-programs correspondence, thus linking
a language for nondeterministic programs with a new kind of nondeterministic
proofs, the differential nets of differential linear logic.

Let us give a sample of resource calculus by means of an example. Let

I := λz.z D := λdz.z[d!][d!] B := λxy.I[x!, y!] M := λb.b[(b[d!][D[a]])
!
][c!],

where we follow the definition of the syntax as given in Figure 1(a). I is the
standard λ-calculus identity. D is a standard λ-term too: it is λdz.zdd. The
? Partially founded by the French ANR project blanc CHOCO, ANR-07-BLAN-0324.

2 Michele Pagani and Paolo Tranquilli

slight difference is only in the notation: we write the two arguments of z with
a bang as superscript, emphasizing the fact that they are infinitely available
arguments, and provide them as two distinct multiset singletons, delimited by
brackets and called bags. This way of writing the application comes from Girard’s
linear logic [6]: indeed !-marked arguments (called perpetual) correspond exactly
to exponential boxes (see [4]), the synchronized areas of proofs viable for non-
linear operations (duplication and erasing). Along the same lines, the multiset
bag constructor is semantically justified by several denotational models of linear
logic, by their interpretation of the exponential modality.

Let us resume our example. The term B shows nondeterministic application:
I is applied to a bag of two (infinitely available) terms, x and y. The term M
is very like to the λ-term λb.b(bd(Da))c, a nesting of two if then else with
arguments d, Da and c (if b is fed with a boolean). All bags contain exactly
one element, modelling deterministic λ-calculus application. However the bags
[D[a]] and, inside it, [a] contain an element with no ! superscript, which sets the
term apart from ordinary λ-calculus. This means that the argument D[a] (resp.
a) must be used exactly once by the function which is applied to [D[a]] (resp.
[a]). Let us evaluate M [B!] following the reduction of Definition 10.

M [B!] −→ B[(B[d!][D[a]])!][c!] −→
(
λy.I[(B[d!][D[a]])!, y!]

)
[c!]

−→ I[(B[d!][D[a]])!, c!]

(1)

−→ B[d!][D[a]] + c −→
(
λy.I[d!, y!]

)
[D[a]] + c −→ I[d!, D[a]] + c(2)

−→ D[a] + c −→ λz.z[a]1 + λz.z1[a] + c.(3)

The steps in line (1) of the example are akin to ordinary λ-calculus ones: we
have a λ-abstraction fed with a bag containing exactly one infinitely available
element. The step from line (1) to line (2) is a nondeterministic one, the argument
of I being a bag with two elements, whence we have a sum of the two possible
results. Sums intuitively correspond to a version of nondeterminism where the
actual choice operation is left outside the calculus: the result of a term reduction
will in general be a large formal sum of terms. The next steps in line (2) are again
standard λ-calculus ones. The last term of line (2) has the nondeterministic redex
I[d!, D[a]]. One could be tempted to contract the redex into d+D[a], analogously
to the previous nondeterministic step, but in this case the element D[a] occurs
linearly in the bag, hence only the choices using D[a] exactly once are allowed.
Specifically I[d!, D[a]] −→ D[a]. Finally the last step has also a nondeterministic
feature, this time due to a concurrency effect. Indeed in the redex D[a], the
function D encodes a pair where both the left and right components ask for
the abstracted variable d. However the redex has only one linear occurrence of a
available, for which the left and right components are in concurrency for fetching
it. We thus have two possible outcomes, depending on which component takes
linearly a while forcing the other to collapse to 1 i.e. the empty multiset.

In this paper we prove two basic properties of resource calculus — confluence
(Theorem 20) and standardization (Theorem 27). Confluence does not contradict
nondeterminism because the result of a nondeterministic reduction is a sum of

Parallel Reduction in Resource Lambda-Calculus 3

Λ: M,N,L ::= x | λx.M | (MP) terms

Λarg: M (!), N (!) ::= M |M ! arguments

Λb: P,Q,R ::= [M
(!)
1 , . . . ,M

(!)
n] bags

Λ(b): A,B ::= M | P expressions

µ, ν ∈ N〈Λ〉 π, ρ ∈ N〈Λb〉 α, β, γ ∈ N〈Λ(b)〉 := N〈Λ〉 ∪ N〈Λb〉 sums
(a) Grammar of terms, bags, expressions, sums.

λx.(
P

i Mi) :=
P

i λx.Mi [(
P

i Mi)]·P :=
P

i[M]i ·P

(
P

i Mi)P :=
P

i MiP [(
P

i Mi)
!]·P := [M !

1, . . . ,M
!
k]·P

M(
P

i Pi) :=
P

i MPi.

(b) notation on N〈Λ(b)〉.

Fig. 1: Syntax of resource calculus.

terms. It remains meaningful, as it states that nondeterminism is really internal,
and not caused by what an evaluator chooses to reduce. We achieve Theorem 20
by adapting the technique by Tait and Martin-Löf, using a suitable notion of
parallel reduction (Definition 14). A similar result is in [3] where confluence of
differential λ-calculus is proven. However our proof is somewhat simpler, using a
notion of development (Definition 18) as defined by Takahashi [7] for λ-calculus.
The result is at the same time proved for the outer reduction, which is meaningful
for the standardization theorem.

A reduction step is inner if the redex to be contracted is under the scope
of a bang, otherwise it is outer (Definition 11). Standardization states that ev-
ery reduction chain can be split into a concatenation of outer steps followed by
inner ones (Theorem 27). In λ-calculus such a result turned out to be fundamen-
tal for designing abstract machines computing (weak, head) normal forms, thus
giving the theoretical justification of actual evaluators of functional languages.
Although in our setting standardization does not give immediately a determin-
istic normalizing strategy (Example 28), it will help in implementing abstract
machines for resource calculus, which can in turn also help in analyzing resource
usage by ordinary λ-calculus programs [8]. Our proof of standardization adapts
the one by Takahashi for λ-calculus, based on parallel reduction and inner par-
allel reduction [7]. Actually our notion of inner parallel reduction (Definition 21)
is quite peculiar, possibly yielding a slight generalization of such technique.

