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Abstract

We define a generic model for finite audio or symbolic musical patterns

that structurally encode a rich and abstract synchronization mechanism. This

is achieved by distinguishing for each pattern a realization window, describ-

ing what the pattern is, from a synchronization window, describing how the

pattern can be used. The sequential composition of patterns is defined and

studied. An algebra of musical patterns is introduced in a mathematically

well-founded approach. We propose several high level operators that can be

used either in audio processing or in musical analysis and composition. Prac-

tical uses and experiments conducted in both fields are finally described.

1 Introduction

The last decades have seen the development of various software programs for Com-
puter Assisted Music either used on stage for live performances or integral to multi-
media applications for rich interactive audio supports. These softwares range from
low level sound synthesis and control tools such as Faust [7] or Max/MSP [4], to
high level composition assistants such as Elody [13] or OpenMusic [1] to name but
a few.

In some rough dichotomy, low level (audio) softwares manage the nature of
sounds: at any time quantum, they provide its value. On the opposite side, high
level (music) softwares manage the structure of music: it is defined as some combi-
nation of notes, motives, movements, etc., each with a specific duration, dynamics,
usage, etc. As there is an increasing need of mixed usage of both software types,
there is also an increasing need of structuring sounds in such a way that high-level
compositions of musical patterns can be translated into low-level partial superpo-
sitions of audio patterns. This becomes especially crucial when interactive musical
pieces are to be defined and performed [5, 9].

In this paper, we consider the problems of synchronizing musical patterns, either
in the audio case or in the symbolic case. By discriminating between the definition
of the pattern (what music is to be played) and its usage (when music is to be
played), we define an advanced synchronization mechanism. It essentially consists
in distinguishing, for every pattern, a realization window from a synchronization
window. Sequentially combining two audio or symbolic patterns then amounts to
sequentially combining their synchronization windows. As a result, realization win-
dows may overlap. The handling of overlapping patterns, which is critical for a
practical use of advanced synchronization, is defined according to the application.



In other words, we introduce a kind of musical pattern algebra, deeply well-
founded from a mathematical point of view. Once presented this algebra (Sections 2
and 3), we illustrate its relevance for musical applications by means of two case
studies: automatic audio recomposition (Section 4) and live looping performance
(Section 5).

2 The advanced synchronization model

In this section, we define our generic model of musical patterns with advanced
synchronization information.

2.1 Basic pattern model

In both signal processing or computational music, an audio or symbolic pattern can
be abstracted as the mapping

S : [0, d] → A ∪ {⊥}

such that [0, d] ⊆ IR is the time interval on which S is defined, A is the (finite) set
of values this pattern may take at a given time and ⊥ corresponds to an undefined
value.

For convenience, we represent S on a relative time scale, hence starting at date
0 and lasting d ∈ IR. When modeling digital audio patterns, A is the set of possible
sample values, depending on the audio quantization used. When modeling symbolic
music, A is the set of all sets of control events that may be played at the same time.

One may remark that in both audio and symbolic cases, the definition domain
dom(S) is, a priori, a finite subset of [0, d] either defined by the sample rate of the
audio pattern, or defined by the event dates of the control pattern. In other words,
a pattern S is a partial function from [0, d] to A. To make S total on [0, d], we
introduce the additional undefined value ⊥ that is assigned for every t ∈ [0, d] where
S(t) is undefined.

This simple definition enables considering basic operators acting on such pat-
terns. For instance, two musical patterns S1 and S2 with domains dom(S1) = [0, d1]
and dom(S2) = [0, d2] can be combined one after the other, in a simple sequential
fashion, into a pattern S1.S2 with domain dom(S1.S2) = [0, d1 + d2] by taking, for
all t ∈ [0, d1 + d2],

(S1.S2)(t) =

{

S1(t) when 0 ≤ t < d1

S2(t − d1) when d1 ≤ t ≤ d1 + d2

4



where, for convenience, we assume that S1(d1) = ⊥.
The simplicity of this basic composition operator makes it appealing for modeling

purpose. It can be seen as a timed extension of the well-known concatenation
product of strings, and its formal study already led to the rich theory of timed
languages [2].

