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Abstract

If H is (or is isomorphic to) a subgraph of G, we say that H divides

G if there is an edge-decomposition of G by copies of H. Many authors
([1], [2], [3], [5], [6], [8]) have studied this notion for various subgraphs
of hypercubes. We continue such a study in this paper.

1 Introduction and Preliminary Results

Definition 1 If H is (or is isomorphic to) a subgraph of G, we say that H
divides G if there is an edge-decomposition of G by copies of E(H).

Ramras [5] has defined a more restrictive concept.

∗CNRS Université Joseph Fourier
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Definition 2 A fundamental set of edges of a graph G is a subset of E(G)
whose translates under some subgroup of the automorphism group of G par-
tition E(G).

In [5] we have shown that if G is a subgroup of Aut(Qn) and for all g ∈ G,
with g 6= id (where id denotes the identity element), g(E(H)) ∩ E(H) = ∅,
then there is a packing of these translates of E(H)) in Qn, i.e. they are
pairwise disjoint. If, in addition, |E(H) | · | G | = n · 2n−1 = |E(Qn) |, then
the translates of E(G) by the elements of G yield an edge decomposition of
Qn. In [5] it is shown that every tree on n edges can be embedded in Qn as
a fundamental set. In [6] this is extended to certain trees and certain cycles
on 2n edges. Decompositions of Qn by k-stars are proved for all k ≤ n in [2].
Recently, Wagner and Wild [8] have constructed, for each value of n, a tree
on 2n−1 edges that is a fundamental set for Qn.

The structure of Aut(Qn) is discussed in [5]. For each subset A of
{1, 2, . . . , n}, the complementing automorphism σA is defined by σA(~x) =
~x +

∑

i∈A ei, where ei is the n-tuple with a 1 in the ith coordinate and 0
elsewhere. Another type of automorphism arises from the group of permu-
tations Sn of {1, 2, . . . , n}. For θ ∈ Sn, we define ρθ by ρθ(x1, x2, . . . , xn) =
(xθ(1), xθ(2), . . . , xθn)). Every automorphism in Aut(Qn) can be expressed uniquely
in the form σA ◦ ρθ.

To avoid ambiguity in what follows we make this definition:

Definition 3 By Pk, the “k-path”, we mean the path with k edges.

Questions

(1) For which k dividing n · 2n−1 does Pk divide Qn?
(2) For which k dividing n · 2n−1 does Ck, the cycle on k edges, divide Qn?
(3) For those k for which the answer to either (1) or (2) is “yes”, is the edge
set a fundamental set for Qn?

We begin this introductory section with some examples. In later sections
we prove a variety of results relating to these questions, and in the final
section we summarize our findings.

Example 1

Let T be the 2-star (= the 2-path) contained in Q3 with center 000, and
leaves 100, 010. Then G = {id, σ123, σ1ρ(123), σ12ρ(132), σ3ρ(132), σ23ρ(123)} is a
(cyclic) subgroup of Aut(Q3) of order 6, and the 6 translates of T under G
yield an edge decomposition of Q3. 2
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Note, however, that G does not work for the 2-star T ′, whose center is
000 and whose leaves are 100 and 001. The subgroup which works for this
2-star is G ′ = {id, σ123, σ1ρ(132), σ13ρ(123), σ2ρ(123), σ23ρ(132)}.

Example 2

P6 does not divide Q3. For since Q3 has 12 edges, if P6 did divide Q3

then Q3 would have an edge-decomposition consisting of 2 copies of P6. The
degree sequence of P6 is 2, 2, 2, 2, 2, 1, 1, whereas Q3, of course, is 3-regular.
So 5 vertices meet 2 edges of one copy of P6, and another 5 vertices meet
the other copy of P6. Since Q3 has only 8 vertices, the 2 5-sets must have
at least 2 vertices in common. But that would force these 2 vertices to have
degree 4, a contradiction. 2