We conclude the paper by discussing another, more atomic reduction of re-
source terms, called baby-step reduction in [4] (here Definition 31). Although
confluence of baby-step reduction is an easy consequence of Theorem 20 (Theo-
rem 34), we show how baby-step standardization fails in general, though it holds
for normal and head normal forms (Theorem 36).

2 Syntax and Reduction

We will now introduce resource calculus. Though the “protagonists” are terms,
for the ease of proofs it is best to present also other types of syntactic entities. We

4 Michele Pagani and Paolo Tranquilli

y〈N/x〉 :=

(
N if y = x,

0 otherwise,

[M]〈N/x〉 := [M〈N/x〉],

[M !]〈N/x〉 := [M〈N/x〉,M !],

(λy.M)〈N/x〉 := λy.(M〈N/x〉), y /∈ FV(N) ∪ {x},
(MP)〈N/x〉 := M〈N/x〉P +M(P 〈N/x〉),

1〈N/x〉 := 0,

(P ·R)〈N/x〉 := P 〈N/x〉·R+ P ·R〈N/x〉.
(a) Linear substitution.

A〈〈N (!)/x〉〉 :=

(
A〈N/x〉 if N (!) = N ,

A {x+N/x} if N (!) = N !,

A〈〈[N (!)
1 , . . . , N

(!)
k]/x〉〉 := A〈〈N (!)

1 /x〉〉 · · · 〈〈N (!)
k /x〉〉, x /∈

k[
i=1

FV(N
(!)
i).

(b) Argument and bag substitutions.

Fig. 2: Linear, argument and bag substitutions. Notice that the condition on
bag substitution can always be achieved by renaming.

thus introduce the calculus as a many-sorted one: the grammars for generating
terms Λ and bags Λb (which are in fact multisets of arguments Λarg) is presented
in Figure 1(a) together with their typical metavariables. Λ(b) (expressions) de-
notes either terms or bags. As we already mentioned, we also have formal sums,
denoted by the N〈 . 〉 notation (as formal sums are the freely generated modules
over natural numbers). However in N〈Λ(b)〉, rather than taking freely generated
sums, we allow only objects of the same sort to be summed.

Bags are multisets presented in multiplicative notation, so that P ·Q is mul-
tiset union, and 1 = [] is the empty bag. It must be noted though that we will
never omit the dot ·, to avoid confusion with application.

The grammar for terms and bags does not include sums in any point, so that
in a sense they may arise only on the “surface”. However as an inductive notation
(and not in the actual syntax) we extend all the constructors to sums as shown
in Figure 1(b). In fact all constructors but the (·)! are, as expected, linear. Notice
the similarity between the equation [(M + N)!] = [M !]·[N !] and ex+y = ex·ey:
this is not a coincidence, as Taylor expansion and semantics show well [9], and
can be traced back to linear logic’s exponential isomorphism !A⊗ !B ∼= !(A&B).

There is no technical difficulty in defining α-equivalence and the set FV(α)
of free variables as in ordinary λ-calculus.

Definition 1 (Substitutions). We define the following substitution operators.

1. A {N/x} is the usual capture free substitution of N for x. It is extended to
sums as in α {β/x} by linearity3in α and using the notations of Figure 1(b)
for β. The form A {x+N/x} is called partial substitution.

2. A〈N/x〉 is the linear substitution defined inductively in Figure 2(a). It is
extended to α〈β/x〉 by bilinearity in both α and β.

3 F (A) (resp. F (A,B)) is extended by linearity (resp. bilinearity) by setting
F
`P

i Ai

´
=
P

i F (Ai) (resp. F
`P

i Ai,
P

j Bj

´
=
P

i,j F (Ai, Bj)).

Parallel Reduction in Resource Lambda-Calculus 5

3. Argument substitution A〈〈N (!)/x〉〉 and its iteration A〈〈P/x〉〉, the bag substi-
tution, are shown in Figure 2(b). Notice that A〈〈1/x〉〉 = A. Bag substitution
is further generalized to α〈〈π/x〉〉 by bilinearity in both α and π.

As examples we show (supposing x not free in M,N):

x[x!] {M +N/x} = (M +N)[(M +N)!] = M [M !, N !] +N [M !, N !],

x[x!]〈M +N/x〉 = x[x!]〈M/x〉+ x[x!]〈N/x〉
= M [x!] + x[M,x!] + x[N, x!] +N [x!],

x[x!]〈〈[M,N !]/x〉〉= M [x!] {x+N/x}+ x[M,x!] {x+N/x}
= M [N !, x!] + x[M,N !, x!] +N [M,N !, x!].

The definition of the linear substitution on a product of bags is clearly well
defined regardless of the decomposition of the bag. On the other hand in order
for the bag substitution to be well defined, we need to know that argument
substitutions can be freely commuted. Commutation of linear substitutions is
obtained from the so-called Schwartz lemma, a name due to linear substitution
corresponding to partial derivation4. Both of the following lemmas are proved
by structural induction (for details we refer to [3]).

Lemma 2 (Schwartz). For α a sum of expressions, µ, ν sums of terms and
x, y variables such that y /∈ FV(µ), we have(

α〈ν/y〉
)
〈µ/x〉 =

(
α〈µ/x〉

)
〈ν/y〉+ α〈ν〈µ/x〉/y〉.

In particular if x /∈ FV(ν) then the second addend is 0 and the two substitutions
commute.

Lemma 3. For α, µ, ν, x, y as in the above lemma, and moreover y /∈ FV(ν),
we have(

α {y + ν/y}
)
〈µ/x〉 =

(
α〈µ/x〉

)
{y + ν/y}+ α〈ν〈µ/x〉/y〉 {y + ν/y} .

In particular if x /∈ FV(ν) then the two commute.