2.2 Towards an extended model

It may be argued that this concatenation product is not usable by itself for practical
musical applications. In audio processing, for instance, signal continuity is crucial
for combining patterns, in order to avoid unwanted artifacts; thus, overlapping pat-
terns to produce smooth cross-fading transitions is highly desirable. In symbolic
music modeling, time signatures and associated notions of weak and strong beats
(or related notions in non-Western music) may induce constraints on the occurrence
dates of musical events. Hence, the arbitrary sequential composition of musical
patterns is very likely to lack of musical consistency.

Therefore, in both audio and symbolic cases, the sequential composition of pat-
terns generally requires additional parameters that accurately encode how such pat-
terns should be combined one to the other. The basic pattern model introduced so
far seems incomplete. It does indicate what musical patterns are but it does not
indicate how such patterns can be used.

One may observe that, in music writing, this problem is solved by adding bars.
Indeed, in musical scores, musical patterns are not only described as sequences of
notes. Bars are added to describe how these musical sequences are to be played (or
synchronized) one with the other. As an example, the notion of musical anacrusis
refers to a few notes that are to be played before the first logical beat of a musical
sequence.

Inspired by this synchronization mechanism encoded in music scores, we propose
to enhance the aforementioned basic composition of musical patterns in order to
allow our model to be practically meaningful. A former study of rhythm structures
and rhythm compositions [11] suggests that one may distinguish in every rhythmic
pattern a realization window where the pattern is defined from a synchronization
interval that describes the usage of that pattern. This model, adapted to musical
patterns, is presented here.
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2.3 Realization and synchronization windows

In a first approach, the time structure of a musical pattern can be described by the
following schema. The musical pattern starts at a given date s1 and ends at a given
date s4. Some subinterval described by two other dates s2 and s3 indicates, when
involved in sequential composition, how this pattern must be combined with others.

s1 s4d1 s2 d3s3d2

Synchronisation Window

Realization Window

entry

exit

Formally, abstracting from the date the pattern is actually fired, the time struc-
ture of a pattern S is modeled as a triple of durations

W (S) = (d1, d2, d3) ∈ IR × IR+ × IR

respectively describing durations of what can be called, following the presentation
given in [11], the introduction, development and conclusion of pattern S.

In this model, as soon as the above dates s1, s2, s3 and s4 are given, the pattern
durations d1, d2, d3 are defined such that:

(1) d1 = s2 − s1, with [s1, s2[ defining the introduction section,

(2) d2 = s3 − s2, with [s2, s3] defining the development section,

(3) d3 = s4 − s3, with ]s3, s4] defining the conclusion section.

The triple comprising these three specific durations is called time structure of pattern
S, and denoted by W (S). [s1, s4] is the pattern’s realization window, and [s2, s3] is
the pattern’s synchronization window.

The effective duration d(S) of (the realization window of) a musical pattern S
is defined by d(S) = s4 − s1 or, equivalently, d(S) = d1 + d2 + d3. It must not be
confused with the length of the synchronization window itself, the synchronization
duration s(S), defined by s(S) = d2.

The model still makes sense when d1 and/or d3 are negative. For instance, when
both d1 and d3 are negative, introduction and conclusion of S actually correspond to
silent sections. In such a case, the induced dates of S are such that s2 ≤ s1 ≤ s4 ≤ s3,
and the resulting pattern only produces sound from s1 to s4. The induced time
structure can be illustrated by the following schema:
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s1 s4d1s2 d3 s3d1+d2+d3

Realization Window

Synchronization Window

entry

exit

with the associated constraint that d(S) = d1 + d2 + d3 ≥ 0, i.e. the duration of the
realization window remains positive. In that case, we have s(S) ≥ d(S).

In all cases, the beginning of the synchronization window, at date s2, is called
entry point of pattern S, and the end of the synchronization window, at date s3,
is called exit point of S. Moreover, from now on we define the pattern S with its
associated time structure W (S) = (d1, d2, d3) on the domain

dom(S) = [−d1, d2 + d3]

where the date 0 always stands for the date of the entry point. Such a definition
turns out to be convenient for combining patterns.

Remark: When introducing the synchronization window of S, we assume that s(S) =
d2 ≥ 0. This constraint ensures that the synchronization is defined in a past-to-
future manner only. However, one might want to relax such a condition and allow
negative synchronization windows. Such a consideration would be helpful from a
mathematical point of view: it would result in manipulating a particular monoid
structure, namely an inverse monoid [12] in which, by switching the entry and exit
points of a given pattern S, one could associate the so-called pseudo-inverse of S in
inverse monoid theory.