Example 3

P4 does not divide Q3. Since P4 has 4 edges, we would need 3 copies of P4

for an edge-decomposition ofQ3. The degree sequence of P4 is 2, 2, 2, 1, 1, 0, 0, 0.
Call the three copies of P4 P (1), P (2), and P (3). At each vertex v of Q3,
∑

1≤i≤3 degP (i)(v) = 3. For each v with degP (1)(v) = 0 or 2, exactly one of
degP (2)(v) or degP (3)(v) is 1. Thus a total of 6 + 2 = 8 1’s are required.
However, each of the 3 copies of P4 has exactly 2 vertices of degree 1, and
so the total number of 1’s in the 3 × 8 array (aiv) formed by the 3 degree
sequences is 6. Hence P4 does not divide Q3. 2

Example 4

The other tree on 4 edges does divide Q3. Let T = the 3-star centered
at 000 union the edge < 001, 101 >. Let G =< σ23ρ(123) >, which is a cyclic
subgroup of Aut(Q3) of order 3. A straight-forward calculation shows that
the translates of T under G form an edge decomposition of Q3. 2

Proposition 1 For k ≥ 3, P2k does not divide Q2k+1.

Proof. Suppose that k ≥ 3, and suppose that P2k divides Q2k+1. The matrix
(aiv) has 2

2k+1 columns, and

(2k + 1) · 22k/2k = (2k + 1)2k
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rows. Then since each row has exactly two 1’s, the entire matrix has
(2k + 1)2k+1 1’s. But since each vertex of Q2k+1 has degree 2k + 1, each
column sum is 2k + 1, and thus each column has at least one 1. Thus there
must be at least 22k+1 1’s in the matrix. Therefore, (2k + 1)2k+1 ≥ 22k+1.
This is equivalent to 2k + 1 ≥ 2k. But for k ≥ 3 this is clearly false. Thus
for k ≥ 2, P2k does not divide Q2k+1. 2

We can generalize this proposition.

Lemma 1 Given any positive integer j there exists an integer k0 > 0 such
that for all k with k ≥ k0, 2

k−j−1 > k.

Corollary 1 For any positive integer j there exists an integer k0 such that
for all integers k ≥ k0, P2k−j does not divide Q2k+1.

Proof. Choose k0 by the lemma. We argue as in the proof of Proposition
1. Suppose that P2k−j divides Q2k+1. Counting the number of 1’s appearing
in the matrix (aiv) we get the inequality (2k + 1)2k−j+1 ≥ 22k+1. This is
equivalent to 2k + 1 ≥ 2k−j, i.e. 2k ≥ 2k−j. This in turn is equivalent to
k ≥ 2k−j−1. But by the lemma, this is false for k ≥ k0. So for k ≥ k0, P2k−j

does not divide Q2k+1. 2

The next result is Proposition 8 of [6].

Proposition 2 Let n be odd, and suppose that Pk divides Qn. Then k ≤ n.

Lemma 2 “Divisibility” is transitive, i.e. if G1 divides G2 and G2 divides
G3, then G1 divides G3.

Proof. This follow immediately from the definition of “divides”. 2

Corollary 2 If k divides n then Pk divides Qn.

Proof. By [5], Theorem 2.3, T divides Qn for every tree T on n edges. In
particular, then, Pn divides Qn. Clearly, if k divides n then Pk divides Pn.
Hence, by Lemma 2, Pk divides Qn. 2

We have the following partial converse.

Proposition 3 If Pk divides Qn and k is odd, then k divides n.
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Proof. Since Pk divides Qn, k divides n ·2n−1. But since k is odd, this means
that k divides n. 2

Proposition 4 If k divides n then E(Qk) is a fundamental set for Qn. In
particular, Qk divides Qn.

Proof. Let n = k ·m. Define the permutation

θ : {1, 2, . . . , n} −→ {1, 2, . . . , n}

by

θ = (1, k+1, . . . , (m−1)k+1)(2, k+2, . . . , (m−1)k+2) · · · (k, 2k, . . . , mk).

Let ρθ be the automorphism of Qn defined by

ρθ(x1, . . . , xn) = xθ(1), . . . , xθ(n).

