Edge Decompositions of Hypercubes by Paths and by Cycles

Michel Mollard, Mark Ramras

To cite this version:

Michel Mollard, Mark Ramras. Edge Decompositions of Hypercubes by Paths and by Cycles. 2012. hal-00698983v1

HAL Id: hal-00698983
https://hal.science/hal-00698983v1
Preprint submitted on 18 May 2012 (v1), last revised 5 Sep 2013 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Edge Decompositions of Hypercubes by Paths and by Cycles

Michel Mollard*
Institut Fourier
100, rue des Maths
38402 St Martin d'Hères Cedex FRANCE
michel.mollard@ujf-grenoble.fr
and
Mark Ramras
Department of Mathematics
Northeastern University
Boston, MA 02115, USA
m.ramras@neu.edu

May 18, 2012

Abstract

If H is (or is isomorphic to) a subgraph of G, we say that H divides G if there is an edge-decomposition of G by copies of H. Many authors ([1], [2], [3], [5], [6], [8]) have studied this notion for various subgraphs of hypercubes. We continue such a study in this paper.

1 Introduction and Preliminary Results

Definition 1 If H is (or is isomorphic to) a subgraph of G, we say that H divides G if there is an edge-decomposition of G by copies of $E(H)$.

Ramras [5] has defined a more restrictive concept.

[^0]Definition 2 A fundamental set of edges of a graph G is a subset of $E(G)$ whose translates under some subgroup of the automorphism group of G partition $E(G)$.

In [5] we have shown that if \mathcal{G} is a subgroup of $\operatorname{Aut}\left(Q_{n}\right)$ and for all $g \in \mathcal{G}$, with $g \neq i d$ (where $i d$ denotes the identity element), $g(E(H)) \cap E(H)=\emptyset$, then there is a packing of these translates of $E(H))$ in Q_{n}, i.e. they are pairwise disjoint. If, in addition, $|E(H)| \cdot|\mathcal{G}|=n \cdot 2^{n-1}=\left|E\left(Q_{n}\right)\right|$, then the translates of $E(G)$ by the elements of \mathcal{G} yield an edge decomposition of Q_{n}. In [5] it is shown that every tree on n edges can be embedded in Q_{n} as a fundamental set. In [6] this is extended to certain trees and certain cycles on $2 n$ edges. Decompositions of Q_{n} by k-stars are proved for all $k \leq n$ in [2]. Recently, Wagner and Wild [8] have constructed, for each value of n, a tree on 2^{n-1} edges that is a fundamental set for Q_{n}.

The structure of $\operatorname{Aut}\left(Q_{n}\right)$ is discussed in [5]. For each subset A of $\{1,2, \ldots, n\}$, the complementing automorphism σ_{A} is defined by $\sigma_{A}(\vec{x})=$ $\vec{x}+\sum_{i \in A} e_{i}$, where e_{i} is the n-tuple with a 1 in the i th coordinate and 0 elsewhere. Another type of automorphism arises from the group of permutations \mathcal{S}_{n} of $\{1,2, \ldots, n\}$. For $\theta \in \mathcal{S}_{n}$, we define ρ_{θ} by $\rho_{\theta}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $\left(x_{\theta(1)}, x_{\theta(2)}, \ldots, x_{\left.\theta_{n}\right)}\right)$. Every automorphism in $\operatorname{Aut}\left(Q_{n}\right)$ can be expressed uniquely in the form $\sigma_{A} \circ \rho_{\theta}$.

To avoid ambiguity in what follows we make this definition:
Definition 3 By P_{k}, the " k-path", we mean the path with k edges.

Questions

(1) For which k dividing $n \cdot 2^{n-1}$ does P_{k} divide Q_{n} ?
(2) For which k dividing $n \cdot 2^{n-1}$ does C_{k}, the cycle on k edges, divide Q_{n} ?
(3) For those k for which the answer to either (1) or (2) is "yes", is the edge set a fundamental set for Q_{n} ?

We begin this introductory section with some examples. In later sections we prove a variety of results relating to these questions, and in the final section we summarize our findings.

Example 1

Let T be the 2-star ($=$ the 2-path) contained in Q_{3} with center 000 , and leaves 100,010. Then $\mathcal{G}=\left\{i d, \sigma_{123}, \sigma_{1} \rho_{(123)}, \sigma_{12} \rho_{(132)}, \sigma_{3} \rho_{(132)}, \sigma_{23} \rho_{(123)}\right\}$ is a (cyclic) subgroup of $\operatorname{Aut}\left(Q_{3}\right)$ of order 6 , and the 6 translates of T under \mathcal{G} yield an edge decomposition of Q_{3}.

Note, however, that \mathcal{G} does not work for the 2 -star T^{\prime}, whose center is 000 and whose leaves are 100 and 001. The subgroup which works for this 2 -star is $\mathcal{G}^{\prime}=\left\{i d, \sigma_{123}, \sigma_{1} \rho_{(132)}, \sigma_{13} \rho_{(123)}, \sigma_{2} \rho_{(123)}, \sigma_{23} \rho_{(132)}\right\}$.

Example 2

P_{6} does not divide Q_{3}. For since Q_{3} has 12 edges, if P_{6} did divide Q_{3} then Q_{3} would have an edge-decomposition consisting of 2 copies of P_{6}. The degree sequence of P_{6} is $2,2,2,2,2,1,1$, whereas Q_{3}, of course, is 3-regular. So 5 vertices meet 2 edges of one copy of P_{6}, and another 5 vertices meet the other copy of P_{6}. Since Q_{3} has only 8 vertices, the 25 -sets must have at least 2 vertices in common. But that would force these 2 vertices to have degree 4 , a contradiction.

