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Abstract

Statistical models and methods for determinantal point processes (DPPs)
seem largely unexplored. We demonstrate that DPPs provide useful mod-
els for the description of repulsive spatial point processes, particularly in the
‘soft-core’ case. Such data are usually modelled by Gibbs point processes,
where the likelihood and moment expressions are intractable and simulations
are time consuming. We exploit the appealing probabilistic properties of
DPPs to develop parametric models, where the likelihood and moment ex-
pressions can be easily evaluated and realizations can be quickly simulated.
We discuss how statistical inference is conducted using the likelihood or mo-
ment properties of DPP models, and we provide freely available software for
simulation and statistical inference.

Keywords: maximum likelihood based inference, point process density, prod-
uct densities, simulation, repulsiveness, spectral approach.

1 Introduction

1.1 Aim of the paper

Determinantal point processes (DPPs) are largely unexplored in statistics, though
they possess a number of very attractive properties and have been studied in math-
ematical physics, combinatorics, and random matrix theory even before the general
notion was introduced in Macchi (1975). They have been used to model fermions in
quantum mechanics, in classical Ginibre and circular unitary ensembles from ran-
dom matrix theory, for examples arising from non-intersecting random walks and
random spanning trees, and much more, see Section 2 in Soshnikov (2000) and Sec-
tion 4.3 in Hough et al. (2009). They can be defined on a locally compact space,

∗An alphabetical ordering has been used since all authors have made significant contributions
to the paper.
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where the two most important cases are the d-dimensional Euclidean space Rd and
a discrete state space. Recently, DPPs have been used in machine learning (Kulesza
and Taskar, 2012), where the state space is finite (basically a directory for sta-
tistical learning), and in wireless communication to model the locations of network
nodes (Leonardi and Torrisi, 2013; Miyoshi and Shirai, 2013). In recent years, DPPs
have also been much studied in probability theory, see Hough et al. (2009) and the
references therein.

In the present paper, we address several statistical problems for DPPs defined
on Rd (or a sub-region of Rd). Our main aims are:

(i) to provide a short and accessible survey for statisticians on the definition,
existing conditions, moment properties, density expressions, and simulation
procedures for DPPs;

(ii) to clarify when stationary DPPs exist and to develop parametric model classes
for stationary DPPs;

(iii) to understand to which extent DPPs can model repulsiveness (or regularity or
inhibition) and to demonstrate that DPPs provide useful flexible models for
the description of repulsive spatial point processes, particularly in the ‘soft-
core’ case and to some extent in cases with more repulsion;

(iv) to construct useful approximations of certain spectral-decompositions appear-
ing when dealing with likelihoods and simulations of DPPs;

(v) to discuss how statistical inference is conducted using the likelihood or moment
properties of DPP models;

(vi) to apply our methodology on real spatial point pattern datasets showing dif-
ferent degrees of repulsiveness;

(vii) to provide freely available software for simulation and statistical inference.

While Hough et al. (2009) provides an excellent and comprehensive survey of the
interest in probability theory on DPPs, our survey (item (i) above) is a less technical
exposition of DPPs which provides the needed background material for our new
contributions (items (ii)-(vii) above).

1.2 Repulsiveness and point pattern datasets

Repulsiveness in a spatial point process means that nearby points in the process
are repealing each other. Formal definitions of this concept will be given later in
this paper, either in terms of second order properties (the so-called pair correlation
function and the K-function, see Sections 2.2 and 3.5) or in terms of the Papangelou
conditional intensity (Appendix G).

The following examples of planar point pattern datasets have been selected to
illustrate the range of repulsiveness which can be modelled by DPPs. These dataset
will be detailed an analysed in Section 6. The five point pattern in Figure 1(a)-(e)
will be fitted using parsimonious parametric models of DPPs, while the last dataset
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in Figure 1(f) is an example of point pattern that seems too regular to be fitted by
a DPP.

For comparison Figure 2 shows realizations in the unit square of three stationary
DPPs with the same intensity of points. Figure 2(a) shows a simulation of a Poisson
process, which is a special case of a DPP with no repulsion (or no interaction).
Figure 2(b) shows a simulation of a DPP with moderate repulsion; in comparison
with Figure 2(a) the point pattern looks more regular. Figure 2(c) shows, in a sense
made more precise in Section 3.5, a simulation of a DPP for the strongest case of
repulsiveness when the intensity is fixed. The point pattern in Figure 2(c) is clearly
regular but not to the same extent as in a Gibbs hard-core point process or as in
the cell dataset in Figure 1(f).

1.3 Gibbs point processes versus determinantal point pro-
cesses

The usual class of point processes used for modelling repulsiveness is the class of
Gibbs point processes, including Markov point processes and pairwise interaction
point processes (Ripley, 1977; Ripley and Kelly, 1977; Stoyan et al., 1995; Lieshout,
2000; Diggle, 2003; Møller and Waagepetersen, 2004; Illian et al., 2008; Gelfand
et al., 2010). In general for Gibbs point processes,

• moments are not expressible in closed form;

• likelihoods involve intractable normalizing constants;

• rather elaborate Markov chain Monte Carlo methods are needed for simula-
tions and approximate likelihood inference;

• when dealing with infinite Gibbs point processes defined on Rd, ‘things’ become
rather complicated, e.g. conditions for existence and uniqueness as well as
problems with edge effects;

see Møller and Waagepetersen (2004, 2007) and the references therein. For Gibbs
point processes, as maximum likelihood inference is complicated, the most popu-
lar and much quicker alternative inference procedure is based on pseudo-likelihood
Besag (1977a); Jensen and Møller (1991); Baddeley and Turner (2000); Gelfand
et al. (2010). The pseudo-likelihood function is specified in terms of the Papangelou
conditional intensity which does not depend on the normalizing constant from the
likelihood.

In contrast, DPPs possess a number of appealing properties: Considering a DPP
defined on Rd (with d = 2 in most of our examples), its distribution is specified by a
kernel (which we assume is a continuous complex covariance function) C defined on
Rd×Rd and which is properly scaled (these regularity conditions on C are imposed
to ensure existence of the process as discussed in Section 2.3). Then

(a) there are simple conditions for existence of the process and there is no phase
transition: uniqueness of the DPP is ensured when it exists;
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(a) Locations of 69 Spanish towns in a 40
mile by 40 mile region.
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(b) Locations of 303 cells of two types in
a 0.25 mm by 0.25 mm region of a histo-
logical section of the kidney of a hamster.
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(c) Locations of 244 trees of the species
oak and beech in a 80 m by 80 m region.
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(d) Locations of 48 termite mounds in a
250 m by 150 m region.