Furthermore we have, if x /∈ FV(µ) ∪ FV(ν),

(α {x+ µ/x}) {x+ ν/x} = α {x+ µ+ ν/x} = (α {x+ ν/x}) {x+ µ/x} .

Combined together, all the above implies that bag substitution is well defined,
given its condition on the variable. We give another result we will need later.

Lemma 4. If y /∈ FV(µ) ∪ FV(π) and x 6= y, then

– α〈〈π/y〉〉〈µ/x〉 = α〈µ/x〉〈〈π/y〉〉+ α〈〈π〈µ/x〉/y〉〉, and
– α {0/y} 〈µ/x〉 = α〈µ/x〉 {0/y}.

4 Indeed, notice the parallel between ∂ey

∂x
= ∂y

∂x
ey and [M !]〈N/x〉 = [M〈N/x〉]·[M !].

6 Michele Pagani and Paolo Tranquilli

M R µ
λ

λx.M R λx.µ

M R µ
@l

MP R µP

P R π
@r

MP RMπ

M R µ
bag`

[M]·P R [µ]·P
M R µ

bag!
[M !]·P R [µ!]·P

A R α sum
A+ β R α+ β

Fig. 3: Rules defining the passing to the context of a relation R. For linear
context, one just drops the bag! rule.

Proof. Sums pose no problems. Let us therefore reason, for the first point, by
induction on π = P . For P = 1 it amounts to seeing α〈µ/x〉 = α〈µ/x〉+α〈〈0/y〉〉.
For P = P ′ ·[L] we have by Schwartz lemma and inductive hypothesis:

α〈〈P ′/y〉〉〈L/y〉〈µ/x〉 = α〈〈P ′/y〉〉〈µ/x〉〈L/y〉+ α〈〈P ′/y〉〉〈L〈µ/x〉/y〉
= α〈µ/x〉〈〈P ′ ·[L]/y〉〉+ α〈〈(P ′〈µ/x〉)·[L]/y〉〉+ α〈〈P ′ ·([L]〈µ/x〉)/y〉〉

= α〈µ/x〉〈〈P/y〉〉+ α〈〈
(
(P ′〈µ/x〉)·[L] + P ′ ·([L]〈µ/x〉)

)
/y〉〉

= α〈µ/x〉〈〈P/y〉〉+ α〈〈P 〈µ/x〉/y〉〉.

For P = P ′ ·[L!] we have by Lemma 3 and inductive hypothesis:

α〈〈P ′/y〉〉 {y + L/y} 〈µ/x〉
= α〈〈P ′/y〉〉〈µ/x〉〈〈L!/y〉〉+ α〈〈P ′/y〉〉〈L〈µ/x〉/y〉〈〈L!/y〉〉

= α〈µ/x〉〈〈P ′ ·[L!]/y〉〉+ α〈〈P ′〈µ/x〉·[L!]/y〉〉+ α〈〈P ′ ·[L〈µ/x〉, L!]/y〉〉
= α〈µ/x〉〈〈P/y〉〉+ α〈〈(P ′ · [L!])〈µ/x〉/y〉〉 = α〈µ/x〉〈〈P/y〉〉+ α〈〈P 〈µ/x〉/y〉〉.

The second point is a straightforward induction on α. ut

2.1 Relations

We will now introduce the relations defining reductions in resource calculus. Such
relations will be in general defined by rules with premises and a conclusion.
Such rules then generate the relation R, meaning that R is the least relation
satisfying them, or equivalently is defined by inferences, i.e. trees made of such
rules. A relation T satisfies the rules generating a relation R if such rules with T
substituted for R are valid: then clearly R ⊆ T. We will use this to avoid repeating
identical steps in proofs by induction on the size of an inference of R. We denote
composition of relations by juxtaposition, so that a RT b iff ∃c s.t. a R c and c T b.

Definition 5 (Passing to the context). A binary relation R on N〈Λ(b)〉 passes
to the context (resp. to the linear context) whenever it satisfies all the rules of
Figure 3 (resp. all the rules but the bag! rule).

Definition 6 (Compatibility). We take a binary relation R on N〈Λ(b)〉 to be
compatible if it commutes with all constructors of N〈Λ(b)〉, i.e. it satisfies all the

Parallel Reduction in Resource Lambda-Calculus 7

var
x R x

M R µ P R π
@MP R µπ

M R µ
λλx.M R λx.µ

bag1
1 R 1

M R µ P R π
bag`

[M]·P R [µ]·π
M R µ P R π

bag!
[M !]·P R [µ!]·π

Ai R αi, for 1 ≤ i ≤ k
sumPk

i=1Ai R
Pk

i=1 αi

Fig. 4: Rules defining the compatibility for a relation R. In sum, 0 ≤ k 6= 1.

rules of Figure 4. We write of linear compatibility when commutation is with
all constructs but the (·)! one: formally, R is linearly compatible if it satisfies all
rules for compatibility but the bag! one, which is replaced by

P R π
bag!=

[M !]·P R [M !]·π

Lemma 7. A (linearly) compatible relation R is necessarily reflexive and passing
to (linear) context.

Proof. Reflexivity is evident as soon as one sees that equality is precisely the
relation generated by the rules for both linear and regular compatibility. One
then sees that all rules for passing to (linear) context are admissible under the
rules for (linear) compatibility, by using reflexivity. ut

We write that a relation is sum-independent if
∑
iAi R α implies that α =

∑
i βi

with Ai R= βi for all i, where R= is the reflexive closure of R. All the relations we
study here are sum-independent, a notion capturing the fact that no interaction
is possible between different addends of a sum. If the only rules introducing a
sum on the left are among the two for passing to context (sum) or compatibility
(sum), the generated relation is clearly sum-independent.

Further, we speak of a generalized rule meaning a rule where all expressions
in it are replaced by sums (using the notations of Figure 1(b) in the conclusion).
A relation strongly satisfies a rule if it satisfies its generalized version.

Lemma 8. The reflexive transitive closure R∗ of a sum-independent relation R
passing to (linear) context is sum-independent and (linearly) compatible.