Example 3

P_{4} does not divide Q_{3}. Since P_{4} has 4 edges, we would need 3 copies of P_{4} for an edge-decomposition of Q_{3}. The degree sequence of P_{4} is $2,2,2,1,1,0,0,0$. Call the three copies of $P_{4} P^{(1)}, P^{(2)}$, and $P^{(3)}$. At each vertex v of Q_{3}, $\sum_{1 \leq i \leq 3} \operatorname{deg}_{P^{(i)}}(v)=3$. For each v with $\operatorname{deg}_{P^{(1)}}(v)=0$ or 2 , exactly one of $\operatorname{deg}_{P^{(2)}}(v)$ or $\operatorname{deg}_{P^{(3)}}(v)$ is 1 . Thus a total of $6+2=81$'s are required. However, each of the 3 copies of P_{4} has exactly 2 vertices of degree 1 , and so the total number of 1 's in the 3×8 array ($a_{i v}$) formed by the 3 degree sequences is 6 . Hence P_{4} does not divide Q_{3}.

Example 4

The other tree on 4 edges does divide Q_{3}. Let $T=$ the 3 -star centered at 000 union the edge $<001,101\rangle$. Let $\left.\mathcal{G}=<\sigma_{23} \rho_{(123)}\right\rangle$, which is a cyclic subgroup of $\operatorname{Aut}\left(Q_{3}\right)$ of order 3. A straight-forward calculation shows that the translates of T under \mathcal{G} form an edge decomposition of Q_{3}.

Proposition 1 For $k \geq 3, P_{2^{k}}$ does not divide $Q_{2 k+1}$.
Proof. Suppose that $k \geq 3$, and suppose that $P_{2^{k}}$ divides $Q_{2 k+1}$. The matrix $\left(a_{i v}\right)$ has $2^{2 k+1}$ columns, and

$$
(2 k+1) \cdot 2^{2 k} / 2^{k}=(2 k+1) 2^{k}
$$

rows. Then since each row has exactly two 1's, the entire matrix has $(2 k+1) 2^{k+1} 1$'s. But since each vertex of $Q_{2 k+1}$ has degree $2 k+1$, each column sum is $2 k+1$, and thus each column has at least one 1 . Thus there must be at least $2^{2 k+1} 1$'s in the matrix. Therefore, $(2 k+1) 2^{k+1} \geq 2^{2 k+1}$. This is equivalent to $2 k+1 \geq 2^{k}$. But for $k \geq 3$ this is clearly false. Thus for $k \geq 2, P_{2^{k}}$ does not divide $Q_{2 k+1}$.

We can generalize this proposition.
Lemma 1 Given any positive integer j there exists an integer $k_{0}>0$ such that for all k with $k \geq k_{0}, 2^{k-j-1}>k$.

Corollary 1 For any positive integer j there exists an integer k_{0} such that for all integers $k \geq k_{0}, P_{2^{k-j}}$ does not divide $Q_{2 k+1}$.

Proof. Choose k_{0} by the lemma. We argue as in the proof of Proposition 1. Suppose that $P_{2^{k-j}}$ divides $Q_{2 k+1}$. Counting the number of 1's appearing in the matrix $\left(a_{i v}\right)$ we get the inequality $(2 k+1) 2^{k-j+1} \geq 2^{2 k+1}$. This is equivalent to $2 k+1 \geq 2^{k-j}$, i.e. $2 k \geq 2^{k-j}$. This in turn is equivalent to $k \geq 2^{k-j-1}$. But by the lemma, this is false for $k \geq k_{0}$. So for $k \geq k_{0}, P_{2^{k-j}}$ does not divide $Q_{2 k+1}$.

The next result is Proposition 8 of [6].
Proposition 2 Let n be odd, and suppose that P_{k} divides Q_{n}. Then $k \leq n$.
Lemma 2 "Divisibility" is transitive, i.e. if G_{1} divides G_{2} and G_{2} divides G_{3}, then G_{1} divides G_{3}.

Proof. This follow immediately from the definition of "divides".
Corollary 2 If k divides n then P_{k} divides Q_{n}.
Proof. By [5], Theorem 2.3, T divides Q_{n} for every tree T on n edges. In particular, then, P_{n} divides Q_{n}. Clearly, if k divides n then P_{k} divides P_{n}. Hence, by Lemma 2, P_{k} divides Q_{n}.

We have the following partial converse.
Proposition 3 If P_{k} divides Q_{n} and k is odd, then k divides n.

Proof. Since P_{k} divides Q_{n}, k divides $n \cdot 2^{n-1}$. But since k is odd, this means that k divides n.

Proposition 4 If k divides n then $E\left(Q_{k}\right)$ is a fundamental set for Q_{n}. In particular, Q_{k} divides Q_{n}.

Proof. Let $n=k \cdot m$. Define the permutation

$$
\theta:\{1,2, \ldots, n\} \longrightarrow\{1,2, \ldots, n\}
$$

by
$\theta=(1, k+1, \ldots,(m-1) k+1)(2, k+2, \ldots,(m-1) k+2) \cdots(k, 2 k, \ldots, m k)$.
Let ρ_{θ} be the automorphism of Q_{n} defined by

$$
\rho_{\theta}\left(x_{1}, \ldots, x_{n}\right)=x_{\theta(1)}, \ldots, x_{\theta(n)}
$$

The order of θ is m and so the order of the group $\left\langle\rho_{\theta}\right\rangle$ is also m. Let $\mathcal{H}=\left\{\sigma_{A}|A \subset\{k+1, k+2, \ldots, n\},|A|\right.$ is even $\} . \mathcal{H}$ is a subgroup of the automorphism group of Q_{n-k}. Finally, let \mathcal{G} be the group generated by \mathcal{H} and ρ_{θ}, i.e.

$$
\mathcal{G}=\left\{\sigma_{A} \rho_{\theta^{j}}|A \subset\{k+1, k+2, \ldots, n\},|A| \text { is even, } 1 \leq j \leq m,\}\right.
$$