Nevertheless, negative synchronization windows do not appear to be relevant for
application purpose. In all considered applications, synchronization mechanisms are
practically performed from past to future. In the absence of negative synchronization
windows, we still obtain concrete instances of monoid structures that have been
recently investigated under the name of quasi-inverse monoids [10].

2.4 Sequential composition

The purpose of distinguishing synchronization from realization is revealed when
defining sequential compositions of musical patterns. This product is defined in two
stages as a kind of concatenation of structured patterns. We first show how time
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structures are combined. Then, from that combination, the effective composition of
patterns, possibly with overlaps, is described in detail.

Let S1 and S2 be two musical patterns with respective time structures W (S1) =
(x1, x2, x3) and W (S2) = (y1, y2, y3). The proposed sequential composition S1.S2

of patterns S1 and S2 consists in placing the synchronization window of S2 right
after the synchronization window of S1. As a result, the two musical patterns are
positioned as described in the following schema:

1

4

x1
2

x3

3x2

1

4y1

2
y3

3y2

sync. point

entry
exit

The associated patterns are then assigned the resulting time structure:

1 4x 2 x3x2 + y2

entry

exit

with x = max(x1, y2 − x2) and y = max(y3, x3 − y2).
Formally, we define W (S1.S2) by

W (S1.S2) = (max(x1, y1 − x2), x2 + y2, max(y3, x3 − y2))

In this composition, the resulting realization window of the product S1.S2 is
defined as the union of realization windows of both S1 and S2. It may be the case that
one pattern is completely included into the other; thus, durations of introductory
and concluding sections in the resulting time structure are computed by means of a
max.

Observe that the hereby defined product is associative, i.e. given three musical
patterns S1, S2 and S3, (S1.S2).S3 = S1.(S2.S3). It should be clear that associativity
is required in order to achieve a computationally robust formalism.
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The value of the composition of patterns S1 and S2 with respective time struc-
tures (x1, x2, x3) and (y1, y2, y3) is defined as follows: for all t ∈ dom(S1.S2),

(S1.S2)(t) =



















































S1(t) ⊕ S2(t − x2) when t ∈ dom(S1) and
t − x2 ∈ dom(S2),

S1(t) when t ∈ dom(S1) and
t − x2 /∈ dom(S2),

S2(t − x2) when t /∈ dom(S1) and
t − x2 ∈ dom(S2),

⊥ otherwise

Note that the sum ⊕ of pattern values depends on the type of data to be handled,
and the precise semantics of that sum need to be adequately defined depending on
the application.

2.5 Resynchronization operator

Given a pattern S with W (S) = (x1, x2, x3), given d(S) and s(S) the respective
realization and synchronization durations of pattern S, and given two reals a and
b such that (a − b)d(S) ≤ s(S), we define the resynchronized pattern S[a, b] by
S[a, b](t) = S(t + a.d) for every t ∈ dom(S[a, b]).

Keeping 0 as the entry point of S[a, b], we define dom(S[a, b]) from dom(S)
by a translation of −a.d. a and b are respectively called the left offset and the
right offset resynchronization ratios of S. The underlying time structure is assigned
as W (S[a, b]) = (x1 + a.d(S), x2 + (b − a)d(S), x3 − bd(S)). Doing so, we have
d(S[a, b]) = d(S).

This construction is illustrated by the following figure, where d stands for d(S):

s1 s4x1 s2 x3s3x2

s'1 s'4x1 + a.d s'2 x3 - b.ds'3x2 +(b-a)d

a.d b.d
S

S[a,b]

In other words, the resynchronization operator does not change the realization of
the pattern it is applied to, it only modifies its synchronization offsets.
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3 Derived and additional operators

In this section, we review additional properties of our model. Resynchronization
and sequential composition, combined with a new expansion/contraction operator
lead to the definition of many practically useful derived operators.

3.1 Context patterns and left and right shifts

Patterns S such that s(S) = 0 are called context patterns. One can check that,
provided that ⊕ is commutative, then for every context patterns S and T we have
S.T = T.S, i.e. sequential product on context patterns commute.

Observing that the resynchronization pattern S[a, b] of pattern S is a context
pattern when a − b = s(S)/d(S), this leads us to define two special context patterns
associated to S.