●
●
●
●
●

●
●●
●

●
●●

●●
●

●
●●

●● ●
●

●●●●
●

●

●

●

●

●●●

●

● ●

●
●

● ●
●

●

● ●

●

●

●●●●

●

●

●

●
●

●
●

●

●

●

●
●
●
●

●
●

●●
●

●●
● ●

●●

●
●● ●

●
●●

●
● ●

● ●

●
●●

●
●

●
●

●
●

●
●●

●

●
●

●● ●●
●

●

●
●

● ● ●
●

●

●

●●●
● ●

●

●

●

● ●

●

●

●●

●●
●

●
●

●

●●

●

●
●

●●
●
●●

●●
●

●

●●●
●
●

●
●

●
●

●
● ●
●

●
●

●●

●

●
●

●

●

●●

●●●

● ●
●●

●
●
●●

●

●

●
●
●

●
●
●

●

●
●

●

●●

●

●●
●

●

●

●

●
●

●●

● ●

●

●

●
●

●●

●●
●
●

●

●●●
●

●
●●●
●●

●●
●●●

● ● ●●
●●
●●

●
●

●
●

● ●
●

●
●●●●●

●

● ● ●●
●●

●
●

●

●
●

●
●
●

●
●

●

●
●●

●●

●

●
● ●

●

●

●
●● ●

●
●

●

●●●

●

●
●●

●
●

●
●

●
●
●●

●

● ●●

● ●

●

●●●

●

●
●●

●

●●

●
●●

●
●

●
●

●

●
●●

●●●●

● ●

●

●

●

●
●●
●

●

●●
● ●

●
●
●●

●
● ●●

●●
●
●●●●

●

●
●●

●
●

●

● ●

●

●●●

● ●

●
●

●

●

●

●
●
●

●

●
● ●

●
●

●
●●

●●
●

●●●

●●
●

●

● ●

●●

●

●

●

●●

●
●

● ●

●

●
● ●

● ●
● ●

●● ●
●●

●

●
●
●● ●●

●
●

●
●

●●

●
●

●

●
● ●●

●
●
●

●
●

●
●
●
●

●
●●

●●
●●●

●

●

●
●

●

●
●

●●
●

●

●

●
●

●

●● ●

●

●●

●●

●
●●

●●

●
●

●
●

●
●
●

●

●
●

●●●

●

●

●●

●
●
●●
●

●●

●
●
●

●
●

●
●
●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

● ● ●
●●●

●

●
●●
●

● ●●
●

●
●

●●
●
●

● ● ● ●
●●

●
●
●
●

●●
●

●
●

●
●

●

●●

●

●
●
●

●

●
●●

● ●●
●

●

●
●● ● ●

● ●
●
●●

●●
●

●
●

●

●●
●●
●

●

●●

●●

●
●

●
●

●

●●

●

●

●

●
●

●

●
●

●●

● ●
● ● ●

●●●
●

●
● ●

●
●
●

●
●

●●
●

●
●●

●●
●
●

● ●●
●●

●
●●
●
●

●

●
●●

●
●

●

●
●

●
●

●
●●

●
●●

●
●

●
●

●

●

●
●

●

●
●

●

●●
●

●●
●●
●●●

●●

●●●●

●●
●

●●

●●
●
● ●

●
●
●●

●●
●

●
● ●●
● ●

●●

●

●●

●

●

●

●●
●

●

●

● ● ●

●●●
● ●

●

●
●●

●
●

●●●

●

●
●

●

●

●
● ●

●

●●
●● ●●

●●●●●
●

●

●

●
●●

● ●

●
●

●

●

●●●
●●

●●

●

●
●

●
●
●

●
● ●

●

●

●

●

●
●

●●
●

●
●

● ●
●

●
●
●●

●●
●
●●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

(e) Locations of 876 cells of a mu-
cous membrane in a rectangular region
rescaled to unit width and height 0.81.
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(f) Locations of 42 cells in a histological
section of an insect rescaled to the unit
square.

Figure 1: Examples of point patterns.
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(c)

Figure 2: Realizations of stationary DPPs within a unit square: (a) a Poisson
process; (b) a DPP with moderate repulsion (a Gaussian DPP as described in Sec-
tion 3.3); (c) a stronger repulsive DPP (a jinc-like DPP as described in Section 3.4).

(b) moments are known: by the very definition, all orders of moments are described
by certain determinants of matrices with entries given by C (Section 2.2);

(c) edge effects may not be a problem as the restriction of the DPP to a compact
subset S ⊂ Rd is also a DPP with its distribution specified by the restriction
of C to S × S;

(d) the DPP restricted to S (S ⊂ Rd compact) has a density (with respect to
a Poisson process): the density is given by a normalizing constant, with a
closed form expression, times the determinant of a matrix with entries given
by a certain kernel C̃ which is obtained by a simple transformation of the
eigenvalues in a spectral representation of C restricted to S ×S (Section 2.5);

(e) if such a spectral representation is not explicitly known, we can approximate
it in practice by a Fourier series (Section 4);

(f) the DPP can easily be simulated: basically because it is a mixture of ‘deter-
minantal projection point processes’ (Section 2.4).

Indeed, DPPs possess further useful properties, e.g. a one-to-one smooth transfor-
mation or an independent thinning of the DPP is also a DPP (Appendix A); the
reduced Palm measure of a DPP is also a DPP (Appendix C). Due to (a)-(f), mod-
elling and estimation for parametric families of DPPs become tractable as discussed
in Sections 3-7. In particular, we shall calculate likelihood functions, maximum
likelihood estimates, and likelihood ratio statistics for parametric DPP models.

The link between Gibbs point processes and DPPs have been studied in Georgii
and Yoo (2005), where the key is the description of the Papangelou conditional
intensity for a DPP. From a statistical perspective this link is of limited interest,
since for parametric families of DPPs, the Papangelou conditional intensity is not
easier to handle than the likelihood, and the pseudo-likelihood is in fact less easy
to calculate than the likelihood. Although DPPs may be considered as a subclass
of Gibbs point processes, at least when they are defined on a bounded region, we
rather think of DPPs as an interesting model class in itself.
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1.4 Software

The statistical analyses in this paper have been conducted with R (R Development
Core Team, 2011). The software we have developed is freely available as a supple-
ment to the spatstat library (Baddeley and Turner, 2005) enabling users to both
simulate and fit parametric models of stationary DPP models.

1.5 Outline

The paper is organized as follows. Section 2 is our tutorial (cf. (i) in Section 1.1).
In Section 3 we study stationary DPPs for several purposes: to simplify the general
condition for existence of a DPP; to construct useful parametric model classes of
DPPs; and to understand to which extent they can model repulsiveness. Using a
Fourier basis approach, we derive in Section 4 approximations of the spectral repre-
sentations of the kernels C and C̃ (cf. (d)-(e) in Section 1.3) which make simulation
and inference feasible for parametric models of DPPs. Section 5 discusses statisti-
cal inference procedures for parametric models of DPPs, using either a maximum
likelihood approach or simpler moment-based alternatives. In Section 6 we fit parsi-
monious parametric DPP models to the datasets presented in Section 1.2. Section 7
contains our concluding remarks. Finally, Appendices A-K contain the technical
proofs of our results and provide supplementary methods, examples, and remarks
to the ones presented in the main text.

2 Definition, existence, simulation, and densities

for determinantal point processes

The following provides the background material needed in this paper on the defini-
tion (Sections 2.1-2.2), existence (Section 2.3), simulation (Section 2.4), and density
expression for a general DPP defined on a Borel set B ⊆ Rd (Section 2.5). We shall
mainly consider the cases B = Rd and B = S, where S is compact. We aim at a
simple exposition, though it is unavoidable at some places to be a bit technical.

