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Edge Decompositions of Hypercubes by Paths and by Cycles

If H is isomorphic to a subgraph of G, we say that H divides G if there exist embeddings θ 1 , θ 2 , . . . , θ k of H such that

For purposes of simplification we will often omit the embeddings, saying that we have an edge decomposition by copies of E(H).

Many authors have studied this notion for various subgraphs of hypercubes. We continue such a study in this paper.

Introduction and Preliminary Results

Definition 1 If H is isomorphic to a subgraph of G, we say that H divides G if there exist embeddings θ 1 , θ 2 , . . . , θ k of H such that {{E(θ 1 (H)), E(θ 2 (H)), . . . , E(θ k (H))} is a partition of E(G).

Ramras [START_REF] Ramras | Symmetric edge-decompositions of hypercubes[END_REF] has defined a more restrictive concept.

Definition 2 A fundamental set of edges of a graph G is a subset of E(G) whose translates under some subgroup of the automorphism group of G partition E(G).

Edge decompositions of graphs by subgraphs have a long history. For example, there is a Steiner triple system of order n if and only if the complete graph K n has an edge-decomposition by K 3 . In 1847 Kirkman [START_REF] Kirkman | On a Problem in Combinatorics[END_REF] proved that for a Steiner triple system to exist it is necessary that n ≡ 1 (mod 6) or n ≡ 3 (mod 6). In 1850 he proved the converse holds also [START_REF] Kirkman | Note on an unanswered prize question[END_REF].

Theorem 1 A Steiner system of order n ≥ 3 exists if and only if n ≡ 1 (mod 6)) or n ≡ 3 (mod 6).

In more modern times (1964) G. Ringel [START_REF] Ringel | Problem 25, Theory of Graphs and its Applications[END_REF] stated the following conjecture, which is still open.

Conjecture 1 If T is a fixed tree with m edges then K 2m+1 is edge-decomposable into 2m + 1 copies of T .

By Q n we mean the n-dimensional hypercube. We regard its vertex set, V (Q n ), as P({1, 2, . . . , n}), the set of subsets of {1, 2, . . . , n}. Two vertices x and y are considered adjacent (so x, y ∈ E(Q n )) if | x∆y | = 1, where ∆ denotes the symmetric difference of the two subsets x and y. (V (Q n ), ∆) is isomorphic as a group to (Z n 2 , +). Occasionally, when convenient, we shall use the vector notation for vertices; thus x and y are adjacent precisely when they differ in exactly one component. Note that for k < n, P({1, 2, . . . , k}) ⊂ P({1, 2, . . . , n}) so that V (Q k ) ⊂ V (Q n ). In fact, from the definition of adjacency, it follows that Q k is an induced subgraph of Q n .

Beginning in the early 1980's, interest in hypercubes (and similar hypercubelike networks such as "cube-connected cycles" and "butterfly" networks) increased dramatically with the construction of massively parallel-processing computers, such as the "Connection Machine" whose architecture is that of the 16-dimensional hypercube, with 2 16 = 65, 536 processors as the vertices. Problems of routing message packets simultaneously along paths from one processor to another led to an interest in questions of edge decompositions of E(Q n ) by paths. An encyclopedic discussion of this and much more can be found in [START_REF] Leighton | Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes[END_REF].

In [START_REF] Ramras | Symmetric edge-decompositions of hypercubes[END_REF] we have shown that if G is a subgroup of Aut(Q n ) and for all g ∈ G, with g = id (where id denotes the identity element), g(E(H)) ∩ E(H) = ∅, then there is a packing of these translates of E(H) in Q n , i.e. they are pair-