When a = 0 and b = −s(S)/d(S), we call the context pattern S[a, b] the right
shift of S, and write SR = S[0, −s(S)/d(S)]. Practically, SR is obtained from S by
shifting its exit point to its entry point, i.e. the sub-pattern in the sync window of
S is shifted to the right;

When a = s(S)/d(S) and b = 0, we call the context pattern S[a, b] the left shift
of S, and write SL = S[s(S)/d(S), 0]. Practically, SL is obtained from S by shifting
its entry point to its exit point, i.e. the sub-pattern in the sync window of S is
shifted to the left.

The synchronization structure of these new patterns is described in the following
schema:

s1 s4d1 s2 d3s3d2

s1 s4d1 s2 d3s3d2

s1 s4d1 s2 d3s3d2

S

L
S

S
R

If we assume that the sum ⊕ involved in the definition of the sequential compo-
sition is such that, for all pattern value v, v ⊕ v = v, then the following properties
are satisfied:
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(1) for all context patterns S and T , S.S = S and S.T = T.S,

(2) for all patterns S, S.SL = SR.S = S.

Many more properties are actually satisfied. In fact, the set of patterns equipped
with such a sequential composition turns out to be a quasi-inverse monoid [10].

3.2 Fork and join

Let S and T be two patterns with respective time structures W (S) = (x1, x2, x3) and
W (T ) = (y1, y2, y3). The fork composition of S and T is defined as the sequential
composition SR.T . It consists in synchronizing S and T at their entry points, with
the resulting synchronization window taken to be that of T . This construction can
be depicted as follows:

1 4
y1

2
y3

3y2

1
4

x1

2

x3

3
x2

entry
exit

Similarly, the join composition of S and T is defined as the sequential composition
S.TL. It consists in synchronizing S and T at their exit points, with the resulting
synchronization windows taken to be that of S. This construction can be depicted
as follows:

1 4
y1

2
y3

3
y2

1
4

x1
2

x3

3x2

entry
exit

Observe that, in general, S and T do not have sync windows of same duration.
Since s(SR.T ) = s(T ) and s(S.TL) = s(S), the join and fork operators defined here
are not commutative in general.

3.3 Expansion/contraction operator

Given a pattern S and a positive real k such that k ≥ 1 (respectively k < 1), we de-
fine the expanded pattern (resp. contracted pattern) kS as the pattern obtained from
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S by realizing it k times faster (resp. slower). Formally, with W (S) = (x1, x2, x3),
then W (kS) = (k.x1, k.x2, k.x3) and, for all t ∈ dom(kS), (kS)(t) = S(t/k).

Note that the practical use of this operator may require an additional application-
dependent definition that describes how to modify the realization duration.

By combining resynchronization and expansion/contraction operators on a pat-
tern S, we obtain an extended resynchronization operator (or X-resync for short)
that modifies the realization of S but preserves the duration of its synchronization
window. More precisely, for a pattern S with W (S) = (x1, x2, x3), all a and b such
that (a − b)d(S) < s(S) (for a non empty resulting sync window), the X-resync
operator S[[a, b]] is defined by

S[[a, b]] =
s(S)

s(S) − (a − b)d(S)
S[a, b]

By construction, s(S) = s(S[[a, b]]). This operator is particularly useful for musical
performance applications, as described in Section 5.

3.4 Parallel and extended parallel products

When two patterns S and T have sync windows of equal size, i.e. when s(S) = s(T ),
then not only both SR.T = TR.S and S.TL = T.SL, i.e. fork and join arguments
commute, but we also have SR.T = S.TL, i.e. fork and join coincide. This leads us
to define, when s(S) = s(T ), the parallel composition of patterns S and T as:

S||T = SR.T = S.TL

Combined with expansion/contraction, this product can be generalized. Indeed,
provided s(T ) 6= 0 when s(S) 6= 0, we define the asymmetric parallel product S[[T
by

S[[T = S||kT

with k = s(S)/s(T ). In this case, T is expanded or contracted so that its sync
window fits the size of the sync window of pattern S. In particular, s(S[[T ) = s(S).

By symmetry, provided s(S) 6= 0 when s(T ) 6= 0, we define the asymmetric
parallel product S]]T by

S]]T = kS||T

with k = s(T )/s(S). In this case, S is expanded or contracted so to fit the synchro-
nization window of T . In particular, s(S]]T ) = s(T ).