\mathcal{G} is a subgroup of $\operatorname{Aut}\left(Q_{n}\right)$ of order $m \cdot 2^{n-k-1}$. Hence

$$
|\mathcal{G}| \cdot\left|E\left(Q_{k}\right)\right|=m \cdot 2^{n-k-1}\left(k \cdot 2^{k}\right)=n \cdot 2^{n-1}=|E(n)| .
$$

To show that the translates of $E\left(Q_{k}\right)$ under \mathcal{G} yield an edge decomposition of Q_{n} it remains to show that for all $1 \leq i \leq k, A \subset\{1,2, \ldots, k\},|A|$ even and for all $1 \leq j \leq m$,

$$
\sigma_{A} \rho_{\theta^{j}}\left(E\left(Q_{k}\right)\right) \cap E\left(Q_{k}\right)=\emptyset
$$

Now if $e \in E\left(Q_{k}\right)$, its direction (the coordinate in which its endpoints differ) is some $i, 1 \leq i \leq m$. The direction of $\rho_{\theta^{j}}(e)$ is $\theta^{j}(i)$. Automorphisms of the type σ_{A} leave edge directions fixed, so the direction of $\sigma_{A} \rho_{\theta^{j}}(e)=\theta^{j}(i)$. From the definition of $\theta, \theta(i)=k+i$. One can then show by induction on j that $\theta^{j}(i)=j k+i$ for $1 \leq j \leq m-1$. Hence $\theta^{j}(i)>k$. Since all edges of Q_{k} have direction $\leq k, \sigma_{A} \rho_{\theta^{j}}(e) \neq i d$. Now if $j=m, \theta^{m}$ equals $i d$, so
$\sigma_{A} \rho_{\theta^{m}}=\sigma_{A}$. But if $\sigma_{A}(e)=e$, and σ_{A} is not the $i d$, then $A \neq \emptyset$, and so σ_{A} interchanges the ends of edge e. This is impossible since $|A|$ is even, by hypothesis.

As an immediate consequence of Lemma 2 and Proposition 4 we have
Corollary 3 If k divides n and if P_{j} divides Q_{k} then P_{j} divides Q_{n}.
We have a more general consequence.
Corollary 4 If k divides n and T is any tree on k edges, then T divides Q_{n}. In fact, T is a fundamental set for Q_{n}.
Proof. By [5], Theorem 2.3, T divides Q_{k}. Hence by Lemma 2 and Proposition 4, T divides Q_{n}.

For the second assertion, let $\mathcal{G}_{1}=\left\{\sigma_{A} \rho_{\theta^{j}}|A \subseteq\{k+1, k+2, \ldots, n\},|A|\right.$ even $\}$, where θ is defined as in Proposition 4. Note that the order of θ is m, where $m k=n$. Let $\mathcal{G}_{2}=\left\{\sigma_{B}|B \subseteq\{1,2, \ldots, k\},|B|\right.$ even $\}$. Finally, let $\mathcal{G} \subseteq$ Aut Q_{n} be the subgroup generated by \mathcal{G}_{1} and \mathcal{G}_{2}. If $\sigma_{B} \in \mathcal{G}_{2}$ then $\rho_{\theta} \sigma_{B}=\sigma_{\theta(B)} \rho_{\theta}$. Note that $\theta(B) \subseteq\{k+1, k+2, \cdots ; n\}$ and thus $\sigma_{\theta(B)} \rho_{\theta} \in \mathcal{G}_{1}$. So for all j with $1 \leq j \leq m$,

$$
\sigma_{A} \rho_{\theta^{j}} \sigma_{B}=\sigma_{A} \rho_{\theta^{j-1}} \sigma_{\theta(B)} \rho_{\theta}=\cdots=\sigma_{A \Delta \theta^{j}(B) \Delta \theta^{j-1}(B) \cdots \Delta \theta(B)} \rho_{\theta^{j}}
$$

$\left|A \Delta \theta^{j}(B) \Delta \cdots \Delta \theta(B)\right|$ is even, and furthermore,

$$
A \Delta \theta^{j}(B) \Delta \cdots \Delta \theta(B)=A \cup\left[\theta^{j}(B) \Delta \theta^{j-1}(B) \Delta \cdots \Delta \theta(B)\right]
$$

Hence $\sigma_{A \Delta \theta^{j}(B) \Delta \cdots \Delta \theta(B)} \rho_{\theta} \in\left(\Sigma_{n}, \rho_{\theta}\right)$, where $\Sigma_{n}=\left\{\sigma_{C} \mid C \subseteq\{1,2, \cdots, n\}\right.$. First we shall show that the translates of $E=E(T)$ are edge-disjoint. So suppose that $\sigma_{C} \rho_{\theta j}(e)=e^{\prime}$, where $e, e^{\prime} \in E(T)$ and $|C|$ is even. Let the direction of e be i. Then the direction of $\theta(e)$ is $\theta(i)$. Since translations σ_{A} preserve the directions of edges, the direction of e^{\prime} is also i. Thus $\theta^{j}(i)=i$. Since θ is a product of disjoint m-cycles, this implies that $j=m$, and hence $\theta^{j}=\theta^{m}=i d$. Thus $\sigma_{C}=i d$. Hence $\sigma_{C} \rho_{\theta^{j}}=i d$, and so the translates of $E(T)$ are disjoint.

Finally, we must show that every edge $e \in E\left(Q_{n}\right)$ belongs to some translate of $E(T)$. Let $e \in E\left(Q_{n}\right)$. Then since $E(T)$ is fundamental for $E\left(Q_{k}\right)$, $e=g^{\prime}$ for some $e^{\prime} \in E(T)$, and for some $g^{\prime} \in \mathcal{G}_{2}$. Since $E\left(Q_{k}\right)$ is fundamental for Q_{n} relative to $\mathcal{G}_{1}, e^{\prime}=g^{\prime \prime}\left(e^{\prime \prime}\right)$, where $e^{\prime \prime} \in T$ and $g^{\prime \prime} \in \mathcal{G}_{1}$. Thus $e=g^{\prime} g^{\prime \prime}\left(e^{\prime \prime}\right.$ for some $e \in T$. Since $g^{\prime} g^{\prime \prime} \in \mathcal{G}$, the translates of $E(T)$ by elements of \mathcal{G} do cover $E\left(Q_{n}\right)$. So $E(T)$ is fundamental for $E\left(Q_{n}\right)$.