We denote by X a simple locally finite spatial point process defined on B, i.e.
we can view realizations of X as locally finite subsets of B (for measure theoretical
details, see e.g. Møller and Waagepetersen (2004) and the references therein). We
refer to the elements (or points) of X as events.

2.1 Moments for spatial point processes

Since DPPs are defined in terms of their moment properties as expressed by their
so-called product density functions, we start by recalling this notion.

For n = 1, 2, . . ., X has n’th order product density function ρ(n) : Bn → [0,∞)
if this function is locally integrable (with respect to Lebesgue measure restricted to
Bn) and for any Borel function h : Bn → [0,∞),

E

6=∑
x1,...,xn∈X

h(x1, . . . , xn) =

∫
B

· · ·
∫
B

ρ(n)(x1, . . . , xn)h(x1, . . . , xn) dx1 · · · dxn (2.1)
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where 6= over the summation sign means that x1, . . . , xn are pairwise distinct events.
See e.g. Stoyan et al. (1995). Intuitively, for any pairwise distinct points x1, . . . , xn ∈
B, ρ(n)(x1, . . . , xn) dx1 · · · dxn is the probability that for each i = 1, · · · , n, X has
a point in an infinitesimally small region around xi of volume dxi. Clearly, ρ(n) is
only uniquely defined up to a Lebesgue nullset. We shall henceforth require that
ρ(n)(x1, . . . , xn) = 0 if xi = xj for some i 6= j. This convention becomes consistent
with Definition 2.1 below.

In particular, ρ = ρ(1) is the intensity function and g(x, y) = ρ(2)(x, y)/[ρ(x)ρ(y)]
is the pair correlation function, where we set g(x, y) = 0 if ρ(x) or ρ(y) is zero. By
our convention above, g(x, x) = 0 for all x ∈ B. The terminology ‘pair correlation
function’ may be confusing, but it is commonly used by spatial statisticians. For a
Poisson point process with an intensity function ρ, and for x 6= y, we have g(x, y) = 1
if ρ(x) > 0 and ρ(y) > 0.

2.2 Definition

We need the following notation. Let C denote the complex plane. For a complex
number z = z1 + iz2 (where z1, z2 ∈ R and i =

√
−1), we denote z = z1 − iz2 the

complex conjugate and |z| =
√
z21 + z22 the modulus. For any function C : B×B →

C, let [C](x1, . . . , xn) be the n×n matrix with (i, j)’th entry C(xi, xj). For a square
complex matrix A, let detA denote its determinant.

Definition 2.1. Suppose that a simple locally finite spatial point process X on B
has product density functions

ρ(n)(x1, . . . , xn) = det[C](x1, . . . , xn), (x1, . . . , xn) ∈ Bn, n = 1, 2, . . . . (2.2)

Then X is called a determinantal point process (DPP) with kernel C, and we write
X ∼ DPPB(C).

Note that a Poisson process is the special case where C(x, y) = 0 whenever x 6= y.

Remark 2.2. For X ∼ DPPB(C) and any Borel set A ⊆ B, define XA = X∩A and
denote its distribution by DPPB(C;A). We also write DPPA(C) for the distribution
of the DPP on A with kernel given by the restriction of C to A×A. Then property
(c) in Section 1.3 follows directly from Definition 2.1, i.e. DPPA(C) = DPPB(C;A).
Further, when B = Rd, we write DPP(C) for DPPRd(C), and DPP(C;A) for
DPPRd(C;A).

Some further remarks are in order. Let X ∼ DPP(C). Then there is no other
point process satisfying (2.2) (Lemma 4.2.6 in Hough et al. (2009)). By (2.2), the
intensity function of X is

ρ(x) = C(x, x), x ∈ Rd, (2.3)

and the pair correlation function of X is

g(x, y) = 1− C(x, y)C(y, x)

C(x, x)C(y, y)
if C(x, x) > 0 and C(y, y) > 0
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while it is zero otherwise. If C is Hermitian, then g ≤ 1, showing that the events
of X repel each other. Furthermore, if C is continuous, ρ(n) is also continuous and
ρ(n)(x1, . . . , xn) tends to zero as the Euclidean distance ‖xi − xj‖ goes to zero for
some i 6= j, cf. (2.2). This once again reflects the repulsiveness of a DPP.

For later use, let R(x, y) = C(x, y)/[C(x, x)C(y, y)]1/2, where we set R(x, y) = 0
if C(x, x) = 0 or C(y, y) = 0. Note that

g(x, y) = 1− |R(x, y)|2, x, y ∈ Rd, (2.4)

and when C is a covariance function, R is its corresponding correlation function.

2.3 Existence

Existence of a DPP on Rd is ensured by the following assumptions (C1)-(C2) on C.
Note that C : Rd ×Rd → C needs to be non-negative definite to ensure ρ(n) ≥ 0

in (2.2). Thus C is a complex covariance function if and only if it is Hermitian, i.e.
C(x, y) = C(y, x) for all x, y ∈ Rd. As argued below we find it natural to consider
the following condition:

(C1) C is a continuous complex covariance function.

Then, if we let S ⊂ Rd denote a generic compact set and L2(S) the space of square-
integrable functions h : S → C, we obtain the following by Mercer’s theorem (see
e.g. Section 98 in Riesz and Sz.-Nagy (1990)). Under (C1), C restricted to S × S
has a spectral representation,

C(x, y) =
∞∑
k=1

λkφk(x)φk(y), (x, y) ∈ S × S, (2.5)

with absolute and uniform convergence of the series, and where

• the set of eigenvalues {λk} is unique, each non-zero eigenvalue is real and has
finite multiplicity, and the only possible accumulation point of the eigenvalues
is 0;

• the eigenfunctions {φk} form an orthonormal basis of L2(S), i.e.∫
S

φk(x)φl(x) dx =

{
1 if k = l,
0 if k 6= l,

(2.6)

and any h ∈ L2(S) can be written as h =
∑∞

k=1 αkφk, where αk ∈ C, k =
1, 2, . . .. Moreover, φk is continuous if λk 6= 0.

When we need to stress that the eigenvalue λk depends on S, we write λSk . Finally,
we consider the following condition:

(C2) λSk ≤ 1 for all compact S ⊂ Rd and all k.

Theorem 2.3. Under (C1), existence of DPP(C) is equivalent to (C2).
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This result is verified in Appendix B. Usually, for statistical models of covariance
functions, (C1) is satisfied, and so (C2) becomes the essential condition. As discussed
in Section 3.2, (C2) simplifies in the stationary case of X.

Assumption 2.4. In the remainder of this paper, X ∼ DPP(C) with C satisfying
the conditions (C1) and (C2).

Remark 2.5. Various comments on (C1) and (C2) are in order.
As noticed in Hough et al. (2009), there are interesting examples of DPPs with

non-Hermitian kernels, but they do not possess various general properties, and the
results and methods in our paper rely much on the spectral representation (2.5).
We therefore confine ourselves to the Hermitian case of C.