These extended parallel products are particularly useful for audio pattern syn-
chronization and reconstruction, as explained in Section 4.
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4 Application to audio patterns: advanced re-

composition

Audio synchronization usually refers to syncing audio patterns to metadata, such
as musical score, lyrics, etc., or to possibly multi-modal syncing, with audio or
video material for instance. In this section, we focus on the audio-to-audio syncing
problem, referred to as audio pattern synchronization. This particular problem has
been of major concern over the last decades either for signal processing or music
information researchers. Indeed, any system related to the arrangement and organi-
zation of several audio patterns must cope with pattern synchronization problems.
Applications range from alignment of music data [16] to automatic mixing of audio
playlists [8], for instance.

We propose to investigate the use of advanced synchronization in the case of
audio pattern handling. Although most of previous works on audio synchronization
focus on the accurate syncing of two audio patterns, the formal approach introduced
in this paper enables the synchronization of any number of patterns using the afore-
mentioned advanced operators. Moreover, the distinction between synchronization
and realization windows turns out to have major practical benefits.

4.1 Audio advanced synchronization

Synchronizing audio patterns brings several specific issues that need to be addressed
in order to enable a practical use.

First, re-synchronization used with contraction/expansion operators may change
the duration of audio patterns. In such cases, most audio applications require ex-
panding or contracting sounds while keeping the original pitch content. Thus, con-
trastingly to symbolic applications (Section 5), a particular time-stretching function
has to be defined. Classical examples of such functions include time-domain sig-
nal processing such as Pitch Synchronous Overlap and Add (PSOLA) [15] inspired
methods, or frequency domain processing such as advanced phase vocoder tech-
niques (see [6] and references therein).

Another specificity of audio patterns lies in their digital representation, that re-
strict their codomain to some quantized, finite subset. Let A be this codomain.
Due to the digital audio representation, the sum of digital audio patterns must be
defined as follows: ⊕A : A×A → A. Moreover, since considering audio patterns, the
sum of any number of signals must be continuous in order to avoid any audio arti-
fact. An adequate summing function respecting these two criteria may be obtained
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by multiplying patterns to amplitude masks, and computing the mean of resulting
signals. Formally, for an audio pattern S1 with time structure W (S1) = (x1, x2, x3)
and for all t ∈ dom(S1), we define the masked pattern M(S1) : dom(S1) → A with
the same time structure as follows:

M(S1)(t) =











































t + x1

x1

S1(t) when − x1 ≤ t < 0

S1(t) when 0 ≤ t ≤ x2

x2 + x3 − t

x2 + x3

S1(t) when x2 < t ≤ x2 + x3

We also define the inverse mask pattern M(S1) : dom(S1) → A as the dual of
M(S1): M(S1) = S1 − M(S1).

The sum of two audio patterns is then defined as the arithmetic mean of masked
patterns, i.e. for all t ∈ dom(S1) ∩ dom(S2),

S1(t) ⊕A S2(t) =
1

2
(M(S1)(t) + M(S2)(t))

More generally, the sum of k ∈ IN overlapping audio patterns is defined, for all
t ∈ dom(S1) ∩ dom(S2) ∩ · · · ∩ dom(Sk), as

k

⊕A
i=1

Si(t) =
1

k

k
∑

i=1

M(Si)(t)

It is worth noting that with such a definition, which ensures that signal continuity
is respected, sequentially composing audio patterns may no longer be associative. In
sequences where at most two patterns overlap, associativity is respected. However,
if three or more patterns overlap each other at some point in their combination,
the order in which they are summed may change the resulting pattern. This non-
associative property makes real-time audio handling challenging with the present
model, in which case patterns can be expected to be combined in an iterative manner.
In that case, another definition should be considered. For offline applications, on
the other hand, this associative property can be relaxed: the overall synchronization
structure is established before composing patterns, and the composition may then
be realized in an arbitrary order.
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Figure 1: Synchronization structure for re-assigning a missing part P with one
pattern. Dashed lines correspond to synchronization points, while dotted lines show
audio masks applied to the composition.

4.2 Application to audio recomposition

As a practical use of the synchronization theory, we propose to extend the auto-
matic audio assignment method proposed in [14]. The solution proposed in that
paper is to select one or several parts in an audio recording to reconstruct a missing
section. The detection algorithm is based on string alignment methods in order
to accurately detect musical repetitions. Although the algorithm is successful in
identifying relevant parts, the accurate, possibly iterative, synchronization of recon-
structed partterns was left as a perspective. This section is dedicated to using our
synchronization model to explicit these advanced signal reconstruction operations.