The order of θ is m and so the order of the group 〈 ρθ〉 is also m. Let
H = {σA |A ⊂ {k + 1, k + 2, . . . , n}, |A | is even}. H is a subgroup of the
automorphism group of Qn−k. Finally, let G be the group generated by H
and ρθ, i.e.

G = {σAρθj |A ⊂ {k + 1, k + 2, . . . , n}, |A | is even, 1 ≤ j ≤ m, }.

G is a subgroup of Aut(Qn) of order m · 2n−k−1. Hence

| G | · |E(Qk) | = m · 2n−k−1
(

k · 2k
)

= n · 2n−1 = |E(n) |.

To show that the translates of E(Qk) under G yield an edge decomposition
of Qn it remains to show that for all 1 ≤ i ≤ k, A ⊂ {1, 2, . . . , k}, |A| even
and for all 1 ≤ j ≤ m,

σAρθj (E(Qk)) ∩ E(Qk) = ∅.

Now if e ∈ E(Qk), its direction (the coordinate in which its endpoints differ)
is some i, 1 ≤ i ≤ m. The direction of ρθj (e) is θj(i). Automorphisms of
the type σA leave edge directions fixed, so the direction of σAρθj(e) = θj(i).
From the definition of θ, θ(i) = k + i. One can then show by induction on
j that θj(i) = jk + i for 1 ≤ j ≤ m − 1. Hence θj(i) > k. Since all edges
of Qk have direction ≤ k, σAρθj (e) 6= id. Now if j = m, θm equals id, so
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σAρθm = σA. But if σA(e) = e, and σA is not the id, then A 6= ∅, and so
σA interchanges the ends of edge e. This is impossible since |A | is even, by
hypothesis. 2

As an immediate consequence of Lemma 2 and Proposition 4 we have

Corollary 3 If k divides n and if Pj divides Qk then Pj divides Qn.

We have a more general consequence.

Corollary 4 If k divides n and T is any tree on k edges, then T divides Qn.
In fact, T is a fundamental set for Qn.

Proof. By [5], Theorem 2.3, T divides Qk. Hence by Lemma 2 and Proposi-
tion 4, T divides Qn.

For the second assertion, let G1 = {σAρθj |A ⊆ {k + 1, k + 2, . . . , n}, |A |
even }, where θ is defined as in Proposition 4. Note that the order of θ
is m, where mk = n. Let G2 = {σB|B ⊆ {1, 2, . . . , k}, |B | even}. Finally,
let G ⊆ AutQn be the subgroup generated by G1 and G2. If σB ∈ G2 then
ρθσB = σθ(B)ρθ. Note that θ(B) ⊆ {k+1, k+2, · · · ;n} and thus σθ(B)ρθ ∈ G1.
So for all j with 1 ≤ j ≤ m,

σAρθjσB = σAρθj−1σθ(B)ρθ = · · · = σA∆θj(B)∆θj−1(B)···∆θ(B)ρθj .

|A∆θj(B)∆ · · ·∆θ(B) | is even, and furthermore,

A∆θj(B)∆ · · ·∆θ(B) = A ∪ [θj(B)∆θj−1(B)∆ · · ·∆θ(B)].

Hence σA∆θj(B)∆···∆θ(B)ρθ ∈ (Σn, ρθ), where Σn = {σC |C ⊆ {1, 2, · · · , n}.
First we shall show that the translates of E = E(T ) are edge-disjoint. So
suppose that σCρθj (e) = e ′, where e, e ′ ∈ E(T ) and |C | is even. Let the
direction of e be i. Then the direction of θ(e) is θ(i). Since translations σA

preserve the directions of edges, the direction of e ′ is also i. Thus θj(i) = i.
Since θ is a product of disjoint m-cycles, this implies that j = m, and hence
θj = θm = id. Thus σC = id. Hence σCρθj = id, and so the translates of
E(T ) are disjoint.