We find that (C1) is often a natural condition for several reasons: statisticians
are used to deal with covariance functions; as seen in the proof of Theorem 2.3, the
situation simplifies when C is assumed to be continuous; continuity of C implies
continuity of the intensity function and the pair correlation function; conversely, if
C is real and non-negative, continuity of ρ and g implies continuity of C.

When we are only interested in considering a DPP Y on a given compact set
S ⊂ Rd, then (C1)-(C2) can be replaced by the assumption that C is a continuous
complex covariance function defined on S×S such that λSk ≤ 1 for all k. The results
in Sections 2.4-2.5 are then valid for Y , even if there is no continuous extension of C
to Rd×Rd which satisfies (C1)-(C2). However, it is convenient to assume (C1)-(C2)
as we in Sections 3-5 consider stationary DPPs.

Though a Poisson process is determinantal from Definition 2.1, it is excluded by
our approach where C is continuous. In particular, (2.5) does not hold for a Poisson
process (therefore many of our results as well as those established in Hough et al.
(2009) do not hold for a Poisson process).

Definition 2.6. Let S ⊂ Rd be compact and assume all non-zero eigenvalues λSk
are one. Then C restricted to S × S is called a projection kernel, and XS is called
a determinantal projection point process.

The terminology in Definition 2.6 seems commonly used (e.g. Hough et al. (2006)
and Hough et al. (2009)); McCullagh and Møller (2006) call a determinantal pro-
jection point process a special DPP because of its special properties as discussed
below.

2.4 Simulation

An algorithm for simulating a finite DPP in a very general setup is provided in
Hough et al. (2006). There are special cases of DPPs which may be simulated in a
different manner, e.g. the Ginibre ensemble, see Section 4.3 in Hough et al. (2009).

We explain and prove the simulation algorithm of Hough et al. (2006) in the
specific case where we want to simulateXS ∼ DPP(C;S) with S ⊂ Rd compact. Our
implementation of the algorithm becomes more efficient than the one in Scardicchio
et al. (2009), and our description and proof use mainly linear algebra and are less
technical than that in Hough et al. (2006).
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Consider the spectral representation (2.5) of C restricted to S×S. The simulation
algorithm is based on the following result (Theorem 7 in Hough et al. (2006); see
also Theorem 4.5.3 in Hough et al. (2009)).

Theorem 2.7. For k = 1, 2, . . ., let Bk be independent Bernoulli variables with
mean λk. Define the random projection kernel K : S × S → C by

K(x, y) =
∞∑
k=1

Bkφk(x)φk(y). (2.7)

Then
DPPS(K) ∼ DPP(C;S) (2.8)

in the sense that if we first generate the independent Bernoulli variables, and second
generate a determinantal projection point process on S with kernel K, then the
resulting point process follows DPP(C;S).

Note that if N(S) = n(XS) denotes the number of events in S, then

N(S) ∼
∞∑
k=1

Bk, E[N(S)] =
∞∑
k=1

λk, Var[N(S)] =
∞∑
k=1

λk(1− λk). (2.9)

The first result in (2.9) follows from (2.8) and Theorem 2.8 below (or from Lemma 4.4.1
in Hough et al. (2009)), and the first result immediately implies the two other results.

2.4.1 Simulation of Bernoulli variables

This and the following section descibe a two step simulation procedure based on
Theorem 2.7.

Recall that P(Bk = 1) = 1 − P(Bk = 0) = λk, k = 1, 2, . . ., and define B0 =
λ0 = 1. With probability one,

∑
Bk < ∞, since

∑
λk =

∫
S
C(x, x) dx < ∞ as S

is bounded and C is continuous. Consequently, with probability one, the random
variable M = max{k ≥ 0 : Bk 6= 0} is finite. For any integer m > 0, it is easily
verified that B0, . . . , Bm−1 are independent of the event {M = m}. Therefore the
strategy is first to generate a realization m of M , second independently generate
realizations of the Bernoulli variables Bk for k = 1, . . . ,m − 1 (if m = 0 we do
nothing), and third set Bm = 1 and Bk = 0 for k = m+ 1,m+ 2, . . .. Simulation of
these Bernoulli variables is of course easily done. For simulation of M , we use the
inversion method described in Appendix D.

2.4.2 Simulation of determinantal projection point process

Suppose we have generated a realization of the Bernoulli variables Bk as described
in Section 2.4.1 and we now want to generate a realization from DPPS(K) with K
given by (2.7).

Let n =
∑∞

k=1Bk denote the number of non-zero Bk’s with k ≥ 1 (as foreshad-
owed in connection to (2.9), n can be considered as a realization of the count N(S)).
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If n = 0, then K = 0 and a realization from DPPS(K) is simply equal to the empty
point configuration. Assume that n > 0 and without loss of generality that

K(x, y) =
n∑
k=1

φk(x)φk(y) = v(y)∗v(x) (2.10)

where v(x) = (φ1(x), . . . , φn(x))T , and where T and ∗ denote the transpose and
conjugate transpose of a vector or a matrix. For n-dimensional complex column
vectors such as v(x) and v(y), we consider their usual inner product 〈v(x),v(y)〉 =
v(y)∗v(x).

Algorithm 1 Simulation of determinantal projection point process

sample Xn from the distribution with density pn(x) = ‖v(x)‖2/n, x ∈ S
set e1 = v(Xn)/‖v(Xn)‖
for i = (n− 1) to 1 do

sample Xi from the distribution with density

pi(x) =
1

i

[
‖v(x)‖2 −

n−i∑
j=1

|e∗jv(x)|2
]
, x ∈ S (2.11)

set wi = v(Xi)−
∑n−i

j=1

(
e∗jv(Xi)

)
ej, en−i+1 = wi/‖wi‖

end for
return {X1, . . . , Xn}

The following theorem is proved in Appendix E. It follows from the proof that
with probability one, pi(x) is a density, where we are conditioning on (Xn, . . . , Xi+1)
if i < n.

Theorem 2.8. If n > 0 and K(x, y) =
∑n

k=1 φk(x)φk(y) for all x, y ∈ S, then
{X1, . . . , Xn} generated by Algorithm 1 is distributed as DPPS(K).

To implement Algorithm 1 we need to sample from the densities pi, i = n, . . . , 1.
This may simply be done by rejection sampling with a uniform instrumental density
and acceptance probability pi(x)/ supy∈S pi(y). Appendixes E-F discuss rejection
sampling for this and other choices of the instrumental distribution.

2.5 Densities

This section briefly discusses the density expression for XS ∼ DPP(C;S) when
S ⊂ Rd is compact. Recall that the eigenvalues λk = λSk are assumed to be less than
or equal to one.