Proposition 5 If n is even, and $j<n$ then $P_{2^{j}}$ divides Q_{n}.
Proof. It is proved in [1] that the cycle $C_{2^{n}}$ divides Q_{n}. The Hamiltonian cycle $C_{2^{n}}$ is divisible by any path P_{q}, as long as q divides 2^{n} and $q<2^{n}$. Thus $C_{2^{n}}$ is divisible by $P_{2^{j}}$ provided $j<n$. The result now follows from Lemma 2.

Proposition 6 If n is even, and C is the $2 n$-cycle with initial vertex \emptyset, and edge direction sequence $(1,2, \ldots, n)^{2}$, then Q_{n} is edge-decomposed by the copies of C under the action of $\mathcal{G}=\left\{\sigma_{A}|A \subset[n-1],|A|\right.$ even $\}$. So $E(C)$ is fundamental for Q_{n}.

Proof. C consists of the path P, followed by $\sigma_{\{1,2, \ldots, n\}}(P)$, where P is the path with initial vertex \emptyset and edge direction sequence $1,2, \ldots, n$. Note that for any $B \subseteq\{1,2, \ldots, n\}$, for any edge $e, \sigma_{B}(e)=e \Longrightarrow B=\emptyset$ or $|B|=1$. Now we shall show that for every subset $A \subset\{1,2, \ldots, n-1\}$ with $|A|$ even, $\sigma_{A}(C) \cap C=\emptyset$. It should be noted that these A 's form a subgroup of $\operatorname{Aut}\left(Q_{n}\right)$ of order 2^{n-2}. So suppose that $e=\langle x, y\rangle \in C \cap \sigma_{A}(C)$. Let the direction of e be i. Then the direction of $\sigma_{A}(e)=i$. If $A \neq \emptyset$, then since $|A|$ is even, $\sigma_{A}(e) \neq e$. The only other edge in C with direction i is $\sigma_{\{1,2, \ldots, n\}}(e)$. So if $\sigma_{A}(e) \in C$, then $\sigma_{A}(e)=\sigma_{\{1,2, \ldots, n\}}(e)$. Therefore σ_{A}. $\sigma_{\{1,2, \ldots, n\}}(e)=e$, i.e. $\sigma_{A \Delta\{1,2, \ldots, n\}}(e)=e$. Since A and $\{1,2, \ldots, n\}$ are even, so is $A \Delta\{1,2, \ldots, n\} \stackrel{\bar{A}}{=}$. Hence $A \Delta\{1,2, \ldots, n\}=\emptyset$, i.e. $A=$ $\{1,2, \ldots, n\}$. But $n \notin A$, so we have a contradiction.

Thus we have a group \mathcal{G} of automorphisms of C of order 2^{n-2}, such that for $g \in \mathcal{G}, g \neq i d, g(E(C)) \cap E(C)=\emptyset$. Furthermore, since $|E(C)|=2 n$, it follows that $|\mathcal{G}||E(C)|=\left|E\left(Q_{n}\right)\right|$. Hence by [5], Lemma 1.1, the translates of $E(C)$ via the elements of \mathcal{G} form an edge decomposition of Q_{n}.

Corollary 5 If $k<n$ and k divides n then $P_{2 k}$ divides Q_{n}.
Proof. Since k divides $n, 2 k$ divides $2 n$, and thus since $2 k<2 n, P_{2 k}$ divides the $2 n$-cycle C of Proposition 6. Hence by Proposition 6, $P_{2 k}$ divides Q_{n}.

Corollary 6 If k is even and k divides n, and C is the $2 k$-cycle with initial vertex \emptyset, and edge direction sequence $(1,2, \ldots, k)^{2}$, then C divides Q_{n}.

Proof. By the proposition, C divides Q_{k}, and by Proposition 4, Q_{k} divides Q_{n}. The result now follows from Lemma 2.

$2 \quad P_{4}$ divides Q_{5}

If k is odd then by Proposition 3 and Lemma $2 P_{k}$ divides Q_{n} and only if k divides n. Thus the smallest value of k for which Question (1) remains open is $k=4$. Corollary 5 settles the matter in the affirmative when n is even and thus we now only need to consider the case of n odd. Example 3 shows that P_{4} does not divide Q_{3}.

In the next two sections we show that for all odd n with $n \geq 5, P_{4}$ divides Q_{n}. We first, in this section, prove the result for $n=5$. The strategy is to find a subgraph G of Q_{5}, show that G divides Q_{5}, and then show that P_{4} divides G. In the next section we deduce the general case.

Figure 1: Q_{5} and the graph G

We define G as follows (see figure 1). First, some notation. For $b, c \in$ $\{0,1\}, Q_{5}^{(* * * b c)}$ denotes the 3-cube induced by the vertices $x_{1} x_{2} x_{3} x_{4} x_{5}$ with $x_{4}=b$ and $x_{5}=c$. If $a \in\{0,1\} Q_{5}^{(* * a b c)}$ is the 2 -cube induced by the vertices with $x_{3}=a, x_{4}=b$, and $x_{5}=c$. We take G to be the union of (1): $Q_{5}^{(* * * 00)}$, with the edges of $Q_{5}^{(* 0 * 00)}$ deleted; (2): $Q_{5}^{(* * * 10)}$ with all edges deleted except for $\langle 01010,01110\rangle$ and $\langle 11010,11110\rangle ;(3): Q_{5}^{(* * * 01)}$ with all edges deleted except for $\langle 01101,11101\rangle$ and $\langle 01001,11001\rangle$; (4): the 4 matching
edges between $Q_{5}^{(* 1 * 00)}$ and $Q_{5}^{(* 1 * 10)}$; and (5) the 4 matching edges between $Q_{5}^{(* * * 00)}$ and $Q_{5}^{(* 1 * 01)}$. Thus $|E(G)|=20$. Since $\left|E\left(Q_{5}\right)\right|=5 \cdot 2^{4}=80$, we must exhibit $80 / 20=4$ copies of $E(G)$ that partition $E\left(Q_{5}\right)$.