Proof. (sketch) Sum-independence is immediate. Then, by going through all
passing to (linear) context rules, one sees that each one is strongly satisfied,
which enables to easily check that also compatibility rules are. All single pas-
sages are carried out by inductions on the reduction length.

Lemma 9. A (linearly) compatible sum-independent relation R strongly satisfies
the rules for (linear) compatibility.

Proof. (sketch) Straightforward check of all the rules.

8 Michele Pagani and Paolo Tranquilli

Definition 10 (β-Reduction). The β-reduction −→ is given by the rules for
passing to the context (Figure 3) plus the following one:

g
(λx.M)P −→M〈〈P/x〉〉 {0/x}

For an example of reduction, see the one given in the introduction. In [4,10] this
reduction is called the giant-step one (hence the name of the rule) to distinguish
it from the baby-step one we will discuss in Section 5.

Definition 11 (Outer, Inner Reduction). The outer reduction is the rela-
tion o−→ generated by the rule g of Definition 10 and the rules of passing the
linear context (Figure 3 but the bag! rule). The inner reduction is the relation
i−→ generated by the rules of passing the context and the following rule

M
o−→ µ

in
[M !]·P i−→ [µ!]·P

Informally, outer reduction is the one reducing linear redexes not inside a (·)!,
inner is the rest. The rules we have provided for the inner reduction allow for more
neat proofs. Notice the difference between o−→ and the λ-calculus head reduction:
we have

(
λx.(λy.y)[N !]

)
[L!] o−→ (λx.N)[L!], which is false for head reduction. We

will see in Example 28 how usual head redexes are not sufficient for reaching
head normal forms, and linear arguments are to be taken into account as well.
At this point we decided, mainly for the sake of elegance, to extend the notion
to all linear redexes, even if under the scope of another linear redex.

Fact 12. We have that −→ = o−→∪ i−→ as is expected: o−→∪ i−→ satisfies the rules of
−→, and −→ those of both o−→ and i−→.

Fact 13. Using Lemma 9 one can also easily check that the relations ∗−→, i∗−→
and o∗−→ are sum-independent and strongly satisfying all of the rules for (linear)
compatibility.

3 Confluence

Definition 14 (Parallel reduction). The parallel reduction⇒ (resp. the par-
allel outer reduction o⇒) is generated by the compatibility rules (resp. the linear
compatibility rules) plus the following one:

M ⇒ µ P ⇒ π
g

(λx.M)P ⇒ µ〈〈π/x〉〉 {0/x}

Fact 15. ⇒ and o⇒ are sum-independent and strongly satisfying all of their
rules: by Lemma 9 only the new rule must be checked, which is immediate by
multilinearity of the substitution operator.

Parallel Reduction in Resource Lambda-Calculus 9

We will thus be liberal when saying we apply one of the rules for parallel reduc-
tion, by allowing them with sums of expressions in the premises.

Lemma 16 (Closures coincide). We have that −→ ⊆ ⇒ ⊆ ∗−→. In particular
∗−→ = ∗⇒ The same holds for o−→ and o⇒.

Proof. We show both inclusions by seeing that the right end satisfies the rules
of the left one. For the first inclusion, by Lemma 7 just the g rule needs to be
checked. This is straightforward by the g rule and reflexivity of ⇒ (Lemma 7).
For the second inclusion, by Lemma 8 only the g rule must be checked. Suppose
therefore that M ∗−→ µ and P

∗−→ π. By compatibility of ∗−→ (Lemma 8) we have
(λx.M)P ∗−→ (λx.µ)π ∗−→ µ〈〈π/x〉〉 {0/x} , where the last reduction (given by g) is
by compatibility with sum. The distinction between −→ and o−→ is left to Lemma 8.

ut

Lemma 17 (Substitution for⇒). For α⇒ β and π ⇒ σ we have α〈〈π/x〉〉 ⇒
β〈〈σ/x〉〉 and α {0/x} ⇒ β {0/x}. The same holds for o⇒.

Proof. For the first result we reason by a primary induction on the size of π.
We proceed by splitting over the last rule used to infer π ⇒ σ. The proof for o⇒
proceeds almost identically, and we will highlight only its differences.
Case I (bag1, π = 1 = σ). As α〈〈1/x〉〉 = α⇒ β = β〈〈1/x〉〉 we are done.
Case II (bag!, π = [N !]·Q). We have σ = [ν!]·τ with N ⇒ ν (ν = N for o⇒)
and Q ⇒ τ . Once we show that α {x+N/x} ⇒ β {x+ ν/x} = β〈〈[ν!]/x〉〉 we
would be done, as by inductive hypothesis on Q we would get

α〈〈π/x〉〉 = α {x+N/x} 〈〈Q/x〉〉 ⇒ β〈〈[ν!]/x〉〉〈〈τ/x〉〉 = β〈〈σ/x〉〉.

We show it by induction on α. All but the base step for α a variable is trivial,
as the substitution commutes with all the constructors, and ⇒ is strongly com-
patible with them by Fact 15. For o⇒, in the case α = [M !], we have β = α and
there is nothing to prove. If α = y = β we have

y {x+N/x} = y + δx,yN ⇒ y + δx,yν = y〈〈[ν!]/x〉〉.

Case III (bag`, π = [N]·Q). As in the above case, we just need to show that
α〈N/x〉 ⇒ β〈ν/x〉 when N ⇒ ν, as then the rest follows by inductive hypothesis
on Q. Again we reason by a secondary induction on α, splitting on which rule
was last used to infer α ⇒ β. Apart the base cases var, bag1, the other cases
uses secondary induction hypothesis and the strong compatibility of ⇒ (resp.
strong linear compatibility of o⇒).
Subcase III.a (var). We have α = y = β, and y〈N/x〉 = δx,yN ⇒ δx,yν =
y〈〈[ν]/x〉〉.
Subcase III.b (@). We have α = MR with M ⇒ µ, R⇒ ρ and β = µρ. Then

α〈N/x〉 = M〈N/x〉R + MR〈N/x〉 ⇒ µ〈ν/x〉ρ + µρ〈ν/x〉 = (µρ)〈ν/x〉.