wise disjoint. If, in addition, | E(H) | • | G | = n • 2 n-1 = | E(Q n ) |, then the translates of E(G) by the elements of G yield an edge decomposition of Q n .
In [START_REF] Ramras | Symmetric edge-decompositions of hypercubes[END_REF] it is shown that every tree on n edges can be embedded in Q n as a fundamental set. (This result for edge decompositions was obtained independently by Fink [START_REF] Fink | On the decomposition of n-cubes into isomorphic trees[END_REF]). In [START_REF] Ramras | Fundamental Subsets of Edges of Hypercubes[END_REF] this is extended to certain trees and certain cycles on 2n edges. Decompositions of Q n by k-stars are proved for all k ≤ n in [START_REF] Bryant | Star decompositions of cubes[END_REF]. Recently, Wagner and Wild [START_REF] Wagner | Decomposing the hypercube Q n into n isomorphic edge-disjoint trees[END_REF] have constructed, for each value of n, a tree on 2 n-1 edges that is a fundamental set for Q n . The structure of Aut(Q n ) is discussed in [START_REF] Ramras | Symmetric edge-decompositions of hypercubes[END_REF]. For each subset A of {1, 2, . . . , n}, the complementing automorphism σ A is defined by σ A (x) = A∆{x}. Another type of automorphism arises from the group of permutations S n of {1, 2, . . . , n}. For x = {x 1 , x 2 , . . . , x m } ⊆ {1, 2, . . . , n} and θ ∈ S n we denote by ρ θ(x) the vertex {θ(x 1 ), θ(x 2 ), . . . , θ(x m )}. The mapping ρ θ : V (Q n ) -→ V (Q n ) defined in this way is easily seen to belong to Aut(Q n ). Every automorphism in Aut(Q n ) can be expressed uniquely in the form σ A • ρ θ , where this notation means that we first apply ρ θ . Note:

ρ θ • σ A = σ θ(A) • ρ θ .
To avoid ambiguity in what follows we make this definition:

Definition 3 By P k , the "k-path", we mean the path with k edges.

Questions (1) For which k dividing n • 2 n-1 does P k divide Q n ? (2) For which k dividing n • 2 n-1 does C k , the cycle on k edges, divide Q n ? (3) 
For those k for which the answer to either (1) or ( 2) is "yes", is the edge set used in the decomposition a fundamental set for Q n ?

We begin this introductory section with some examples. In later sections we prove a variety of results relating to these questions, and in the final section we summarize our findings.

Example 1

Let T be the 2-star (= the 2-path) contained in Q 3 with center 000, and leaves 100, 010. Then G = {id, σ 123 , σ 1 ρ (123) , σ 12 ρ (132) , σ 3 ρ (132) , σ 23 ρ (123) } is a (cyclic) subgroup of Aut(Q 3 ) of order 6, and the 6 translates of T under G yield an edge decomposition of Q 3 .
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Note, however, that G does not work for the 2-star T ′ , whose center is 000 and whose leaves are 100 and 001. The subgroup which works for this 2-star is G ′ = {id, σ 123 , σ 1 ρ (132) , σ 13 ρ (123) , σ 2 ρ (123) , σ 23 ρ (132) }.

Example 2 P 6 does not divide Q 3 . For since Q 3 has 12 edges, if P 6 did divide Q 3 then Q 3 would have an edge-decomposition consisting of 2 copies of P 6 . The degree sequence (in decreasing order) of each P 6 is 2, 2, 2, 2, 2, 1, 1, 0, whereas Q 3 , of course, is 3-regular. Thus the vertex of degree 0 in one P 6 would require a degree of 3 in the other, which is impossible.
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Example 3 P 4 does not divide Q 3 . Since P 4 has 4 edges, we would need 3 copies of P 4 for an edge-decomposition of Q 3 . Call the three copies of P 4 P (1) , P (2) , and P (3) . At each vertex v of Q 3 , 1≤i≤3 deg P (i) (v) = 3. Label the vertices of Q 3 (v 1 ) to (v 8 ) such that the degree sequence of P (1) , is decreasing. Consider the 3 × 8 array deg P ( i) (v j ) . The first row is thus 2 2 2 1 1 0 0 0. In the second and third rows, in order for the column sums to be 3, there must be exactly 3 1's (and 3 0's) in the first 3 columns. Similarly, in the last 3 columns there must be exactly 3 1's (and 3 0's). Thus in the second and third rows we have at least 6 1's, and so at least one of these rows must have at least 3 1's. But each row is a permutation of the first, which has only 2 1's. Contradiction. Hence P 4 does not divide Q 3 .
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Example 4