Finally, we must show that every edge e ∈ E(Qn) belongs to some trans-
late of E(T ). Let e ∈ E(Qn). Then since E(T ) is fundamental for E(Qk),
e = g ′ for some e ′ ∈ E(T ), and for some g ′ ∈ G2. Since E(Qk) is funda-
mental for Qn relative to G1, e

′ = g ′′(e ′′), where e ′′ ∈ T and g ′′ ∈ G1. Thus
e = g ′g ′′(e ′′ for some e ∈ T . Since g ′g ′′ ∈ G, the translates of E(T ) by
elements of G do cover E(Qn). So E(T ) is fundamental for E(Qn). 2
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Proposition 5 If n is even, and j < n then P2j divides Qn.

Proof. It is proved in [1] that the cycle C2n divides Qn. The Hamiltonian
cycle C2n is divisible by any path Pq, as long as q divides 2n and q < 2n.
Thus C2n is divisible by P2j provided j < n. The result now follows from
Lemma 2. 2

Proposition 6 If n is even, and C is the 2n-cycle with initial vertex ∅,
and edge direction sequence (1, 2, . . . , n)2, then Qn is edge-decomposed by the
copies of C under the action of G = {σA |A ⊂ [n− 1], |A | even}. So E(C)
is fundamental for Qn.

Proof. C consists of the path P , followed by σ{1,2,...,n}(P ), where P is the
path with initial vertex ∅ and edge direction sequence 1, 2, . . . , n. Note that
for any B ⊆ {1, 2, . . . , n}, for any edge e, σB(e) = e =⇒ B = ∅ or |B | = 1.
Now we shall show that for every subset A ⊂ {1, 2, . . . , n − 1} with |A|
even, σA(C) ∩ C = ∅. It should be noted that these A’s form a subgroup
of Aut(Qn) of order 2n−2. So suppose that e = 〈x, y〉 ∈ C ∩ σA(C). Let
the direction of e be i. Then the direction of σA(e) = i. If A 6= ∅, then
since |A| is even, σA(e) 6= e. The only other edge in C with direction i is
σ{1,2,...,n}(e). So if σA(e) ∈ C, then σA(e) = σ{1,2,...,n}(e). Therefore σA ·
σ{1,2,...,n}(e) = e, i.e. σA∆{1,2,...,n}(e) = e. Since A and {1, 2, . . . , n} are
even, so is A∆{1, 2, . . . , n} = A. Hence A∆{1, 2, . . . , n} = ∅, i.e. A =
{1, 2, . . . , n}. But n /∈ A, so we have a contradiction.

Thus we have a group G of automorphisms of C of order 2n−2, such that
for g ∈ G, g 6= id , g(E(C)) ∩ E(C) = ∅. Furthermore, since |E(C)| = 2n, it

follows that |G||̇E(C)| = |E(Qn)|. Hence by [5], Lemma 1.1, the translates
of E(C) via the elements of G form an edge decomposition of Qn. 2

Corollary 5 If k < n and k divides n then P2k divides Qn.

Proof. Since k divides n, 2k divides 2n, and thus since 2k < 2n, P2k divides
the 2n-cycle C of Proposition 6. Hence by Proposition 6, P2k divides Qn. 2

Corollary 6 If k is even and k divides n, and C is the 2k-cycle with initial
vertex ∅, and edge direction sequence (1, 2, . . . , k)2, then C divides Qn.

Proof. By the proposition, C divides Qk, and by Proposition 4, Qk divides
Qn. The result now follows from Lemma 2. 2
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2 P4 divides Q5

If k is odd then by Proposition 3 and Lemma 2 Pk divides Qn and only if k
divides n. Thus the smallest value of k for which Question (1) remains open
is k = 4. Corollary 5 settles the matter in the affirmative when n is even and
thus we now only need to consider the case of n odd. Example 3 shows that
P4 does not divide Q3.

In the next two sections we show that for all odd n with n ≥ 5, P4 divides
Qn. We first, in this section, prove the result for n = 5. The strategy is to
find a subgraph G of Q5, show that G divides Q5, and then show that P4

divides G. In the next section we deduce the general case.