Lemma $3 G$ divides Q_{5}. In fact, $E(G)$ is a fundamental set for Q_{5}.
Proof. The group of translations $\mathcal{G}=\left\{i d, \sigma_{24}, \sigma_{25}, \sigma_{45}\right\}$, applied to $E(G)$, partitions $E(G)$. It is enough to check that for $A=\{24\},\{25\}$, and $\{45\}$, $\sigma_{\mathrm{A}}(\mathrm{E}(\mathrm{G})) \cap \mathrm{E}(\mathrm{G})=\emptyset$. We will do this for the case $A=\{24\}$. The others are similar. Suppose $e, e^{\prime} \in E(G)$ and $\sigma_{24}(e)=e^{\prime}$. If e lies in $Q_{5}^{(* * * 00)}$ then $\sigma_{24}(e)$ is in $Q_{5}^{(* * * 10)}$, which is (vertex) disjoint from $Q_{5}^{(* * * 00)}$. Similarly, if $e \in Q_{5}^{(* * * 10)}, \sigma_{24}(e) \in Q_{5}^{(* * * 00)}$. If $e \in Q_{5}^{(* * * 01)}$ then $\sigma_{24}(e) \in Q_{5}^{(* * * 11)}$. If e is a matching edge $\langle x, y\rangle$ between $Q_{5}^{(* * * 00)}$ and $\mathrm{Q}_{5}^{(* * * 10)}$ then $x_{2}=y_{2}=1$. Hence $\sigma_{24}(e)=\left\langle x^{\prime}, y^{\prime}\right\rangle$ where $x_{2}^{\prime}=y_{2}^{\prime}=0$. Thus $\sigma_{24}(e) \neq e^{\prime}$. Finally, if e is a matching edge $\langle x, y\rangle$ between $Q_{5}^{(* * * 00)}$ and $\mathrm{Q}_{5}^{(* * * 01)}$ then $x_{2}=y_{2}=1$, while if $\left\langle x^{\prime}, y^{\prime}\right\rangle=\sigma_{24}(e)$, then $x_{2}^{\prime}=x_{2}^{\prime}=0$ and so $\sigma_{24}(e) \neq e^{\prime}$.

Figure 2: P_{4} divides G

Lemma $4 P_{4}$ divides G.
Proof. It is easiest to describe the paths by their starting points and direction sequences (see figure 2).

Path	Starting Point	Direction Sequ
A	00000	$2,5,1,5$
B	10100	$2,5,1,5$
C	10000	$2,3,1,3$
D	01000	$1,4,3,4$
E	00100	$2,4,3,4$

Corollary $7 P_{4}$ divides Q_{5}.
Proof. This follows immediately from the previous two lemmas.

$3 \quad P_{4}$ divides Q_{n}, for n odd, $n \geq 5$

Let us write Q_{5} as $Q_{5}=Q_{3} \square Q_{2}=Q_{3} \square C_{4}$. Let $G_{0}=Q_{5}^{(* * * 00)}, G_{1}=$ $Q_{5}^{(* * * 10)}, G_{2}=Q_{5}^{(* * * 11)}, G_{3}=Q_{5}^{(* * * 01)}$. For $i \in\{0,1,2,3\}$ let π_{i} be the canonical mapping from G_{i} to Q_{3}.

* From the decomposition of Q_{5} by P_{4} we have a coloring $c: Q_{5} \longrightarrow$ $\{1,2, \ldots, 20\}$ of the edges of Q_{5} such that for any $i \in\{1,2, \ldots, 20\}$ the set of edges of Q_{5} colored i induces a P_{4}.
$*$ Consider now $Q_{3} \square C_{4 k}$ for some $k \geq 1$. Let $G_{0}^{\prime}, \ldots, G_{4 k-1}^{\prime} \simeq Q_{3}$. Let π_{i}^{\prime}, be the canonical mapping from $G_{i^{\prime}}^{\prime} \longrightarrow Q_{3}$ for $i^{\prime} \in\{0,1, \ldots, 4 k-1\}$.
The edges of $Q_{3} \square C_{4 k}$ are
Case A: the edges of $G_{i^{\prime}}^{\prime}$, for any $i^{\prime} \in\{0,1, \ldots, 4 k-1\}$.
Case B: for any $i^{\prime} \in\{0,1, \ldots, 4 k-1\}$ the edges $\left\langle x^{\prime}, y^{\prime}\right\rangle$ for $x^{\prime} \in G_{i^{\prime}}^{\prime}$, $y^{\prime} \in G_{j^{\prime}}^{\prime}$, where $\left|j^{\prime}-i^{\prime}\right| \equiv 1 \quad(\bmod 4 k)$ and $\pi_{i^{\prime}}\left(x^{\prime}\right)=\pi_{j^{\prime}}\left(y^{\prime}\right)$.
* Let θ be the mapping from $Q_{3} \square C_{4 k} \longrightarrow Q_{5}$ defined by: for any $x^{\prime} \in$ $G_{i^{\prime}}^{\prime}, \theta\left(x^{\prime}\right)=x$ where x is the element of G_{i}, with $i \equiv i^{\prime}(\bmod 4)$ such that $\pi_{i}(x)=\pi_{i^{\prime}}\left(x^{\prime}\right)$. (Note that θ is not a one-to-one mapping.)