Since Q 3 is 3-regular, the 4-star is not a subgraph. The other tree on 4 edges does divide Q 3 . Let T be the 3-star centered at 000 union the edge 001, 101 . Let G =< σ 23 ρ (123) >, which is a cyclic subgroup of Aut(Q 3 ) of order 3. A straight-forward calculation shows that the translates of T under G form an edge decomposition of Q 3 .
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Proposition 1 For k ≥ 3, P 2 k does not divide Q 2k+1 .
Proof. Suppose that k ≥ 3, and suppose that P 2 k divides Q 2k+1 . The matrix (a iv ) formed by the degree sequences of copies of P 2 k has 2 2k+1 columns, and

(2k + 1) • 2 2k /2 k = (2k + 1)2 k
rows. Then since each row has exactly two 1's, the entire matrix has (2k + 1)2 k+1 1's. But since each vertex of Q 2k+1 has degree 2k + 1, each column sum is 2k + 1, and thus each column has at least one 1. Thus there must be at least 2 2k+1 1's in the matrix. Therefore, (2k + 1)

2 k+1 ≥ 2 2k+1 . This is equivalent to 2k + 1 ≥ 2 k . But for k ≥ 3 this is clearly false. Thus for k ≥ 3, P 2 k does not divide Q 2k+1 . 2 We will prove in Section 3 that for k = 2, P 2 k does divide Q 2k+1 .
The next result is Proposition 8 of [START_REF] Ramras | Fundamental Subsets of Edges of Hypercubes[END_REF].

Proposition 2 Let n be odd, and suppose that

P k divides Q n . Then k ≤ n. Lemma 1 "Divisibility" is transitive, i.e. if G 1 divides G 2 and G 2 divides G 3 , then G 1 divides G 3 .
Proof. This follow immediately from the definition of "divides".
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Corollary 1 If k divides n then P k divides Q n .
Proof. By [START_REF] Ramras | Symmetric edge-decompositions of hypercubes[END_REF], Theorem 2.3, T divides Q n for every tree T on n edges. In particular, then,

P n divides Q n . Clearly, if k divides n then P k divides P n . Hence, by Lemma 1, P k divides Q n . 2 
We have the following partial converse.

Proposition 3 If P k divides Q n and k is odd, then k divides n. Proof. Since P k divides Q n , k divides n • 2 n-1 . But since k is odd, this means that k divides n. 2 
Definition 4 If G 1 and G 2 are graphs then by G 1 2G 2 we mean the graph that is the Cartesian product of G 1 and G 2 .

Lemma 2 If H divides G 1 and H divides G 2 then H divides G 1 2G 2 .
Proof. This is obvious because

E(G 1 2G 2 ) consists of | V (G 1 ) | copies of E(G 2 ) and | V (G 2 ) | copies of E(G 1 ). 2 Proposition 4 If k divides n then Q k divides Q n .
Proof. Let n = mk. We argue by induction on m. The statement is obvious for m = 1. Now let m > 1 and assume the statement is true for m -1.

The desired result follows from Lemma 2 and the fact that

Q (m-1)k 2Q k ≃ Q (m-1)k+k = Q mk . 2 
The converse to Proposition 4 follows easily from the next lemma.