Figure 1: Q5 and the graph G

We define G as follows (see figure 1). First, some notation. For b, c ∈

{0, 1}, Q(∗∗∗bc)
5 denotes the 3-cube induced by the vertices x1x2x3x4x5 with

x4 = b and x5 = c. If a ∈ {0, 1} Q
(∗∗abc)
5 is the 2-cube induced by the

vertices with x3 = a, x4 = b, and x5 = c. We take G to be the union of (1) :

Q
(∗∗∗00)
5 , with the edges of Q

(∗0∗00)
5 deleted; (2): Q

(∗∗∗10)
5 with all edges deleted

except for 〈01010, 01110〉 and 〈11010, 11110〉; (3) : Q
(∗∗∗01)
5 with all edges

deleted except for 〈01101, 11101〉 and 〈01001, 11001〉; (4): the 4 matching
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edges between Q
(∗1∗00)
5 and Q

(∗1∗10)
5 ; and (5) the 4 matching edges between

Q
(∗1∗00)
5 and Q

(∗1∗01)
5 . Thus |E(G) | = 20. Since |E(Q5) | = 5 · 24 = 80, we

must exhibit 80/20 = 4 copies of E(G) that partition E(Q5).

Lemma 3 G divides Q5. In fact, E(G) is a fundamental set for Q5.

Proof. The group of translations G = {id, σ24, σ25, σ45}, applied to E(G),
partitions E(G). It is enough to check that for A = {24}, {25}, and{45},
σA(E(G)) ∩ E(G) = ∅. We will do this for the case A = {24}. The others

are similar. Suppose e, e ′ ∈ E(G) and σ24(e) = e ′. If e lies in Q
(∗∗∗00)
5 then

σ24(e) is in Q
(∗∗∗10)
5 , which is (vertex) disjoint from Q

(∗∗∗00)
5 . Similarly, if

e ∈ Q
(∗∗∗10)
5 , σ24(e) ∈ Q

(∗∗∗00)
5 . If e ∈ Q

(∗∗∗01)
5 then σ24(e) ∈ Q

(∗∗∗11)
5 . If e is a

matching edge 〈x, y〉 between Q
(∗∗∗00)
5 andQ

(∗∗∗10)
5 then x2 = y2 = 1. Hence

σ24(e) = 〈x ′, y ′〉 where x ′
2 = y ′

2 = 0. Thus σ24(e) 6= e ′. Finally, if e is a

matching edge 〈x, y〉 between Q
(∗∗∗00)
5 andQ

(∗∗∗01)
5 then x2 = y2 = 1, while if

〈x ′, y ′〉 = σ24(e), then x ′
2 = x ′

2 = 0 and so σ24(e) 6= e ′. 2

Figure 2: P4 divides G

Lemma 4 P4 divides G.

Proof. It is easiest to describe the paths by their starting points and direction
sequences (see figure 2).
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Path Starting Point Direction Sequence
A 00000 2, 5, 1, 5
B 10100 2, 5, 1, 5
C 10000 2, 3, 1, 3
D 01000 1, 4, 3, 4
E 00100 2, 4, 3, 4

2

Corollary 7 P4 divides Q5.

Proof. This follows immediately from the previous two lemmas. 2

3 P4 divides Qn, for n odd, n ≥ 5

Let us write Q5 as Q5 = Q32Q2 = Q32C4. Let G0 = Q
(∗∗∗00)
5 , G1 =

Q
(∗∗∗10)
5 , G2 = Q

(∗∗∗11)
5 , G3 = Q

(∗∗∗01)
5 . For i ∈ {0, 1, 2, 3} let πi be the canoni-

cal mapping from Gi to Q3.

∗ From the decomposition of Q5 by P4 we have a coloring c : Q5 −→
{1, 2, . . . , 20} of the edges of Q5 such that for any i ∈ {1, 2, . . . , 20} the
set of edges of Q5 colored i induces a P4.