10 Michele Pagani and Paolo Tranquilli

x∗ := x, 1∗ := 1,

(λx.M)∗ := λx.M∗, [N]∗ := [N∗],

(MP)∗ := M∗P ∗ if M is not an abstraction, [N !]∗ := [(N∗)
!
],

((λx.M)P)∗ := M∗〈〈P ∗/x〉〉 {0/x} , (P ·Q)∗ := (P ∗ ·Q∗).

Fig. 5: Inductive definition of developments.

Subcase III.c (g). α = (λy.M)R, with M ⇒ µ, R⇒ ρ and β = µ〈〈ρ/y〉〉 {0/y},
and by inductive hypothesis M〈N/x〉 ⇒ µ〈ν/x〉 and R〈N/x〉 ⇒ ρ〈ν/x〉. Now,
supposing y 6= x and y 6∈ FV(N) ⊇ FV(ν),

α〈N/x〉 = (λy.M〈N/x〉)R+ (λy.M)(R〈N/x〉)
⇒ µ〈ν/x〉〈〈ρ/y〉〉 {0/y}+ µ〈〈ρ〈ν/x〉/y〉〉 {0/y}

= µ〈〈ρ/y〉〉〈ν/x〉 {0/y} = µ〈〈ρ/y〉〉 {0/y} 〈ν/x〉,

where apart the inductive hypothesis we used Lemma 4.
Subcase III.d (otherwise). The other inductive steps are either trivial or easily
carried over by using arguments like the above.
Case IV (sum, π = P1 + · · · + Pk). We have α〈〈π/x〉〉 =

∑
i α〈〈Pi/x〉〉 and

σ =
∑
i ρi with Pi ⇒ ρi. We can apply inductive hypothesis k times and the sum

rule to get

α〈〈π/x〉〉 =
∑
i α〈〈Pi/x〉〉 ⇒

∑
i β〈〈ρi/x〉〉 = β〈〈σ/x〉〉.

The result for α {0/x} is an easy induction on the derivation α⇒ β. ut

Definition 18 (Developments α∗ and α~). Given an expression A its de-
velopment A∗ ∈ N〈Λ(b)〉 is defined inductively in Figure 5. The definition is
extended to sums by linearity. The linear development α~ is defined by the same
inductive rules (just replace ∗ with ~), but for [N !] where [N !]~ := [N !].

The name is due to the fact that it is a direct definition of the unique normal
form one would get in proving the finite development theorem.

Lemma 19 (Main Lemma). For any β such that α ⇒ β (resp. α o⇒ β), we
have β ⇒ α∗ (resp. β o⇒ α~).

Proof. By induction on α, splitting on the last rule used for α⇒ β (resp. α o⇒ β).
Again, we use only ⇒, and we mark only where the proof differs for o⇒.
Case I (var, α = x). As α∗ = x = β and we are done.
Case II (@, α = NP). We have β = νπ with N ⇒ ν and P ⇒ π. By inductive
hypothesis ν ⇒ N∗ and π ⇒ P ∗. We have two subcases.
Subcase II.a (N not an abstraction). We directly have νπ ⇒ N∗P ∗ = (NP)∗

by a generalized @ rule (Fact 15).
Subcase II.b (N = λx.L). We have then that ν = λx.δ with L⇒ δ ⇒ L∗ by
inductive hypothesis. Then by a generalized g rule (Fact 15) we have (λx.δ)π ⇒

Parallel Reduction in Resource Lambda-Calculus 11

L∗〈〈P ∗/x〉〉 {0/x} = α∗.
Case III (g, α = (λx.L)P). Again we have L ⇒ δ ⇒ L∗ and P ⇒ π ⇒ P ∗

by inductive hypothesis, where β = δ〈〈π/x〉〉 {0/x}. Then by Lemma 17 we have
β = δ〈〈π/x〉〉 {0/x} ⇒ L∗〈〈P ∗/x〉〉 {0/x} = α∗.
Case IV (Otherwise). The cases for sum and bag1 are trivial, while the ones for
bag` and bag! (resp. bag!= for o⇒) are analogous to the non-redex application
(Subcase II.a). ut

Theorem 20 (Confluence). Both the β-reduction and the outer reductions are
confluent.

Proof. Lemma 19 gives strong confluence of ⇒, which in turn gives strong con-
fluence of ∗⇒ = ∗−→ (Lemma 16), another way to say that −→ is confluent. The
reasoning for o−→ is identical. ut

We could similarly prove the same for i−→, though we restrain from doing so just
because the proof would not have the same complete similarity as do the two for
−→ and o−→.

4 Standardization

Definition 21 (Inner Parallel Reduction). The inner parallel reduction is
the relation i⇒ generated by the rule

M
o∗−→ ν ν

i⇒ µ P
i⇒ π

in
[M !]·P i⇒ [µ!]·π

and those for compatibility (Figure 4) but the bag! rule.

We excluded the bag! as it is derivable from in, so that i⇒ is compatible anyway.
Notice that i⇒ 6⊆ ⇒, as the outer reduction in the premise of in can go out of it.
In fact it is an inductive definition of a “huge” relation: once the standardization
theorem will be proved, but only then, it will turn out that i⇒ = i∗−→.

Fact 22. Using Lemma 9, one sees that i⇒ is sum-independent and strongly
satisfying all of its rules.

Lemma 23. We have that i−→ ⊆ i⇒ ⊆ i∗−→. In particular i∗−→ = i∗⇒.

Proof. By in and the reflexivity of i⇒ (Lemma 7), i⇒ satisfies the in rule. More-
over i⇒ passes to the context (still Lemma 7), so i⇒ satisfies all rules generating
i−→. We conclude i−→ ⊆ i⇒.