Proposition 7 If $\left\langle x^{\prime}, y^{\prime}\right\rangle$ is an edge of $Q_{3} \square C_{4 k}$ then $\left\langle\theta\left(x^{\prime}\right), \theta\left(y^{\prime}\right)\right\rangle$ is an edge of Q_{5}.

Proof.
Case A $\left\langle x^{\prime}, y^{\prime}\right\rangle \in G_{i^{\prime}}^{\prime}$, for some i^{\prime}. Then let $i \equiv i^{\prime}(\bmod 4)$. By the
definition of $\theta, \theta\left(x^{\prime}\right) \in G_{i}, \theta\left(y^{\prime}\right) \in G_{i}$. This implies that $\theta\left(x^{\prime}\right)$ and $\theta\left(y^{\prime}\right)$ are adjacent.

Case B

Assume $x^{\prime} \in G_{i^{\prime}}^{\prime}, y^{\prime} \in G_{j^{\prime}}^{\prime}$ with $\left|j^{\prime}-i^{\prime}\right| \equiv 1 \quad(\bmod 4 k)$. We have $\pi_{i^{\prime}}^{\prime}\left(x^{\prime}\right)=\pi_{j^{\prime}}^{\prime}\left(y^{\prime}\right)$. Then $\theta\left(x^{\prime}\right) \in G_{i}$ and $\theta\left(y^{\prime}\right) \in G_{j}$ where $|j-i| \equiv 1$ $(\bmod 4)$ since $\left|j^{\prime}-i^{\prime}\right| \equiv 1 \quad(\bmod 4)$ implies that $|j-i| \equiv 1 \quad(\bmod 4)$. Furthermore

$$
\pi_{i}\left(\theta\left(x^{\prime}\right)\right) \stackrel{\text { def of } \theta}{=} \pi\left(x^{\prime}\right) \stackrel{\text { edge }}{=} \pi\left(y^{\prime}\right) \stackrel{\text { def of } \theta}{=} \pi_{j}\left(\theta\left(y^{\prime}\right)\right)
$$

Thus there exists an edge between $\theta\left(x^{\prime}\right)$ and $\theta\left(y^{\prime}\right)$

Figure 3: Decomposition of $Q_{2 m+1}$

Definition 4 Consider the coloring $E\left(Q_{3} \square C_{4 m}\right) \xrightarrow{c^{\prime}}\{1,2, \ldots, 20\}$ of the edges of $Q_{3} \square C_{4 m}$ defined by $c^{\prime}\left(\left\langle x^{\prime}, y^{\prime}\right\rangle\right)=c(\langle\theta(x), \theta(y))$.

Lemma 5 For any $i \in\{1,2, \ldots, 20\}$ the set of edges of $Q_{3} \square C_{4 k}$ such that $c^{\prime}\left(x^{\prime}, y^{\prime}\right)=i$ is a set of disjoint paths of length 4. Therefore P_{4} divides $Q_{3} \square C_{4 m}$ for all $m \geq 1$.

Proof. By definition of c^{\prime}, for any vertex x^{\prime} of $Q_{3} \square C_{4 k}$ the number of edges incident to x^{\prime} colored i by c^{\prime} is the number of edges incident to $\theta\left(x^{\prime}\right)$ colored i by c. Therefore this number is ≤ 2. Furthermore, there is no cycle colored i in $Q_{3} \square C_{4 k}$ because the image by θ of this cycle would be a cycle of Q_{5} colored i with c. Therefore the set of edges colored i by c^{\prime} is a forest and more precisely, because of the degree, a set of disjoint paths.
Notice that the image by θ of a path colored i is a path of Q_{5} of the same length (because of the degree of the endpoints of the paths). Therefore all the paths are of length 4 .

Figure 4: Decomposition of $Q_{2 m+3}$

Theorem 1 For $n \geq 4, P_{4}$ divides Q_{n}.
Proof. If n is even, the result is true by Corollary 5. If $n=5$ then we are done by Corollary 7. Consider $Q_{2 m+3}$, for $m \geq 2$. $Q_{2 m+3}=Q_{2 m+1} \square Q_{2}$. $E\left(Q_{2 m}\right)$ can be decomposed into m cycles of length $2^{2 m}$ (Hamiltonian cycles) by Aubert and Schneider [1]. Let D be one of these cycles. The edges of $Q_{2 m+1}$ are the edges of the two copies of $Q_{2 m}$ and a matching. But every vertex of $Q_{2 m}$ appears exactly once in D so $E\left(Q_{2 m+1}\right)$ can be decomposed into $2(m-1)$ cycles of length $2^{2 m}$ and $D \square Q_{1} \simeq C_{2^{2 m}} \square Q_{1}$ (see figure 3).

Every vertex of $Q_{2 m+1}$ appears once in $D \square Q_{1}$, thus, for the same reason, $E\left(Q_{2 m+3}\right)$ can be decomposed into $8(m-1)$ cycles of length $2^{2 k}$ and
$D \square Q_{1} \square Q_{2} \simeq C_{2^{2 k}} \square Q_{1} \square Q_{2} \simeq C_{2^{2 m}} \square Q_{3}$ (see figure 4).
Since $k \geq 2, \frac{2^{2 m}}{4}$ is an integer stictly greater than 1 so the cycles of length $2^{2 m}$ are divisible by P_{4}. By Lemma 5, P_{4} divides $C_{2^{2 m}}^{\square} Q_{3}$, and P_{4} divides $E\left(Q_{n}\right)$ for any odd $n \geq 5$.

4 Products of fundamental sets.

We begin with an easy result about divisibility of the Cartesian product of two graphs. Its proof is straightforward and so we omit it.

Proposition 8 For $i=1,2$, let G_{i} be a graph that is divisible by the subgraph H_{i}. Then $G_{1} \square G_{2}$ is divisible by the subgraph $H_{1} \square H_{2}$.