∗ Consider now Q32C4k for some k ≥ 1. Let G ′
0, . . . , G

′
4k−1 ≃ Q3. Let π

′
i ′ be

the canonical mapping from G ′
i ′ −→ Q3 for i ′ ∈ {0, 1, . . . , 4k − 1}.

The edges of Q32C4k are
Case A: the edges of G ′

i ′ for any i ′ ∈ {0, 1, . . . , 4k − 1}.
Case B: for any i ′ ∈ {0, 1, . . . , 4k − 1} the edges 〈x ′, y ′〉 for x ′ ∈ G ′

i ′ ,
y ′ ∈ G ′

j ′, where | j ′ − i ′ | ≡ 1 (mod 4k) and πi ′(x
′) = πj ′(y ′).

∗ Let θ be the mapping from Q32C4k −→ Q5 defined by: for any x ′ ∈
G ′

i ′, θ(x
′) = x where x is the element of Gi, with i ≡ i ′ (mod 4) such that

πi(x) = πi ′(x
′). (Note that θ is not a one-to-one mapping.)

Proposition 7 If 〈x ′, y ′〉 is an edge of Q32C4k then 〈θ(x ′), θ(y ′)〉 is an edge
of Q5.

Proof.
Case A

〈x ′, y ′〉 ∈ G ′
i ′ for some i ′. Then let i ≡ i ′ (mod 4). By the
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definition of θ, θ(x ′) ∈ Gi, θ(y
′) ∈ Gi. This implies that θ(x ′) and θ(y ′) are

adjacent.

Case B
Assume x ′ ∈ G ′

i ′, y
′ ∈ G ′

j ′ with | j ′ − i ′ | ≡ 1 (mod 4k). We
have π ′

i ′(x
′) = π ′

j ′(y ,′). Then θ(x ′) ∈ Gi and θ(y ′) ∈ Gj where |j − i| ≡ 1
(mod 4) since | j ′ − i ′ | ≡ 1 (mod 4) implies that | j − i | ≡ 1 (mod 4).
Furthermore

πi(θ(x
′))

def ofθ
= π(x ′)

edge
= π(y ′)

def ofθ
= πj(θ(y

′)).

Thus there exists an edge between θ(x ′) and θ(y ′) 2

Figure 3: Decomposition of Q2m+1

Definition 4 Consider the coloring E(Q32C4m)
c ′

−→ {1, 2, . . . , 20} of the
edges of Q32C4m defined by c ′(〈x ′, y ′〉) = c(〈θ(x), θ(y)).

Lemma 5 For any i ∈ {1, 2, . . . , 20} the set of edges of Q32C4k such that
c ′(x ′, y ′) = i is a set of disjoint paths of length 4. Therefore P4 divides
Q32C4m for all m ≥ 1.
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Proof. By definition of c ′, for any vertex x ′ of Q32C4k the number of edges
incident to x ′ colored i by c ′ is the number of edges incident to θ(x ′) colored
i by c. Therefore this number is ≤ 2. Furthermore, there is no cycle colored
i in Q32C4k because the image by θ of this cycle would be a cycle of Q5

colored i with c. Therefore the set of edges colored i by c ′ is a forest and
more precisely, because of the degree, a set of disjoint paths.
Notice that the image by θ of a path colored i is a path of Q5 of the same
length (because of the degree of the endpoints of the paths). Therefore all
the paths are of length 4. 2

Figure 4: Decomposition of Q2m+3

Theorem 1 For n ≥ 4, P4 divides Qn.

Proof. If n is even, the result is true by Corollary 5. If n = 5 then we are
done by Corollary 7. Consider Q2m+3, for m ≥ 2. Q2m+3 = Q2m+12Q2.
E(Q2m) can be decomposed into m cycles of length 22m (Hamiltonian cycles)
by Aubert and Schneider [1]. Let D be one of these cycles. The edges of
Q2m+1 are the edges of the two copies of Q2m and a matching. But every
vertex of Q2m appears exactly once in D so E(Q2m+1) can be decomposed
into 2(m− 1) cycles of length 22m and D2Q1 ≃ C22m2Q1 (see figure 3).