Let us prove i⇒ ⊆ i∗−→ by showing that i∗−→ enjoys the rules generating i⇒.
Lemma 8 proves that i∗−→ is compatible. As for in, suppose M o∗−→ ν, ν i∗−→ µ

and P
i∗−→ π, we must prove [M !]·P i∗−→ [µ!]·π. By an easy induction on the

length of M o∗−→ ν one has [M !] i∗−→ [ν!], and by the compatibility of i∗−→ we have
[M !]·P i∗−→ [ν!]·P i∗−→ [µ!]·π. ut

12 Michele Pagani and Paolo Tranquilli

Lemma 24 (Substitution for o∗−→). For α o∗−→ β and π
o∗−→ ρ we have that

α〈〈π/x〉〉 o∗−→ β〈〈ρ/x〉〉 and α {0/x} o∗−→ β {0/x}.

Proof. By Lemma 16, we have o∗−→ = o∗⇒, so we can reason with o⇒ only. Then a
direct iteration of Lemma 17 (together with reflexivity of o⇒) yields α〈〈π/x〉〉 o∗⇒
β〈〈π/x〉〉 o∗⇒ β〈〈σ/x〉〉, together with α {0/x} o∗⇒ β {0/x}. ut

Substitution on inner reductions is subtler: in general α i∗−→ β and π i∗−→ ρ do
not entail α〈π/x〉 i∗−→ β〈ρ/x〉. For example take M = y[(I[x])!] and N = y[x!],
we have M i∗−→ N but M〈z/x〉 ≡ y[I[z], (I[x])!] i∗−→/ N〈z/x〉 ≡ y[z, x!]. However
what suffices for standardization is the following lemma.

Lemma 25 (Substitution for i⇒). Suppose α
i⇒ β and π

i⇒ ρ, then there
is βo ∈ N〈Λ(b)〉 such that α〈〈π/x〉〉 o∗−→ βo

i⇒ β〈〈ρ/x〉〉. Moreover α {0/x} i⇒
β {0/x}.

Proof. The proof of α {0/x} i⇒ β {0/x} is a straightforward induction on the
derivation of α i⇒ β, using Fact 22 and, for the in rule case, Lemma 24. As
for α〈〈π/x〉〉 o∗−→ βo

i⇒ β〈〈ρ/x〉〉, we do induction on the derivation of π i⇒ ρ. As
usual, we will use Fact 22 implicitly. We split in cases, depending on the last rule
inferring π i⇒ ρ. The case bag1 is trivial, and the case sum is an easy consequence
of the linearity in π and the induction hypothesis.
Case I (in). We have π = [N !]·Q, ρ = [ν!]·τ and N

o∗−→ νo
i⇒ ν, Q i⇒ τ . Once

we have proved that α〈〈N !/x〉〉 o∗−→ βo
i⇒ β〈〈[ν!]/x〉〉, we would be done, as by

Lemma 24 and inductive hypothesis on Q we would have

α〈〈N !/x〉〉〈〈Q/x〉〉 o∗−→ βo〈〈Q/x〉〉
o∗−→ βoo

i⇒ β〈〈[ν!]/x〉〉〈〈Q/x〉〉 = β〈〈ρ/x〉〉.

The proof of α〈〈N !/x〉〉 o∗−→ βo
i⇒ β〈〈[ν!]/x〉〉 is by induction on the derivation

α
i⇒ β.

Subcase I.a (var). If α = β = y, then by compatibility α {x+N/x} =
y + δx,yN

o∗−→ y + δx,yνo
i⇒ y + δx,yν = β〈〈[ν!]/x〉〉.

Subcase I.b (in). We have α = [M !]·R, β = [µ!]·ρ′ and M
o∗−→ µo

i⇒ µ,
R

i⇒ ρ′. By Lemma 24 and inductive hypothesis on µo
i⇒ µ and R

i⇒ ρ′, we
have M〈〈N !/x〉〉 o∗−→ µo〈〈N !/x〉〉 o∗−→ µoo

i⇒ µ〈〈[ν!]/x〉〉 and R〈〈N !/x〉〉 o∗−→ ρo
i⇒

ρ′〈〈[ν!]/x〉〉. By compatibility of o∗−→ and a generalized in rule we have

[(M〈〈N !/x〉〉)!]·R〈〈N !/x〉〉 o∗−→ [(M〈〈N !/x〉〉)!]·ρo
i⇒ [(µ〈〈[ν!]/x〉〉)!]·ρ′〈〈[ν!]/x〉〉.

Subcase I.c (@). We have α = MR, β = µρ′ and M
i⇒ µ, R i⇒ ρ′. By in-

duction hypothesis we have M〈〈N !/x〉〉 o∗−→ µo
i⇒ µ〈〈[ν!]/x〉〉 and R〈〈N !/x〉〉 o∗−→

ρ′o
i⇒ ρ′〈〈[ν!]/x〉〉. We conclude by strong compatibility M〈〈N !/x〉〉R〈〈N !/x〉〉 o∗−→

µoρ
′
o

i⇒ µ〈〈[ν!]/x〉〉ρ′〈〈[ν!]/x〉〉.

Parallel Reduction in Resource Lambda-Calculus 13

Subcase I.d (Otherwise). The case bag` is similar to the previous @ case; bag1
is trivial and λ, sum are easy consequences of the induction hypothesis.
Case II (bag`). We have π = [N]·Q, ρ = ν·τ , with N

i⇒ ν and Q
i⇒ τ . As

in the previous case, once we prove that α〈N/x〉 o∗−→ βo
i⇒ β〈〈[ν]/x〉〉 we would

have concluded, as by Lemma 24 and inductive hypothesis on Q
i⇒ τ , we have

α〈N/x〉〈〈Q/x〉〉 o∗−→ βo〈〈Q/x〉〉
o∗−→ βoo

i⇒ β〈〈[ν]/x〉〉〈〈τ/x〉〉 = β〈〈ρ/x〉〉. We do in-
duction on the derivation of α i⇒ β.
Subcase II.a (var). If α = β = y, then by compatibility α〈N/x〉 = δx,yN