Lemma 6 Let G_{1} and G_{2} be any two graphs, and for $i=1,2$ let $\phi_{i} \in$ Aut $\left(G_{i}\right)$. Define $\left(\phi_{1}, \phi_{2}\right): G_{1} \square G_{2} \longrightarrow G_{1} \square G_{2}$ by $\left(\phi_{1}, \phi_{2}\right)((x, y))=\left(\phi_{1}(x), \phi_{2}(y)\right)$. Then $\left(\phi_{1}, \phi_{2}\right) \in \operatorname{Aut}\left(G_{1} \square G_{2}\right)$.

Proof. Let $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ be adjacent in $G_{1} \square G_{2}$. Then either (1) x_{1} and y_{1} are adjacent in G_{1} and $x_{2}=y_{2}$ or (2) $x_{1}=y_{1}$ and x_{2} and y_{2} are adjacent in G_{2}. We must show that $\left(\phi_{1}, \phi_{2}\right)\left(x_{1}, x_{2}\right)$ and $\left(\phi_{1}, \phi_{2}\right)\left(y_{1}, y_{2}\right)$ are adjacent in $G_{1} \square G_{2}$. By symmetry, it is sufficient to prove this for case (1). But then since $\phi_{1} \in \operatorname{Aut}\left(G_{1}\right), \phi_{1}\left(x_{1}\right)$ and $\phi_{1}\left(y_{1}\right)$ are adjacent in G_{1}, and since $x_{2}=y_{2}, \phi_{2}\left(x_{2}\right)=\phi_{2}\left(y_{2}\right)$. Therefore $\left(\phi_{1}, \phi_{2}\right)\left(x_{1}, x_{2}\right)$ and $\left(\phi_{1}, \phi_{2}\right)\left(y_{1}, y_{2}\right)$ are adjacent in $G_{1} \square G_{2}$. Thus $\left(\phi_{1}, \phi_{2}\right) \in \operatorname{Aut}\left(G_{1} \square G_{2}\right)$.

Corollary 8 Suppose that for $i=1,2, H_{i} \subseteq E\left(G_{i}\right)$ and H_{i} is a fundamental set for the graph G_{i} with subgroup \mathcal{H}_{i} of $\operatorname{Aut}\left(G_{i}\right)$. Then $H_{1} \square H_{2}$ is a fundamental set for $G_{1} \square G_{2}$ with subgroup $\mathcal{H}_{1} \times \mathcal{H}_{2}$ of $\operatorname{Aut}\left(G_{1} \square G_{2}\right)$.

Proof. By assumption, for $i=1,2$ the translates of H_{i} by \mathcal{H}_{i} are edgedisjoint and their union is $E\left(G_{i}\right)$. Suppose that $e=\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle \in$ $E\left(G_{1} \square G_{2}\right)$. Then either Case (1): $\left\langle x_{1}, y_{1}\right\rangle \in E\left(G_{1}\right)$ and $x_{2}=y_{2}$ or Case (2): $x_{1}=y_{1}$ and $\left\langle x_{2}, y_{2}\right\rangle \in E\left(G_{2}\right)$. By symmetry, we need only prove our assertions for Case (1). Since $\left\langle x_{1}, y_{1}\right\rangle \in E\left(G_{1}\right)$, for some $\phi_{1} \in \mathcal{H}_{1}$, there exists an edge $\left\langle u_{1}, v_{1}\right\rangle \in H_{1}$ such that $\left\langle x_{1}, y_{1}\right\rangle=\left\langle\phi_{1}\left(u_{1}\right), \phi_{1}\left(v_{1}\right)\right\rangle$. Let $i d_{i} \in \mathcal{H}_{i}$ denote the identity automorphism of H_{i}. Then $\left(\phi_{1}, i d_{2}\right) \in \mathcal{H}_{1} \times \mathcal{H}_{2}$ and
$\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=\left(\phi_{1}, i d_{2}\right)\left(\left\langle\left(u_{1}, x_{2}\right),\left(v_{1}, y_{2}\right)\right\rangle\right)$. So the translates of $H_{1} \square H_{2}$ cover $G_{1} \square G_{2}$.

Next, we must show that these translates form a packing, i.e. that either $\left(\phi_{1}, \phi_{2}\right)\left(H_{1} \square H_{2}\right)=\emptyset$ or that $\phi_{1}=i d_{1}$ and $\phi_{2}=i d_{2}$. Let $\left(\left\langle\left(w_{1}, w_{2}\right),\left(z_{1}, z_{2}\right)\right\rangle\right) \in$ $H_{1} \square H_{2}$. We shall show that $\left(\phi_{1}, \phi_{2}\right) \in \mathcal{H}_{1} \times \mathcal{H}_{2}$ is the identity automorphism of $H_{1} \square H_{2}$. For from this hypothesis, we have $\phi_{1}\left(\left(w_{1}, z_{1}\right)\right) \in H_{1}$ and $\phi_{2}\left(\left(w_{2}, z_{2}\right)\right) \in H_{2}$. Since H_{1} and H_{2} are fundamental sets for G_{1} and G_{2}, respectively, $\phi_{1}=i d_{1}$ and $\phi_{2}=i d_{2}$. Thus $H_{1} \square H_{2}$ is a fundamental set for $G_{1} \square G_{2}$ with subgroup $\mathcal{H}_{1} \times \mathcal{H}_{2}$ of $\operatorname{Aut}\left(G_{1} \square G_{2}\right)$, as claimed.

Corollary 9 If H is a fundamental set of edges for the graph G, with subgroup \mathcal{H} of $\operatorname{Aut}(G)$ then $H \square H$ is a fundamental set for $G \square G$ with subgroup $\mathcal{H} \times \mathcal{H}$ of $\operatorname{Aut}(G \square G)$.

$5 \quad Q_{2^{k}}$ has a fundamental Hamiltonian cycle.