Every vertex of Q2m+1 appears once in D2Q1, thus, for the same rea-
son, E(Q2m+3) can be decomposed into 8(m − 1) cycles of length 22k and
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D2Q12Q2 ≃ C22k2Q12Q2 ≃ C22m2Q3 (see figure 4).

Since k ≥ 2, 22m

4
is an integer stictly greater than 1 so the cycles of length

22m are divisible by P4. By Lemma 5, P4 divides C22m2Q3, and P4 divides
E(Qn) for any odd n ≥ 5. 2

4 Products of fundamental sets.

We begin with an easy result about divisibility of the Cartesian product of
two graphs. Its proof is straightforward and so we omit it.

Proposition 8 For i = 1, 2, let Gi be a graph that is divisible by the subgraph
Hi. Then G12G2 is divisible by the subgraph H12H2.

Lemma 6 Let G1 and G2 be any two graphs, and for i = 1, 2 let φi ∈
Aut (Gi). Define (φ1, φ2) : G12G2 −→ G12G2 by (φ1, φ2)((x, y)) = (φ1(x), φ2(y)).
Then (φ1, φ2) ∈ Aut (G12G2).

Proof. Let (x1, x2) and (y1, y2) be adjacent in G12G2. Then either (1) x1

and y1 are adjacent in G1 and x2 = y2 or (2) x1 = y1 and x2 and y2 are
adjacent in G2. We must show that (φ1, φ2)(x1, x2) and (φ1, φ2)(y1, y2) are
adjacent in G12G2. By symmetry, it is sufficient to prove this for case (1).
But then since φ1 ∈ Aut (G1), φ1(x1) and φ1(y1) are adjacent in G1, and
since x2 = y2, φ2(x2) = φ2(y2). Therefore (φ1, φ2)(x1, x2) and (φ1, φ2)(y1, y2)
are adjacent in G12G2. Thus (φ1, φ2) ∈ Aut (G12G2). 2

Corollary 8 Suppose that for i = 1, 2, Hi ⊆ E(Gi) and Hi is a fundamen-
tal set for the graph Gi with subgroup Hi of Aut (Gi). Then H12H2 is a
fundamental set for G12G2 with subgroup H1 ×H2 of Aut(G12G2).

Proof. By assumption, for i = 1, 2 the translates of Hi by Hi are edge-
disjoint and their union is E(Gi). Suppose that e = 〈(x1, x2), (y1, y2)〉 ∈
E(G12G2). Then either Case (1): 〈x1, y1〉 ∈ E(G1) and x2 = y2 or Case
(2): x1 = y1 and 〈x2, y2〉 ∈ E(G2). By symmetry, we need only prove our
assertions for Case (1). Since 〈x1, y1〉 ∈ E(G1), for some φ1 ∈ H1, there exists
an edge 〈u1, v1〉 ∈ H1 such that 〈x1, y1〉 = 〈φ1(u1), φ1(v1)〉. Let idi ∈ Hi

denote the identity automorphism of Hi. Then (φ1, id2) ∈ H1 × H2 and
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〈(x1, x2), (y1, y2)〉 = (φ1, id2)(〈(u1, x2), (v1, y2)〉). So the translates of H12H2

cover G12G2.
Next, we must show that these translates form a packing, i.e. that either

(φ1, φ2)(H12H2) = ∅ or that φ1 = id1 and φ2 = id2. Let (〈(w1, w2), (z1, z2)〉) ∈
H12H2. We shall show that (φ1, φ2) ∈ H1 × H2 is the identity automor-
phism of H12H2. For from this hypothesis, we have φ1((w1, z1)) ∈ H1 and
φ2((w2, z2)) ∈ H2. Since H1 and H2 are fundamental sets for G1 and G2,
respectively, φ1 = id1 and φ2 = id2. Thus H12H2 is a fundamental set for
G12G2 with subgroup H1 ×H2 of Aut(G12G2), as claimed. 2

Corollary 9 If H is a fundamental set of edges for the graph G, with sub-
group H of Aut(G) then H2H is a fundamental set for G2G with subgroup
H×H of Aut(G2G).