Lemma 3 Suppose that the subgraph H of G edge-divides G. If G is n- regular and H is k-regular, then k divides n.
Proof. Since the copies of E(H) form an edge-partition of E(G), each vertex v of H must belong to exactly n/k copies of H and so k divides n.
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Corollary 2 If Q k divides Q n then k divides n. Proof. Since Q k is k-regular and Q n is n-regular,
G = {σ A | A ⊂ {1, 2, . . . , n -1}, | A | even}. So E(C) is fundamental for Q n .
Proof. C consists of the path P , followed by σ {1,2,...,n} (P ), where P is the path with initial vertex ∅ and edge direction sequence 1, 2, . . . , n. Note that for any B ⊆ {1, 2, . . . , n}, for any edge e, σ B (e) = e implies that B = ∅ or | B | = 1. Now we shall show that for every subset A ⊂ {1, 2, . . . , n -1} with |A| even, σ A (C) ∩ C = ∅. It should be noted that these A's form a subgroup of Aut(Q n ) of order 2 n-2 . So suppose that e = x, y ∈ C ∩ σ A (C). Let the direction of e be i. Then the direction of σ A (e) is i. In the next two sections we show that for all odd n with n ≥ 5, P 4 divides Q n . We first, in this section, prove the result for n = 5. The strategy is to find a subgraph G of Q 5 , show that G divides Q 5 , and then show that P 4 divides G. In the next section we deduce the general case. Proof. It is easiest to describe the paths by their starting points and direction sequences (see figure 3). Proof. This follows immediately from the previous two lemmas.

If A = ∅, then since |A| is even, σ A (e) =
2 3 P 4 divides Q n , for n odd, n ≥ 5 Let us write Q 5 as Q 5 = Q 3 2Q 2 = Q 3 2C 4 . Let G 0 = Q ( * * * 00) 5 , G 1 = Q ( * * * 10) 5 , G 2 = Q ( * * * 11) 5 , G 3 = Q ( * * * 01) 5
. For i ∈ {0, 1, 2, 3} let π i be the canonical mapping from G i to Q 3 . * From the decomposition of Q 5 by P 4 we have a coloring c : Q 5 -→ {1, 2, . . . , 20} of the edges of Q 5 such that for any i ∈ {1, 2, . . . , 20} the set of edges of

Q 5 colored i induces a P 4 . * Consider now Q 3 2C 4k for some k ≥ 1. Let G ′ 0 , . . . , G ′ 4k-1 ≃ Q 3 . Let π ′ i ′ be the canonical mapping from G ′ i ′ -→ Q 3 for i ′ ∈ {0, 1, . . . , 4k -1}. The edges of Q 3 2C 4k are Case A: the edges of G ′ i ′ for any i ′ ∈ {0, 1, . . . , 4k -1}. Case B: for any i ′ ∈ {0, 1, . . . , 4k -1} the edges x ′ , y ′ for x ′ ∈ G ′ i ′ , y ′ ∈ G ′ j ′ , where | j ′ -i ′ | ≡ 1 (mod 4k) and π i ′ (x ′ ) = π j ′ (y ′ ). * Let θ be the mapping from Q 3 2C 4k -→ Q 5 defined by: for any x ′ ∈ G ′ i ′ , θ(x ′ ) = x where x is the element of G i , with i ≡ i ′ (mod 4) such that π i (x) = π i ′ (x ′ ).
(Note that θ is not a one-to-one mapping.)

Proposition 8 If x ′ , y ′ is an edge of Q 3 2C 4k then θ(x ′ ), θ(y ′ ) is an edge of Q 5 . Proof. Case A x ′ , y ′ ∈ G ′ i ′ for some i ′ . Then let i ≡ i ′ (mod 4). By the definition of θ, θ(x ′ ) ∈ G i , θ(y ′ ) ∈ G i . This implies that θ(x ′ ) and θ(y ′ ) are adjacent. Case B Assume x ′ ∈ G ′ i ′ , y ′ ∈ G ′ j ′ with | j ′ -i ′ | ≡ 1 (mod 4k). We have π ′ i ′ (x ′ ) = π ′ j ′ (y ′ ). Then θ(x ′ ) ∈ G i and θ(y ′ ) ∈ G j where |j -i| ≡ 1 (mod 4) since | j ′ -i ′ | ≡ 1 (mod 4) implies that | j -i | ≡ 1 (mod 4). Furthermore π i (θ(x ′ )) def ofθ = π ′ i (x ′ ) edge = π ′ j (y ′ ) def ofθ = π j (θ(y ′ )).
Thus there exists an edge between θ(x ′ ) and θ(y ′ ) 2