In general, when some eigenvalues λk are allowed to be one, the density of XS is
not available. But we can condition on the Bernoulli variables Bk from Theorem 2.7,
or just condition on K(x, y) for all x, y ∈ S, to obtain the conditional density.
Note that the trace trS(K) =

∫
S
K(x, x) dx =

∑∞
k=1Bk is almost surely finite.
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Conditional on K, when trS(K) = n > 0, the ordered n-tuple of events of the
determinantal projection point process XS has density

p(x1, . . . , xn) = det[K](x1, . . . , xn)/n!, (x1, . . . , xn) ∈ Sn,

as verified in (E.2). Moreover, by Algorithm 1 and Theorem 2.8,

pn(x) = K(x, x)/n, x ∈ S,

is the density for an arbitrary selected event of XS. This is in agreement with the
simple fact that in the homogeneous case, i.e. when the intensity K(x, x) is constant
on S, any event of XS is uniformly distributed on S.

The most interesting case occurs when λk < 1 for all k = 1, 2, . . ., which means
that no Bk is almost surely one. Then the density of XS exists and is specified in
Theorem 2.9 below, where the following considerations and notation are used. If
P (N(S) = n) > 0, then P (N(S) = m) > 0 for m = 0, . . . , n, cf. (2.9). Thus

P(N(S) = 0) =
∞∏
k=1

(1− λk)

is strictly positive, and we can define

D = − log P(N(S) = 0) = −
∞∑
k=1

log(1− λk). (2.12)

Further, define C̃ : S × S → C by

C̃(x, y) =
∞∑
k=1

λ̃kφk(x)φk(y) (2.13)

where
λ̃k = λk/(1− λk), k = 1, 2, . . . .

Let |S| =
∫
S

dx, and set det[C̃](x1, . . . , xn) = 1 if n = 0. Then we have the following
result, cf. Appendix G.

Theorem 2.9. Assuming λk < 1, k = 1, 2, . . ., then XS is absolutely continuous
with respect to the homogeneous Poisson process on S with unit intensity, and has
density

f({x1, . . . , xn}) = exp(|S| −D) det[C̃](x1, . . . , xn) (2.14)

for all (x1, . . . , xn) ∈ Sn and n = 0, 1, . . ..

Section 4 and Appendix K discuss efficient ways of approximating C̃ and D when
X is stationary.
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3 Stationary models

To the best of our knowledge, parametric families of DPP models have yet not been
studied in the literature from a statistical perspective. In the sequel we focus on
the stationary case of DPPs, discuss isotropy (Section 3.1), give a simple condition
for the existence of a stationary DPP (Section 3.2), construct various classes of
parametric models (Sections 3.3-3.4), and study to which extend these are models
for repulsiveness (Section 3.5).

Throughout this section, X ∼ DPP(C) is assumed to be stationary, i.e. its
distribution is invariant under translations, or equivalently, C is of the form

C(x, y) = C0(x− y), x, y ∈ Rd. (3.1)

We also refer to C0 as a covariance function. Note that C0(0), the variance corre-
sponding to C, equals ρ, the intensity of X, cf. (2.3).

In light of Propositions A.1-A.2, as inhomogeneous DPPs can be obtained by
transforming or thinning X, stationarity is not a very restrictive assumption. For
example, by (A.1), if we transform X by a one-to-one continuous differentiable
mapping T such that its Jacobian matrix is invertible, then T (X) is a DPP with
kernel

Ctrans(x, y) = |JT−1(x)|1/2C0(T
−1(x)− T−1(y))|JT−1(y)|1/2. (3.2)

3.1 Isotropy

It is often convenient to require that C0 is isotropic, meaning that C0(x) = ρR0(‖x‖)
is invariant under rotations about the origin in Rd. This is a natural simplification,
since any stationary and anisotropic covariance function can be obtained from some
stationary and isotropic covariance function using some rotation followed by some
rescaling, see e.g. Goovaerts (1997).

Suppose C0 is isotropic. Then C0 is real, and the pair correlation function de-
pends only on the distance between pairs of points, g(x, y) = g0(‖x− y‖), cf. (2.4).
Hence commonly used statistical procedures based on the pair correlation function
or the closely related K-function apply (see Ripley (1976, 1977) and Møller and
Waagepetersen (2004)). In particular, using the relation

|R0(r)| =
√

1− g0(r) (3.3)

we can define a ‘range of correlation’, i.e. a distance r0 > 0 such that
√

1− g0(r)
is considered to be negligible for r ≥ r0, as exemplified later in (3.14). For many
specific models for isotropic covariance, including those studied in Section 3.3, R0 is
a decreasing function. By (3.3) g0 is then an increasing function from zero to one,
and informally such cases are called soft-core models (see e.g. Illian et al. (2008)).

Examples of stationary and isotropic covariance functions are studied in Sec-
tions 3.3-3.4. However, the following Section 3.2 does not involve an assumption of
isotropy, and the approximation of C0 studied in Section 4 is only approximately
isotropic when C0 is isotropic.
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3.2 A simple spectral condition for existence

The following Proposition 3.1 simplifies condition (C2). As it involves the spectral
density for C0, we start by recalling this and related notions.

For any number p > 0 and Borel set B ⊆ Rd, let Lp(B) be the class of p-
integrable functions h : B → C, i.e.

∫
B
|h(x)|p dx < ∞. Denote · the usual inner

product in Rd. For any Borel function h : Rd → C, define the Fourier transform
F(h) of h by

F(h)(x) =

∫
h(y)e−2πix·y dy, x ∈ Rd,

provided the integral exists, and the inverse Fourier transform F−1(h) of h by

F−1(h)(x) =

∫
h(y)e2πix·y dy, x ∈ Rd,

provided the integral exists. For instance, if h ∈ L1(Rd), then F(h) and F−1(h) are
well-defined. Recall that L2(Rd) is a Hilbert space with inner product

〈h1, h2〉 =

∫
h1(x)h2(x) dx

and the Fourier and inverse Fourier operators initially defined on L1(Rd) ∩ L2(Rd)
extend by continuity to F : L2(Rd) → L2(Rd) and F−1 : L2(Rd) → L2(Rd). Fur-
thermore, these are unitary operators that preserve the inner product, and F−1 is
the inverse of F . See e.g. Stein and Weiss (1971).

By Khinchin’s (or Bochner’s) theorem, since C0 is a continuous covariance func-
tion, a spectral distribution function F exists, i.e. F defines a finite measure so
that

C0(x) =

∫
e2πix·y dF (y), x ∈ Rd.

If F is differentiable, then the derivative ϕ(x) = dF (x)/dx is the spectral density
for C0. In this case, ϕ is non-negative, ϕ ∈ L1(Rd), and C0 = F−1(ϕ). On the
other hand, if C0 ∈ L1(Rd) and C0 is continuous (as assumed in this paper), then
the spectral density necessarily exists (equivalently F is differentiable), ϕ = F(C0),
and ϕ is continuous and bounded. See e.g. pages 331-332 in Yaglom (1987).

Alternatively, if C0 ∈ L2(Rd) and C0 is continuous, the spectral density ϕ also
exists, since we can define ϕ = F(C0) in L2(Rd) as explained above. In this case,
ϕ is non-negative, belongs to L1(Rd) ∩ L2(Rd), but is not necessarily continuous or
bounded. Note that if C0 ∈ L1(Rd), then C0 ∈ L2(Rd) by continuity of C0.