i⇒
δx,yν = β〈ν/x〉.
Subcase II.b (in). If α = [M !]·Q, β = [µ!]·τ and M

o∗−→ µo, µo
i⇒ µ, Q i⇒ τ ,

then Lemma 24 gives M〈N/x〉 o∗−→ µo〈N/x〉, and induction hypothesis yields
µo〈N/x〉

o∗−→ µoo
i⇒ µ〈ν/x〉 and Q〈N/x〉 o∗−→ τo

i⇒ τ〈ν/x〉. By strong compati-
bility and in, we have

α〈N/x〉 = [M〈N/x〉,M !]·Q+ [M !]·Q〈N/x〉 o∗−→ [µoo,M !]·Q+ [M !]·τo
i⇒ [µ〈ν/x〉, µ!]·τ + [µ!]·τ〈ν/x〉 = β〈ν/x〉.

Subcase II.c (bag`). If α = [M] · Q, β = [µ] · τ and M
i⇒ µ, Q i⇒ τ ,

then induction hypothesis yields M〈N/x〉 o∗−→ µo
i⇒ µ〈ν/x〉 and Q〈N/x〉 o∗−→

τo
i⇒ τ〈ν/x〉. Strong compatibility of o∗−→ yields [M〈N/x〉]·Q o∗−→ [µo]·Q and

[M]·[Q〈N/x〉] o∗−→ [M]·τo. Strong compatibility of i⇒ gives [µo]·Q
i⇒ [µ〈ν/x〉]·τ

and [M]·τo
i⇒ [µ]·τ〈ν/x〉. Finally we conclude by the sum rule:

α〈N/x〉 = [M〈N/x〉]·Q+ [M]·Q〈N/x〉 o∗−→ [µo]·Q+ [M]·τo
i⇒ [µ〈ν/x〉, µ]·τ + [µ]·τ〈ν/x〉 = β〈ν/x〉.

Subcase II.d (Otherwise). The rule @ is handled similarly to the case bag`;
the cases λ and sum are easy consequences of the induction hypothesis; the rule
bag1 is immediate. ut

Lemma 26 (Postponement). We have i⇒ o−→ ⊆ o∗−→ i⇒.

Proof. Let α i⇒ α′
o−→ β, we prove there is γ ∈ N〈Λ(b)〉 such that α o∗−→ γ

i⇒ β.
Suppose that α′ o−→ β is inferred by rule g, all other cases are easy variants and
omitted. So, let α′ = (λx.M ′)P ′ and β = M ′〈〈P ′/x〉〉 {0/x}. Under these hypoth-
esis α i⇒ α′ can be obtained only by means of a @ rule, therefore α = (λx.M)P
with M

i⇒ M ′ and P
i⇒ P ′. By Lemma 25 there is a sum ν ∈ N〈Λ〉 such that

M〈〈P/x〉〉 {0/x} o∗−→ ν
i⇒M ′〈〈P ′/x〉〉 {0/x}. Hence α o−→M〈〈P/x〉〉 {0/x} o∗−→ ν

i⇒
M ′〈〈P ′/x〉〉 {0/x} = β. ut

Theorem 27 (Standardization). We have ∗−→ = o∗−→ i∗−→.

14 Michele Pagani and Paolo Tranquilli

Proof. Fact 12 gives ∗−→ = (o−→ ∪ i−→)∗, and Lemma 23 o−→ ∪ i−→ ⊆ o−→ ∪ i⇒. Then
α
∗−→ β entails α o∗−→ i⇒ · · · o∗−→ i⇒ β. By iterating Lemma 26 we have α o∗−→i∗⇒ β.

So Lemma 23 allows us to conclude α o∗−→ i∗−→ β. ut
In λ-calculus we have a notion of strong standardization stating that there is

a deterministic history-free strategy leading to a normal form (resp. head normal
form), e.g. left reduction. By history-free, we mean that the redex is chosen by
just looking at the term, regardless of the previous steps. In contrast, we argue
that resource calculus has no history-free effective strategy assuring a normal
form (resp. a head normal form) whenever it exists.

Example 28. Let us consider I[I!,
(
x[Ω, I1]

)!], where Ω = (λx.x[x!])λx.x[x!] is
the typical diverging term. We have I[I!, (x[Ω, I1])!] o−→ I + x[Ω, I1] o−→ I. In the
second term, we have two choices among the two linear arguments of the bag.
Choosing the first loops, while the second normalizes. However in general making
the right decision should be akin to solving the halting problem.
What could probably be done, though it is outside the scope of this work, is de-
vising a kind of fair strategy, in the sense of concurrent programming. By craftily
marking the redexes, one could probably make sure that, though sequentially,
all parallel subterms get a chance to be reduced, so that if there is a reduction
to 0 it would be found.

4.1 An application.

In a forthcoming paper the first author and Ronchi della Rocca characterize dif-
ferent notions of resource calculus solvability by means of the following definition
of may-head and must-head normalizability :
Definition 29 (Head Normal Form). We define simultaneously the class of
terms and that of bags in head normal form, hnf for short:

– λx.M is a hnf iff M is a hnf;
– yP1 . . . Pn is a hnf iff each Pi is a hnf;
– P = [M (!)

1 , . . . ,M
(!)
m] is a hnf iff for each i, M (!)

i = Mi entails Mi is a hnf.

In case of a sum
∑m
i=1Ai of expressions, we have two different notions of head

normal form:

–
∑m
i=1Ai is a may-head normal form, mhnf for short, iff there is a i ≤ m

such that Ai is a head normal form;
–
∑m
i=1Ai is a must-head normal form, Mhnf for short, iff m 6= 0 and for

every i ≤ m, Ai is a head normal form.

An expression A is may-head normalizable (resp. must-head normalizable) if it
is reducible to a mhnf (resp. Mhnf).

Corollary 30 (Head Normalization). Whenever α is may-head (resp. must-
head) normalizable, there is a mhnf (resp. Mhnf) β such that α o∗−→ β.