Definition 5 Consider the coloring

E(Q 3 2C 4k ) c ′ -→ {1, 2, . . . , 20} of the edges of Q 3 2C 4k defined by c ′ ( x ′ , y ′ ) = c( θ(x ′ ), θ(y ′ ) ). Lemma 6 For any i ∈ {1, 2, . . . , 20} the set of edges of Q 3 2C 4k such that c ′ (x ′ , y ′ ) = i is a set of disjoint paths of length 4. Therefore P 4 divides Q 3 2C 4m for all m ≥ 1.
Proof. By definition of c ′ , for any vertex x ′ of Q 3 2C 4k the number of edges incident to x ′ colored i by c ′ is the number of edges incident to θ(x ′ ) colored i by c. Therefore this number is ≤ 2. Furthermore, there is no cycle colored i in Q 3 2C 4k because the image by θ of this cycle would be a cycle of Q 5 colored i with c. Therefore the set of edges colored i by c ′ is a forest and more precisely, because of the degree, a set of disjoint paths. Notice that the image by θ of a path colored i is a path of Q 5 of the same length (because of the degree of the endpoints of the paths). Therefore all the paths are of length 4.
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Theorem 2 For n ≥ 4, P 4 divides Q n .
Proof. If n is even, the result is true by Corollary 5. If n = 5 then we are done by Corollary 7.

Consider Q 2k+3 , for k ≥ 2. Q 2k+3 = Q 2k+1 2Q 2 . E(Q 2k
) can be decomposed into k cycles of length 2 2k (Hamiltonian cycles) by Aubert and Schneider [START_REF] Ramras | Décomposition de la somme Cartésienne d'un cycle et de l'union de deux cycles Hamiltoniens en cycles Hamiltoniens[END_REF]. Let D be one of these cycles. The edges of Q 2k+1 are the edges of the two copies of Q 2k and a matching. But every vertex of Q 2k appears exactly once in D so E(Q 2k+1 ) can be decomposed into 2(k -1) cycles of length 2 2k and D2Q 1 ≃ C 2 2k 2Q 1 (see figure 4). Every vertex of Q 2k+1 appears once in D2Q 1 , thus, for the same reason, E(Q 2k+3 ) can be decomposed into 8(k -1) cycles of length 2 2k and

D2Q 1 2Q 2 ≃ C 2 2k 2Q 1 2Q 2 ≃ C 2 2k 2Q 3 (see figure 5). Figure 5: Decomposition of Q 2k+3 Since k ≥ 2, 2 2k
4 is an integer strictly greater than 1 so the cycles of length 2 2k are divisible by P 4 . By Lemma 6, P 4 divides C 2 2k 2Q 3 , and

P 4 divides E(Q n ) for any odd n ≥ 5. 2 
4 Q 2 k has a fundamental Hamiltonian cycle.

We shall describe walks in the hypercube by specifying the starting vertex (generally ∅) and the sequence of edge directions.

It is well-known that the n-dimensional hypercube Q n is Hamiltonian, and in fact has many Hamiltonian cycles. Aubert and Schneider [START_REF] Ramras | Décomposition de la somme Cartésienne d'un cycle et de l'union de deux cycles Hamiltoniens en cycles Hamiltoniens[END_REF] proved that for n even, Q n has an edge decomposition into Hamiltonian cycles. However, their construction is technical. In contrast, in this last section we shall prove that for n = 2 k , there is a single Hamiltonian cycle C such that E(C) is a fundamental set for Q n .