The following is proved in Appendix H.

Proposition 3.1. Under (C1) and (3.1), if C0 ∈ L2(Rd), then (C2) is equivalent
to that

ϕ ≤ 1. (3.4)

Assumption 3.2. Henceforth, in addition to (C1), we assume that C0 ∈ L2(Rd)
and that (3.4) holds.

The following corollary, verified in Appendix I, becomes useful in Section 3.4
where we discuss a spectral approach for constructing stationary DPPs.
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Corollary 3.3. Under (3.1) the following two statements are equivalent.

(i) There exists ϕ ∈ L1(Rd) with 0 ≤ ϕ ≤ 1 and C0 = F−1(ϕ).

(ii) Conditions (C1) and (C2) hold and C0 ∈ L2(Rd).

For later purposes, when considering a parametric model for C0 with parameters
ρ and θ, notice the following. For each fixed value of θ, 0 ≤ ρ ≤ ρmax where
ρmax = ρmax(θ) may depend on θ and is determined by (3.4). As exemplified in
Section 3.3, ρmax will be a decreasing function of the range of correlation (which
only depends on θ). On the other hand, it may be more natural to determine the
range of θ in terms of ρ and a given maximal range of correlation. Finally, in order
to work with the density given in Theorem 2.9, we may require that ϕ < 1.

3.3 Examples of covariance function models

Numerous examples of stationary and isotropic covariance functions exist (see e.g.
Gelfand et al., 2010), while examples of stationary and anisotropic covariance func-
tions are discussed in De laco et al. (2003). This section starts by considering the
simple example of the circular covariance function and continues with a brief dis-
cussion of the broad class of stationary isotropic covariance functions obtained by
scaling in normal-variance mixture distributions, where a few specific examples of
such models are considered in more detail. Section 3.4 discusses further examples
based on a spectral approach.

Examples of isotropic covariance functions C0(x), where the range

δ = sup{‖x‖ : C0(x) 6= 0} (3.5)

is finite are given in Wu (1995) and Gneiting (2002). Then, by Definition 2.1, XA

and XB are independent DPPs if A,B ⊂ Rd are separated by a distance larger than
δ. In this paper we only consider the circular covariance function to understand well
the quality of our approximations in Section 4. For d = 2, the circular covariance
function with finite range δ > 0 is given by

C0(x) = ρ
2

π

(
arccos(‖x‖/δ)− ‖x‖/δ

√
1− (‖x‖/δ)2

)
, ‖x‖ < δ. (3.6)

Note that πδ2C0(x)/(4ρ) is the area of the intersection of two discs, each with
diameter δ, and with distance ‖x‖ between the centers. Since this area is equal to
the autoconvolution of the indicator function of the disc with center at the origin
and with diameter δ, the associated spectral density becomes

ϕ(x) = (ρ/π)(J1(πδ‖x‖)/‖x‖)2

where J1 is the Bessel function of the first kind with parameter ν = 1. This spectral
density has maximal value ϕ(0) = ρπδ2/4, so by (3.4), a stationary and isotropic
DPP with kernel (3.6) exists if and only if 0 ≤ ρ ≤ ρmax, where ρmax = 4/(πδ2).
Therefore, we require

ρδ2 ≤ 4/π. (3.7)
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In the sequel we focus on more interesting classes of covariance functions. Let
Z be a d-dimensional standard normally distributed random variable, and W be
a strictly positive random variable with E(W−d/2) < ∞, where Z and W are in-
dependent. Then Y =

√
WZ follows a normal-variance mixture distribution, with

density
h(x) = E

[
W−d/2 exp

(
−‖x‖2/(2W )

)]
/(2π)d/2, x ∈ Rd.

Note that h(0) = suph, and define

C0(x) = ρh(x)/h(0), x ∈ Rd.

The Fourier transform of C0 is

ϕ(x) = ρE
[
exp

(
−2π2‖x‖2W

)]
/h(0), x ∈ Rd

which is positive, showing that C0 is a stationary and isotropic covariance function.
Note that ϕ is given by the Laplace transform of W . By (3.4), a stationary DPP
with kernel C0 exists if 0 ≤ ρ ≤ ρmax, where ρ is the intensity and

ρmax = h(0) = E(W−d/2)/(2π)d/2.

Gneiting (1997) presents several examples of pairs h and F(h) in the one-
dimensional case d = 1, and these examples can be generalized to the multivariate
case. Here we restrict attention to the following three examples, where Y follows
either a multivariate normal distribution or two special cases of the multivariate
generalized hyperbolic distribution (Barndorff-Nielsen, 1977, 1978). We let Γ(a, b)
denote the Gamma-distribution with shape parameter a > 0 and scale parameter
b > 0.

First, taking
√

2W = α, where α > 0 is a parameter, we obtain the Gaussian
(or squared exponential) covariance function

C0(x) = ρ exp
(
−‖x/α‖2

)
, x ∈ Rd, (3.8)

and
ϕ(x) = ρ(

√
πα)d exp

(
−‖παx‖2

)
, x ∈ Rd.

Hence
ρmax = (

√
πα)−d (3.9)

is a decreasing function of α.
Second, suppose that W ∼ Γ(ν + d/2, 2α2) where ν > 0 and α > 0. Then

h(x) =
‖x/α‖νKν(‖x/α‖)

2ν+d−1(
√
πα)dΓ(ν + d/2)

, x ∈ Rd,

where Kν is the modified Bessel function of the second kind (see Appendix J). Hence

C0(x) = ρ
21−ν

Γ(ν)
‖x/α‖νKν(‖x/α‖), x ∈ Rd, (3.10)
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is the Whittle-Matérn covariance function, where for ν = 1/2, C0(x) = ρ exp(−‖x‖/α)
is the exponential covariance function. Moreover,

ϕ(x) = ρ
Γ(ν + d/2)

Γ(ν)

(2
√
πα)d

(1 + ‖2παx‖2)ν+d/2
, x ∈ Rd,

so

ρmax =
Γ(ν)

Γ(ν + d/2)(2
√
πα)d

(3.11)

is a decreasing function of ν as well as of α.
Third, suppose that 1/W ∼ Γ(ν, 2α−2) where ν > 0 and α > 0. Then

h(x) =
Γ(ν + d/2)

Γ(ν)(
√
πα)d (1 + ‖x/α‖2)ν+d/2

, x ∈ Rd,

is the density of a multivariate t-distribution, and

C0(x) =
ρ

(1 + ‖x/α‖2)ν+d/2
, x ∈ Rd, (3.12)

is the generalized Cauchy covariance function. Furthermore,

ϕ(x) =
ρ(
√
πα)d21−ν

Γ(ν + d/2)
‖2παx‖νKν(‖2παx‖), x ∈ Rd,

so

ρmax =
Γ(ν + d/2)

Γ(ν)(
√
πα)d

(3.13)

is an increasing function of ν and a decreasing function of α.
For later use, notice that the Gaussian covariance function (3.8) with α = 1/

√
πρ

is the limit of both

(i) the Whittle-Matérn covariance function (3.10) with α = 1/
√

4πνρ, and

(ii) the Cauchy covariance function (3.12) with α =
√
ν/(πρ)

as ν →∞.
We refer to a DPP model with kernel (3.8), (3.10), or (3.12) as the Gaussian,

Whittle-Matérn, or Cauchy model, respectively. In all three models, α is a scale
parameter of C0, and for the Whittle-Matérn and Cauchy models, ν is a shape
parameter of C0. Their isotropic pair correlation functions are as follows.