5 Q2k has a fundamental Hamiltonian cycle.

Remark. We say that the direction of an edge of Qn is i if the coordinate
in which its two endpoints differ is the ith. We shall describe walks in the
hypercube by specifying the starting vertex (generally ~0) and the sequence
of edge directions.

It is well-known that the n-dimensional hypercube Qn is Hamiltonian,
and in fact has many Hamiltonian cycles. Aubert and Schneider [1] proved
that for n even, Qn has an edge decomposition into Hamiltonian cycles.
However, their construction is technical. In contrast, in this last section we
shall show that for n = 2k, there is a single Hamiltonian cycle C such that
E(C) is a fundamental set for Qn.

More generally, we shall show that if G is a graph with a Hamiltonian
cycle whose edges form a fundamental set, relative to a subgroup G of the
automorphism group of G, then G2 = G2G has a Hamiltonian cycle whose
edges form a fundamental set, relative to a subgroup of the automorphism
group of G2.

The next lemma is due to G. Ringel [7]. (The second statement is not
stated explicitly there, but is a consequence of his proof.)

Lemma 7 From a Hamiltonian cycle C of a graph G, there are two edge-
disjoint Hamiltonian cycles of G2 = G2G. Each of them is isomorphic to
C2C, via an automorphism (φ1, φ2), where for i = 1, 2, φi ∈ Aut (G).
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Corollary 10 If G has a Hamiltonian cycle C and C is a fundamental set
for G under the subgroup H of Aut G, then C2C is a Hamiltonian cycle of
G2G under the subgroup H×H of Aut (G2G).

Proof. This follows from Corollary 9 and Lemma 7. 2

Proposition 9 Q4 has a Hamiltonian cycle that is a fundamental set.

Proof. The edge direction sequence (12132124)2, together with any starting
vertex, yields a Hamiltonian cycle C. Let θ be the permutation (13)(24).
Then the mapping ρθ : V (Qn) −→ V (Qn), defined by ρθ(x1, . . . , xn) =
xθ(1), . . . , xθ(n) is an automorphism, which in this case generates a subgroup
of Aut(Q4) of order 2. It is easy to check that ρθ(C) is edge-disjoint from C,
and so we have the desired edge decomposition. 2

Theorem 2 For any k ≥ 1, Q2k has a Hamiltonian cycle that is a funda-
mental set.

Proof. This is trivial for k = 1 since Q2 = C2 and holds for k = 2 by
Proposition 9. The desired result now follows by induction, from Lemma 7
and Corollary 9. 2

Corollary 11 For n and m each a power of 2, with m ≤ n, there is an
m-cycle that divides Qn.

Proof. Let m = 2p. By Theorem 2 Qm has a fundamental 2p-cycle, which
therefore divides Qm = Q2p . Since m and n are each powers of two, m divides
n. Hence by Proposition 4 and Lemma 2, this cycle divides Qn. 2

6 Summary of Results

1. For k odd, if Pk is a divides Qn, then k divides n. (Proposition 3)
2. If k divides n, any tree on k edges is a fundamental set for Qn. (Corollary
4)
3. If k divides n and k < n then P2k divides Qn. (Corollary 5)
4. If n is even and j < n then P2j divides Qn. (Proposition 5)
5. For k = 2n there is a k-cycle which is a fundamental set for Qn when n is
even. (Proposition 6)
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6. For n = a power of 2, there is a Hamiltonian cycle which is a fundamental
set for Qn. (Theorem 2)
7. For n = a power of 2 and m = a power of 2, with m ≤ n, there is an
m-cycle that divides Qn. (Corollary 11)
8. For n ≥ 4, P4 divides Qn. (Theorem 1)
9. If k divides n then Qk is a fundamental set for Qn. (Proposition 4)
10. For k ≥ 3, P2j does not divide Q2k+1. (Proposition 1)
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