By G 1 2G 2 we denote the Cartesian product of the graphs G 1 and G 2 . We will start with two easy results about Cartesian product of graphs.

Lemma 7 Assume that {C 1 , C 2 , . . . , C p } is an edge decomposition in Hamil- tonian cycles of a graph G. Then {C 1 2C 1 , C 2 2C 2 , . . . , C p 2C p } is an edge decomposition of G2G.
Proof. Let (x 1 , x 2 ) and (y 1 , y 2 ) be adjacent in G2G. Then either x 1 and y 1 are adjacent in G and x 2 = y 2 or x 1 = y 1 and x 2 and y 2 are adjacent in G. By symmetry, it is sufficient to consider the first case. Let i be such that x 1 , y 1 ∈ E(C i ). Then since C i is Hamiltonian x 2 = y 2 ∈ V (C i ); thus (x 1 , x 2 ), (y 1 , y 2 ) ∈ E(C i 2C i ). Conversely (x 1 , x 2 ), (y 1 , y 2 ) ∈ E(C j 2C j ) implies x 1 , y 1 ∈ E(C j ) since x 2 = y 2 ; thus j = i. Therefore the C j 2C j 's are disjoint and the conclusion follows.
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Lemma 8 Let G 1 and G 2 be any two graphs, and

for i = 1, 2 let φ i ∈ Aut (G i ). Define (φ 1 , φ 2 ) : G 1 2G 2 -→ G 1 2G 2 by (φ 1 , φ 2 )((x, y)) = (φ 1 (x), φ 2 (y)). Then (φ 1 , φ 2 ) ∈ Aut (G 1 2G 2 ).
Proof. Let (x 1 , x 2 ) and (y 1 , y 2 ) be adjacent in G 1 2G 2 . Then either (1) x 1 and y 1 are adjacent in G 1 and x 2 = y 2 or (2) x 1 = y 1 and x 2 and y 2 are adjacent in G 2 . We must show that (φ 1 , φ 2 )(x 1 , x 2 ) and (φ 1 , φ 2 )(y 1 , y 2 ) are adjacent in G 1 2G 2 . By symmetry, it is sufficient to prove this for case [START_REF] Ramras | Décomposition de la somme Cartésienne d'un cycle et de l'union de deux cycles Hamiltoniens en cycles Hamiltoniens[END_REF]. But then since φ 1 ∈ Aut (G 1 ), φ 1 (x 1 ) and φ 1 (y 1 ) are adjacent in G 1 , and since

x 2 = y 2 , φ 2 (x 2 ) = φ 2 (y 2 ). Therefore (φ 1 , φ 2 )(x 1 , x 2 ) and (φ 1 , φ 2 )(y 1 , y 2 ) are adjacent in G 1 2G 2 . Conversely if (φ 1 , φ 2 )(x 1 , x 2 ) = (φ 1 (x 1 ), φ 2 (x 2 )) and (φ 1 , φ 2 )(y 1 , y 2 ) = (φ 1 (y 1 ), φ 2 (y 2 )) are adjacent in G 1 2G 2 then φ 1 (x 1 ) = φ 1 (y 1 ) or φ 2 (x 2 ) = φ 2 (y 2 )
. We can assume the first case by symmetry then x 1 = y 1 and x 2 is adjacent to y 2 in G 2 . Thus (x 1 , x 2 ) and (y 1 , y 2 ) are adjacent in

G 1 2G 2 and (φ 1 , φ 2 ) ∈ Aut (G 1 2G 2 ). 2 
The starting point of the theorem of Aubert and Schneider is an earlier result of G. Ringel [START_REF] Ringel | Ü ber drei kombinatorische Probleme am n-dimensionalen Würfel und Würfelgitter[END_REF] who proved that for n = 2 k , Q n has an edge decomposition into Hamiltonian cycles. His proof is by induction on k. Let us recall the induction step. Let m = 2 n . Let θ be the mapping from {1, . . . , n} to {n + 1, . . . , 2n} defined by θ(i) = i + n. Let C be a Hamiltonian cycle of Q n then we can construct Φ(C) and Γ(C) two disjoint Hamiltonian cycles of 

Q 2n = Q n 2Q n such that E(C2C) = E(Φ(C)) ∪ E(Γ(C)).