Remark. We say that the direction of an edge of Q_{n} is i if the coordinate in which its two endpoints differ is the $i^{\text {th }}$. We shall describe walks in the hypercube by specifying the starting vertex (generally $\overrightarrow{0}$) and the sequence of edge directions.

It is well-known that the n-dimensional hypercube Q_{n} is Hamiltonian, and in fact has many Hamiltonian cycles. Aubert and Schneider [1] proved that for n even, Q_{n} has an edge decomposition into Hamiltonian cycles. However, their construction is technical. In contrast, in this last section we shall show that for $n=2^{k}$, there is a single Hamiltonian cycle C such that $E(C)$ is a fundamental set for Q_{n}.

More generally, we shall show that if G is a graph with a Hamiltonian cycle whose edges form a fundamental set, relative to a subgroup \mathcal{G} of the automorphism group of G, then $G^{2}=G \square G$ has a Hamiltonian cycle whose edges form a fundamental set, relative to a subgroup of the automorphism group of G^{2}.

The next lemma is due to G. Ringel [7]. (The second statement is not stated explicitly there, but is a consequence of his proof.)

Lemma 7 From a Hamiltonian cycle C of a graph G, there are two edgedisjoint Hamiltonian cycles of $G^{2}=G \square G$. Each of them is isomorphic to $C \square C$, via an automorphism (ϕ_{1}, ϕ_{2}), where for $i=1,2, \phi_{i} \in \operatorname{Aut}(G)$.

Corollary 10 If G has a Hamiltonian cycle C and C is a fundamental set for G under the subgroup \mathcal{H} of Aut G, then $C \square C$ is a Hamiltonian cycle of $G \square G$ under the subgroup $\mathcal{H} \times \mathcal{H}$ of $\operatorname{Aut}(G \square G)$.

Proof. This follows from Corollary 9 and Lemma 7.
Proposition $9 Q_{4}$ has a Hamiltonian cycle that is a fundamental set.
Proof. The edge direction sequence $(12132124)^{2}$, together with any starting vertex, yields a Hamiltonian cycle C. Let θ be the permutation (13)(24). Then the mapping $\rho_{\theta}: V\left(Q_{n}\right) \longrightarrow V\left(Q_{n}\right)$, defined by $\rho_{\theta}\left(x_{1}, \ldots, x_{n}\right)=$ $x_{\theta(1)}, \ldots, x_{\theta(n)}$ is an automorphism, which in this case generates a subgroup of $\operatorname{Aut}\left(Q_{4}\right)$ of order 2 . It is easy to check that $\rho_{\theta(C)}$ is edge-disjoint from C, and so we have the desired edge decomposition.

Theorem 2 For any $k \geq 1, Q_{2^{k}}$ has a Hamiltonian cycle that is a fundamental set.

Proof. This is trivial for $k=1$ since $Q_{2}=C_{2}$ and holds for $k=2$ by Proposition 9. The desired result now follows by induction, from Lemma 7 and Corollary 9.

Corollary 11 For n and m each a power of 2 , with $m \leq n$, there is an m-cycle that divides Q_{n}.

Proof. Let $m=2^{p}$. By Theorem $2 Q_{m}$ has a fundamental 2^{p}-cycle, which therefore divides $Q_{m}=Q_{2^{p}}$. Since m and n are each powers of two, m divides n. Hence by Proposition 4 and Lemma 2, this cycle divides Q_{n}.

6 Summary of Results

1. For k odd, if P_{k} is a divides Q_{n}, then k divides n. (Proposition 3)
2. If k divides n, any tree on k edges is a fundamental set for Q_{n}. (Corollary 4)
3. If k divides n and $k<n$ then $P_{2 k}$ divides Q_{n}. (Corollary 5)
4. If n is even and $j<n$ then $P_{2^{j}}$ divides Q_{n}. (Proposition 5)
5. For $k=2 n$ there is a k-cycle which is a fundamental set for Q_{n} when n is even. (Proposition 6)
6. For $n=$ a power of 2 , there is a Hamiltonian cycle which is a fundamental set for Q_{n}. (Theorem 2)
7. For $n=$ a power of 2 and $m=$ a power of 2 , with $m \leq n$, there is an m-cycle that divides Q_{n}. (Corollary 11)
8. For $n \geq 4, P_{4}$ divides Q_{n}. (Theorem 1)
9. If k divides n then Q_{k} is a fundamental set for Q_{n}. (Proposition 4)

10 . For $k \geq 3, P_{2^{j}}$ does not divide $Q_{2 k+1}$. (Proposition 1)

References

[1] Aubert and Schneider, Décomposition de la somme Cartésienne d'un cycle et de l'union de deux cycles Hamiltoniens en cycles Hamiltoniens, Disc. Math. 38, (1982), 7 - 16, .
[2] Darryn E. Bryant, Saad El-Zanati, Charles Vanden Eynden, and Dean G. Hoffman, Star decompositions of cubes, Graphs and Comb. 17, (2001), no.1, 55-59.
[3] J.F. Fink, On the decomposition of n-cubes into isomorphic trees, J. Graph Theory 14, (1990), 405-411.
[4] E. Gilbert, Gray codes and paths on the n-cube, Bell System Tech. J. 37, (1958) 815-826.
[5] M. Ramras, Symmetric edge-decompositions of hypercubes, Graphs and Comb. 7, (1991), 65-87.
[6] M. Ramras, Fundamental Subsets of Edges of Hypercubes, Ars Combinatoria 46 (1997), 3-24.
[7] G. Ringel, Über drei kombinatorische Probleme am n-dimensionalen Würfel und Würfelgitter, Abh. Math. Sem. Univ. Hamburg 20 (1955), 10-15.
[8] S. Wagner; M. Wild, Decomposing the hypercube Q_{n} into n isomorphic edge-disjoint trees, Discrete Mathematics (2012), doi: 10.1016/j.disc.2012.01.033

[^0]: *CNRS Université Joseph Fourier