Let S be an audio piece, and P its missing part. As explained in [14], the
section that best fits P can be infered by analysing local information around P .
The pattern P ′, composed as a development section containing P surrounded by
an introduction and a conclusion, has to be synchronized with another pattern R
within S that plays the role of replacement pattern. The durations of introductory
and concluding parts of P ′ as well as the replacement pattern R are determined by
the alignment algorithm [14]. With a properly defined synchronization between P ′

and R, one should be able to switch from P ′ to R in order to fill-in the missing part
P .

Formally, let δ be the duration of local search contexts around P (see [14]). We
denote by tl the beginning time of P in S, and tr the ending time of P in S. The
beginning date of P ′ is denoted by s1 = tl − δ. Similarly, the ending date of P ′ is
denoted by s4 = tr + δ. As explained above, the alignment algorithm identifies the
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synchronization points between P ′ and R, denoted by s2 ∈ [s1, tl] and s3 ∈ [tr, s4] in
P ′ and by s′

2 and s′

4 in R. Finally, the introduction and conclusion of pattern R are
attributed the same durations as those of pattern P ′, hence the realization times of
R are defined as s′

1 = s′

2 − (s2 − s1) and s′

4 = s′

3 + (s4 − s3).
Figure 1 gives an overview of the synchronization structure involved. Synchro-

nization and realization times are provided for both identified patterns P ′ and R.
Masks are represented as dotted lines.

The overlapping introductions and conclusions in P ′ and R are intended to enable
a seamless transition. Therefore, the parallel composition of these patterns must be
realized between the inverse mask of P ′ (fading-out, then in), and the mask of R
(fading-in, then out). Finally, the reconstructed pattern r(P ) is defined as follows:

r(P ) = M(P ′)[[M(R)

The synchronization operators defined in this paper enables us to bring the
reconstruction model one step further. As suggested in [14], a major improvement
of the reconstruction method would consist in combining a set of parts that locally fit
the the missing data section P , especially when P is large. This problem can easily
be addressed as a sequential composition of reconstruction sections. Let k ∈ IN be
the number of locally similar parts analysed by an alignment method, and denoted
by R1, R2 · · · Rk. The reconstruction consists in sequentially combining the k distinct
parts (adequately masked), and synchronizing the resulting pattern to P ′. Figure 2
depicts the applied synchronization for k = 3.

The reconstructed pattern rk(P ) is hence defined as follows:

rk(P ) = M(P ′)[[(M(R1).M(R2). · · · .M(Rk))

5 Application to musical performance: Advanced

Live-Looping

Live-looping is a musical technique which consists in recording loops of data coming
from a live musical input. These loops are then synchronized with a pulse, whose
period often corresponds to the length of one of the loops.

When looped data is symbolic, consisting of notes for instance, we talk about
control live-looping. Various live-looping interfaces exist, such as effects pedals, racks
and software applications. New musical instruments such as Fijuu [17] or Drile [3]
also rely on this technique and even improve it. For instance, in Drile, this technique
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Figure 2: Synchronization structure for re-assigning a missing part P with 3 patterns
employed for reconstruction. Dashed lines correspond to synchronization points,
while dotted lines show audio masks applied to the composition.

is expanded with the creation of live-looping trees, which provide new possibilities
in terms of musical structures and loops manipulations.

5.1 Model of control live-looping

Live-looping can easily be conceptualized using the model and operators defined
in previous sections. For this application, patterns are describing symbolic musical
pieces. Each element of the codomain A of a pattern S thus describes a set of control
events that have to be triggered simultaneously. The sum ⊕ of two elements of A is
then defined as the union of sets.

Modeling control live-looping amounts to defining, from each pattern S, the
pattern loop(S) that models the infinite sequential product of S with itself. In our
formalism, this can be done as follows.

Given such a pattern S with non empty sync window, i.e. s(S) > 0, we first
define the pattern D(S) from pattern S by delaying S by the size s(S) of its sync
window. Formally:

D(S) = S[−s(S)/d(S), −s(S)/d(S)]

Figuring (sets of simultaneous) events by vertical bars, such a self-delay operator is
illustrated as follows.
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S

D(S)

By iterating this construction, we define, for every k, Dk+1(S) = D(Dk(S)) =
S[−k.s(S)/d(S), −k.s(S)/d(S)]. Since all delayed patterns have sync windows of
same length, the parallel composition defined in Section 3.4 can be applied.