For the Gaussian model: g0(r) = 1− exp (−2(r/α)2) , r ≥ 0.
For the Whittle-Matérn model: g0(r) = 1−[21−ν(r/α)νKν(r/α)/Γ(ν)]

2
, r ≥ 0.

For the Cauchy model: g0(r) = 1− [1 + (r/α)2]
−2ν−d

, r ≥ 0.
In each case, g0(r) is a strictly increasing function from zero to one.

In the sequel, let d = 2. For a given model as above, we choose the range of
correlation r0 such that g0(r0) = 0.99, whereby the isotropic correlation function
given by (3.3) has absolute value 0.1. While it is straightforward to determine r0 for
the Gaussian and Cauchy model, r0 is not expressible on closed form for the Whittle-
Matérn model, and in this case we use the empirical result of Lindgren et al. (2011).
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The ranges of correlation for the Gaussian, Whittle-Matérn and Cauchy models are
then

r0 = α
√
− log(0.1), r0 = α

√
8ν, r0 = α

√
0.1−1/(ν+1) − 1, (3.14)

respectively. In each case, r0 depends linearly on α, and when ν is fixed, ρmax

decreases as r0 increases, since ρmax is proportional to r−d0 , cf. (3.9), (3.11), and
(3.13). There is a similar trade-off between how large the intensity and the range of
the circular covariance function can be, cf. (3.7).
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Figure 3: Isotropic pair correlation functions for (a) the Whittle-Matérn model and
(b) the Cauchy model. Each black line corresponds to a different value of the shape
parameter ν. The pair correlation function for the Gaussian model (ν = ∞) is
shown in gray in both plots. For each model, the scale parameter α is chosen such
that the range of correlation is fixed at r0 = 0.05, and the corresponding value of
ρmax is reported in the legend. The circles show values of the approximate isotropic
pair correlation function obtained by using the approximation Capp described in
Section 4.

Figure 3 shows examples of the isotropic pair correlation functions with a fixed
range of correlation. In particular the Whittle-Matérn DPPs have several different
shapes of pair correlation functions and so they may constitute a quite flexible model
class for soft-coreness. From the figure it is also evident that the value of ρmax is
of the same order of magnitude for all these models, indicating that the range of
interaction has a major effect on the maximal permissible intensity of the model.

Ripley’s K-function (Ripley, 1976, 1977) is for d = 2 given by

K(r) = 2π

∫ r

0

tg0(t) dt, r ≥ 0, (3.15)

and we obtain the following.

For the Gaussian model: K(r) = πr2 − πα2

2

(
1− exp

(
−2r2

α2

))
.
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Figure 4: Plots of L(r) − r vs. r for the Whittle-Matérn, Cauchy, and Gaussian
model with α = αmax and ρ = 100. For the Whittle-Matérn and Cauchy models,
ν ∈ {0.5, 1, 2}. The horizontal line at zero is L(r) − r for a stationary Poisson
process.

For the Cauchy model: K(r) = πr2 − πα2

2ν + d− 1

(
1−

(
α2

α2 + r2

)2ν+d−1)
.

For the Whittle-Matérn model: The integral in (3.15) has to be evaluated by
numerical methods.

We consider the variance stabilizing transformation of the K-function, L(r) =√
K(r)/π (Besag, 1977b), and recall that L(r) = r for a stationary Poisson process.

Figure 4 shows L(r) − r for seven different DPPs. Figures 3 and 4 illustrate the
dependence between the degree of repulsiveness and ν, which will be discussed in
more detail in Section 3.5.

3.4 Spectral approach

As an alternative of specifying a stationary covariance function C0, involving the
need for checking positive semi-definiteness, we may simply specify an integrable
function ϕ : Rd → [0, 1], which becomes the spectral density, cf. Corollary 3.3. In
fact knowledge about ϕ is all we need for the approximate simulation procedure
and density approximation in Section 4. However, the disadvantage is that it may
then be difficult to determine C0 = F−1(ϕ), and hence closed form expressions for
g and K may not be available. Furthermore, it may be more difficult to interpret
parameters in the spectral domain.

In the following we first describe a general method for constructing isotropic
models via the spectral approach. Second, this method is used to construct a model
class displaying a higher degree of repulsiveness (in a sense made precise in Sec-
tion 3.5) than the Gaussian model which appears as a special case.

Let f : [0,∞)→ [0,∞) be any Borel function such that sup f <∞ and 0 < c <
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∞, where

c =

∫
Rd
f(‖x‖) dx =

dπd/2

Γ(d/2 + 1)

∫ ∞
0

rd−1f(r) dr. (3.16)

Then we can define the spectral density of a stationary and isotropic DPP model as

ϕ(x) = ρf(‖x‖)/c, x ∈ Rd, (3.17)

where ρ is the intensity parameter. The model is well-defined whenever

ρ ≤ ρmax = c/ sup f. (3.18)

Below we give an example of a parametric model class for such functions f , where
the integral in (3.16) and the supremum in (3.18) can be evaluated analytically.

Assume Y ∼ Γ(γ, β) and let f denote the density of Y 1/ν , where γ > 0, β > 0,
and ν > 0 are parameters. Let α = β−1/ν , then by (3.16) and (3.17),

c =
dπd/2Γ(γ + d+1

ν
)

Γ(d/2 + 1)Γ(γ)
α1−d

and

ϕ(x) = ρ
Γ(d/2 + 1)ναd

dπd/2Γ(γ + d−1
ν

)
‖αx‖γν−1 exp(−‖αx‖ν). (3.19)

We have ρmax = 0 if γν < 1, and

ρmax =
c

f((γ − 1/ν)1/ν)
=
dπd/2α−dΓ(γ + d−1

ν
) exp(γ − 1/ν)

Γ(d/2 + 1)ν(γ − 1/ν)γ−1/ν
if γν ≥ 1. (3.20)

We call a DPP model with a spectral density of the form (3.19) a generalized gamma
model. For γν > 1, the spectral density (3.19) attains its maximum at a non-zero
value, which makes it fundamentally different from the other models considered so
far where the maximum is attained at zero.

In the remainder of this section, we consider the special case γ = 1/ν, so

ϕ(x) = ρ
Γ(d/2 + 1)ναd

dπd/2Γ(d/ν)
exp(−‖αx‖ν). (3.21)

We call a DPP model with a spectral density of the form (3.21) a power exponential
spectral model. For ν = 2, this is the Gaussian model of Section 3.3.