Proof. Immediate from Theorem 27 and the fact that whenever β′ i∗−→ β we have
β′ mhnf (resp. Mhnf) iff β mhnf (resp. Mhnf). ut

Parallel Reduction in Resource Lambda-Calculus 15

5 Baby-Step Reduction

This section is devoted to presenting another, more atomic reduction of resource
terms.

Definition 31. The baby-step reduction b−→ (resp. outer baby-step reduction
ob−→) is the relation generated by the rules for passing to context (resp. to linear
context) of Figure 3 plus the following two:

b
(λx.M)[N (!)]·P b−→ (λx.M〈〈N (!)/x〉〉)P

b1
(λx.M)1 b−→M {0/x}

The inner baby-step reduction ib−→ is b−→ \ ob−→.

Lemma 32. We have (λx.µ)P b∗−→ (λx.µ〈〈P/x〉〉)1. In particular −→ ⊆ b∗−→. The
same holds for the outer and inner versions.

Proof. We can proceed by induction on P : if P = 1 then the reduction chain is
empty and we are done. If P = [L(!)]·Q then (supposing µ =

∑
iMi)

(λx.µ)P =
∑
i(λx.Mi)[L(!)]·Q b∗−→

∑
i(λx.Mi〈〈L(!)/x〉〉)Q

b∗−→
∑
i(λx.Mi〈〈L(!)/x〉〉〈〈Q/x〉〉)1 = (λx.µ〈〈P/x〉〉)1,

where in the first reduction we used compatibility with sum, while in the second
both it and inductive hypothesis. Applying final baby steps to all addends in
(λx.M)P ∗−→ (λx.M〈〈P/x〉〉)1 and closing by (linear) context gives the result on
−→ (resp. o−→). The result for ib−→ and i−→ follows. ut

Lemma 33. We have that b−→ ⊆ ≡β, where the β-equivalence ≡β is as usual
(←−∪−→)∗. The same holds for the outer versions of the two reductions.

Proof. We check that −→ ∗←− satisfies the rules of b−→, concluding b−→ ⊆ −→ ∗←− ⊆ ≡β .
Notice first of all that ∗←− is compatible as ∗−→ is (Lemma 8). Then −→ ∗←− passes to
context, and we need to check just the two new rules. Of the two b1 is a special
case of g, while for the b rule we have

(λx.M)[L(!)]·P −→M〈〈[L(!)]·P/x〉〉 {0/x} ∗←− (λx.M〈〈[L(!)]/x〉〉)P,

where there is the need of the transitive reflexive closure as a sum may have
arisen. Notice that Lemma 8 assures that the result is valid for ob−→ also. ut

In particular by the above lemmas we have that the equational theory of the two
reductions is the same.

Theorem 34 (Confluence of baby-steps). The baby-step reduction and the
outer baby-step reduction is confluent.

16 Michele Pagani and Paolo Tranquilli

Proof. By Lemma 33, confluence of −→ (which as known entails ≡β = ∗−→ ∗←−) and
Lemma 32, we have b∗←− b∗−→ ⊆ ≡β = ∗−→ ∗←− ⊆ b∗−→ b∗←−. The same passages on ob−→
give the result for the outer reduction. ut

The next question is whether the standardization result as presented by The-
orem 27 is valid also for b−→, but the answer is negative.

Example 35. Take M = (λd.I)[(I[x!, y!])!]. It is easily shown that I[x!, y!] ob∗−−→
x+ y, which in turn gives rise to the following chain:

M
i∗−→ (λd.I)[(x+ y)!] = (λd.I)[x!, y!] ob−→ (λd.I)[y!].

However the only outer redex in M gives rise in a single step to M ob−→ (λd.I)1,
so that y is lost as soon as we make an outer reduction, which makes (λd.I)[y!]
unreachable.
The catch is that the baby-step reduction is somewhat too atomic: as inner sums
may split the elements of a bag, an inner reduction may change outer redexes in
way to which only the baby reduction is sensitive to. However, as normal forms
of the two reduction coincide, we can still get a weaker result.

Theorem 36. Whenever α b∗−→ β and β is normal (resp. a mhnf or a Mhnf),
then α

ob∗−−→ ib∗−−→ β.

Proof. By Lemma 33 and confluence (thus uniqueness of normal form) we get
α
∗−→ β. By Theorem 27 α o∗−→ i∗−→ β, which by Lemma 32 entails the result.
The part about head normalization is a direct consequence of Corollary 30

and the above fact. ut

References

1. Boudol, G.: The lambda-calculus with multiplicities. INRIA Research Report 2025
(1993)

2. Milner, R.: Functions as processes. Mathematical Structures in Computer Science
2 (1992) 119–141

3. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theor. Comput. Sci.
309(1) (2003) 1–41

4. Tranquilli, P.: Intuitionistic differential nets and lambda calculus. Theor. Comput.
Sci., to appear (2008)

5. Ehrhard, T., Regnier, L.: Differential interaction nets. Theor. Comput. Sci. 364(2)
(2006) 166–195

6. Girard, J.Y.: Linear logic. Th. Comp. Sc. 50 (1987) 1–102
7. Takahashi, M.: Parallel reductions in lambda-calculus. Information and Compu-

tation 118(1) (April 1995) 120–127
8. Ehrhard, T., Regnier, L.: Böhm trees, Krivine’s machine and the Taylor expansion

of lambda-terms. In Beckmann, A., Berger, U., Löwe, B., Tucker, J.V., eds.: CiE.
Volume 3988 of Lecture Notes in Computer Science., Springer (2006) 186–197

9. Ehrhard, T., Regnier, L.: Uniformity and the Taylor expansion of ordinary lambda-
terms. Theor. Comput. Sci. 403(2-3) (2008) 347–372

10. Tranquilli, P.: Nets between determinism and nondeterminism. Ph.D. thesis, Uni-
versità Roma Tre/Université Paris Diderot (Paris 7) (April 2009)