Formally, we then define the pattern loop(S) resulting from a looping execution
of pattern S as the infinite parallel composition:

loop(S) = S||D(S)||D2(S)|| · · · ||Dk(S)||Dk+1(S)|| · · ·

This construction is illustrated in the following figure:

D
1
(S)

S

D
2
(S)

D
3
(S)

D
4
(S)

D
5
(S)

Note that in practice, since d(S) is finite and s(S) > 0, (loop(S))(t) is finitely
defined since, at a given date t, only finitely many delayed copy of S are defined,
i.e. Dk(S)(t) 6= ⊥ for finitely many k.

5.2 Recalage: an advanced control live-looper

Combining the above loop operator with the extended resync operator defined in
Section 3.3, we eventually define a versatile technique for musical performance which
gives a way to generate new musical patterns from previously recorded ones. We
implement these ideas in a instrument called Recalage.

Recalage allows one to record and play loops of midi events. When recording a
loop, it is automatically synchronized with a multiple of the first previously recorded
loop currently playing. Recalage provides controls for triggering loops, i.e. recording
them if they are empty, toggling them otherwise, as well as for erasing them. Re-
calage is currently used with two loops playing at the same time, each represented
by a specific widget, although stacking more loops only amounts to adding more
loop widgets.
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For each loop, the current instance of the pattern is drawn in the middle of the
widget. The timeline is horizontal; thus, previous and next instances of a loop,
which may overlap with the current one, are displayed respectively above and below
the current instance. Beginning and end of the realization window are represented
by white circles, and can be changed in real time. A white rectangle is added to
the middle of the realization window, allowing users to simultaneously modify the
begin and end offsets without changing the length of the realization window. For
the current instance, the offset control elements (white circles and square) are larger
and thicker and can be moved by clicking and dragging them. Recorded events
are drawn as black lines. The beginning and end of the synchronization windows,
for all instances, are represented by white vertical lines. The part with a lighter
background emphasizes the fixed synchronization window of the current instance,
played in loop. Finally, a vertical cursor provides a visual feedback on the playback
of the loop.

In this particular example, one loop (top) is expanded and playing and one
(bottom) is contracted and stopped. Observe that at any time, one only need to
visualize which events occur in a single sync window.

All the available controls on the graphical user interface can also receive MIDI
Control Change and MIDI Note messages, so that all the looping and resynchro-
nization operations can be done with an external hardware controller.

Thanks to Recalage, one may notably create complex rhythmic structures out

19



of much simpler ones by applying graphically straightforward transformations. The
figure below depicts typical musical examples created using Recalage from a simple
4 notes pattern.

These examples of musical sequences are created from manipulating a simple 4/4
pattern S made of four quarter notes. From left to right, they can be described as
follows.

On the first line, the left expansion S[[−1/8, 0]] creates a slight shift in the
basic 4/4 rhythm that is typically found as anticipation pattern in electronic music.
The left expansion S[[−1/4, 0]] echoes a typical salsa bass rhythm : the Tumbao.
The left expansion S[[−1/3, 0]] creates a triplet pattern with the formerly first and
fourth beats played together. On the second line, S[[−3/4, 1/2]] sounds like a rather
unbalanced pulse. The left contraction S[[5/8, 0]] emphasize the expectation of the
next strong beat as all played notes are pushed to the right. Finally, the left shift
S[[−1/8, −1/8]] moves the whole pattern to the left by half a beat.

For every derived looping pattern, the underlying pulse remains the same since
the length of sync windows remains equal to the original. This allows the superposi-
tion of various patterns to potentially create many musical contrasts. For instance,
the 4/4 pattern S played with the triplet pattern S[[−1/3, 0]] creates a typical 3 on
4 poly-rhythm.

6 Conclusion

In this paper, we propose a rich algebra for manipulating and synchronizing musi-
cal patterns. From a generic model for representing musical events, we distinguish
the notions of realization and synchronization of a pattern. We then define several
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meaningful advanced synchronization operators and emphasize their practical rel-
evance. A case study for a concrete audio application is presented, in which the
model is employed to explicit the re-assignment of missing audio parts. The practi-
cal use of our model is also presented in a particular application of symbolic pattern
manipulation, namely control live-looping. The introduced live-looper Recalage en-
ables to obtain rich rhythmic structures out of re-synchronizing simpler ones, and
to combine them in a versatile graphical interface. For both symbolic and audio
applications, our model is successful in formally describing and expliciting complex
synchronization problems.
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