2 Corollary 5 2 Corollary 6 2 2 P 4 divides Q 5 If

 252625 e. The only other edge in C with direction i is σ {1,2,...,n} (e). So if σ A (e) ∈ C, then σ A (e) = σ {1,2,...,n} (e). Therefore σ A • σ {1,2,...,n} (e) = e, i.e. σ A∆{1,2,...,n} (e) = e. Since A and {1, 2, . . . , n} are even, so is A∆{1, 2, . . . , n} = A. Hence A∆{1, 2, . . . , n} = ∅, i.e. A = {1, 2, . . . , n}. But n / ∈ A, so we have a contradiction. Thus we have a group G of automorphisms of C of order 2 n-2 , such thatfor g ∈ G, g = id , g(E(C)) ∩ E(C) = ∅. Furthermore, since |E(C)| = 2n, it follows that |G| • |E(C)| = |E(Q n )|.Hence by [8], Lemma 1.1, the translates of E(C) via the elements of G form an edge decomposition of Q n . If n is even, k < n and k divides n, then P 2k divides Q n . Proof. Since k divides n, 2k divides 2n, and thus since 2k < 2n, P 2k divides the 2n-cycle C of Proposition 7. Hence by Proposition 7, P 2k divides Q n . If n and k are both even and k divides n, and C is the 2k-cycle with initial vertex ∅, and edge direction sequence (1, 2, . . . , k) 2 , then C divides Q n . Proof. By the proposition, C divides Q k , and by Proposition 4, Q k divides Q n . The result now follows from Lemma 1. k is odd then by Proposition 3 and Lemma 1 P k divides Q n and only if k divides n. Thus the smallest value of k for which Question (1) remains open is k = 4. Corollary 5 settles the matter in the affirmative when n is even and thus we now only need to consider the case of n odd. Example 3 shows that P 4 does not divide Q 3 .
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  By[START_REF] Ramras | Symmetric edge-decompositions of hypercubes[END_REF], Theorem 2.3, by mapping any given vertex of T to ∅ and assigning distinct labels 1, 2, . . . , k to the edges of T we get a subtree of Q k isomorphic to T that divides Q k . Hence by Lemma 1 and Proposition 4, T divides Q n .2Proposition 6 If n is even, and j < n then P 2 j divides Q n .Proof. It is proved in[START_REF] Ramras | Décomposition de la somme Cartésienne d'un cycle et de l'union de deux cycles Hamiltoniens en cycles Hamiltoniens[END_REF] that the cycle C 2 n divides Q n . The Hamiltonian cycle C 2 n is divisible by any path P q , as long as q divides 2 n and q < 2 n . Thus C 2 n is divisible by P 2 j provided j < n. The result now follows from Lemma 1. 2 Proposition 7 If n is even, and C is the 2n-cycle with initial vertex ∅, and edge direction sequence (1, 2, . . . , n) 2 def ≡ (1, 2, . . . , n, 1, 2, . . . , n), then Q n is edge-decomposed by the copies of C under the action of

this follows immediately from Lemma 3.
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Combining Proposition 4 and Corollary 2 we obtain

Proposition 5 Q k divides Q n if and only if k divides n.

As an immediate consequence of Lemma 1 and Proposition 4 we have

Corollary 3 If k divides n and if P j divides Q k then P j divides Q n .

We have a more general consequence.

Corollary 4 If k divides n and T is any tree on k edges, then there is an embedding of T which divides Q n .

Proof.