For the power exponential spectral model, for fixed ρ and ν, α has an upper limit
αmax given by αdmax = Γ(d/ν + 1)r−d, where rd = ρdΓ(d/2)/(2πd/2). For the choice
α = αmax in (3.21), the spectral density of the power exponential spectral model
becomes

ϕ(x) = exp(−‖Γ(d/ν + 1)1/dx/r‖ν). (3.22)

Note that this function tends to the indicator function over the set {‖x‖ ≤ r} as ν
tends to ∞. This limiting case corresponds to a ’most repulsive possible stationary
DPP’ as discussed in detail in Section 3.5.

Figure 5 illustrates some properties of the power exponential spectral model
when α = αmax and ν = 1, 2, 3, 5, 10,∞. Recall that ν = 2 is the Gaussian model.
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Figure 5: (a) Isotropic spectral densities, (b) approximate isotropic pair correlation
functions, and (c) approximate L(r) − r functions for power exponential spectral
models with ρ = 100, ν = 1, 2, 3, 5, 10,∞, and α = αmax the maximal permissible
value determined by (3.20).

Figure 5(a) shows the spectral density for these cases. Note that the spectral density
approaches an indicator function as ν →∞. Since we are not aware of a close form
expression for C0 = F−1(ϕ) when ϕ is given by (3.22), we approximate C0 by the
periodic method discussed in Section 4, leading to approximating pair correlation
functions shown in Figure 5(b). Figure 5(c) shows the corresponding approximations
of L(r)− r (analogously to Figure 4 in Section 3.3). Figure 5 is discussed in further
detail in Section 3.5.

3.5 Quantifying and comparing repulsiveness

We now discuss different criteria to quantify repulsiveness. These criteria are used
to compare the DPP models introduced in Sections 3.3-3.4.

Recall that ρK(r) is the conditional expectation of the number of further points
of X in a ball of radius r centred at x given that X has a point at x. As a
first criterion for repulsiveness, for two stationary DPPs with kernels C1 and C2,
common intensity ρ, and corresponding K-functions K1 and K2, we may say that
DPP(C1) exhibits stronger repulsiveness than DPP(C2) if K1(r) ≤ K2(r) for all
r ≥ 0. If the corresponding pair correlation functions g1 and g2 are isotropic, i.e.
gi(x, y) = gi0(‖x− y‖), i = 1, 2, then

K1 ≤ K2 if and only if g10 ≤ g20. (3.23)

In this sense, within each class of the Gaussian, Whittle-Matérn, and Cauchy
models introduced in Section 3.3, when ν is fixed, the degree of repulsiveness in-
creases as α increases. However, the increased degree of repulsiveness comes at the
cost of a decreased maximal intensity cf. (3.9), (3.11), and (3.13). For fixed ρ and
ν, the upper limit αmax of α is given by

αmax = 1/
√
πρ, αmax = 1/

√
4πνρ, αmax =

√
ν/(πρ) (3.24)

for the Gaussian, Whittle-Matérn, and Cauchy models, respectively. Letting α =
αmax, the degree of repulsiveness of both the Whittle-Matérn and the Cauchy models
grows as ν grows, and the limit is the Gaussian case, cf. (i)-(ii) in Section 3.3.
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On the other hand, the power exponential spectral model of Section 3.4 contains
the Gaussian model as a special case when ν = 2, and it provides examples of more
and more repulsive DPPs as ν increases from zero to infinity, cf. Figure 5.

However, superposing the two plots in Figure 3 or considering Figure 4, the
comparison between a Whittle-Matérn model and a Cauchy model is not always
possible with our criterion for repulsiveness based on the K-functions.

Instead, for any stationary point process defined on Rd, with distribution P ,
constant intensity ρ > 0, and pair correlation function g(x, y) = g(x − y) (with a
slight abuse of notation), we suggest

µ = ρ

∫
[1− g(x)] dx (3.25)

as a rough measure for repulsiveness provided the integral exists. Denote o the origin
of Rd and note that the function x 7→ ρg(o, x) = ρg(x) is the intensity function for
the reduced Palm distribution P !

o (intuitively, this is the conditional distribution
of all remaining events when we condition on that o is an event, cf. Appendix C).
Therefore, µ is the limit as r → ∞ of the difference between the expected number
of events within distance r from o under respectively P and P !

o. For a stationary
Poisson process, µ = 0. For any stationary point process, we always have µ ≤ 1 (see
e.g. (2.5) in Kuna et al. (2007)). When g ≤ 1 (as in the case of a DPP), we clearly
have µ ≥ 0, so that 0 ≤ µ ≤ 1.

Especially, for a stationary DPP,

µ = ρ

∫
[1− g(x)] dx =

1

ρ

∫
|C0(x)|2 dx =

1

ρ

∫
|ϕ(x)|2 dx

where the second equality follows from (2.3) and (2.4), and the last equality follows
from Parseval’s identity. Using an obvious notation, we say that DPP(C1) is more
repulsive than DPP(C2) if ρ1 = ρ2 and µ1 ≥ µ2. In the isotropic case, this is in
agreement with our former definition of repulsiveness: if ρ1 = ρ2, then K1 ≤ K2

implies that µ1 ≥ µ2, cf. (3.23).
A stationary DPP with intensity ρ and a maximal value of µ can be specified

as follows. Since 0 ≤ ϕ(x)2 ≤ ϕ(x) ≤ 1, we have µ = 1 if and only if
∫
ϕ(x)2 dx =∫

ϕ(x) dx = ρ. So µ is maximal if ϕ is an indicator function with support on a Borel
subset of Rd of volume ρ. An obvious choice is

ϕ(x) =

{
1 if ‖x‖ ≤ r

0 otherwise
(3.26)

where rd = ρdΓ(d/2)/(2πd/2). For d = 1, C0 is then proportional to a sinc function:

C0(x) = sin(πρx)/(πx) if d = 1. (3.27)

For d = 2, C0 is then proportional to a ’jinc-like’ function:

C0(x) =
√
ρ/π J1(2

√
πρ‖x‖)/‖x‖ if d = 2. (3.28)

As already noticed in Section 3.4, the indicator function (3.26) corresponds to the
limit of (3.22) when ν tends to infinity. Thus the power exponential spectral model
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contains a ’most repulsive possible stationary DPP’ as a limiting case. Figure 5
illustrates how this limiting case is approached as ν increases. Notice in particular
the slightly oscillating nature of g in Figure 5(b) for ν > 2, indicating a stronger
degree of repulsiveness than in a soft-core model. For Gibbs hard-core point pro-
cesses, oscillation in the pair correlation function is also seen, but at the hard-core
distance, the pair correlation function jumps from zero to a value larger than one
(see e.g. Illian et al. (2008)).

4 Approximations

Let again X ∼ DPP(C) be stationary so that C(x, y) = C0(x−y), cf. (3.1). It would
have been desirable if we could compute explicitly the spectral representation (2.5)
for a given parametric family of C0 and for at least some cases of compact sets S
(e.g. closed rectangles). Unfortunately, analytic expressions for such representations
are only known in a few simple cases (see e.g. Macchi (1975)), which we believe are
insufficient to describe the interaction structure in real spatial point process datasets.
Numerical approximations of the eigenfunctions and eigenvalues can be obtained for
a given covariance function C0. However, in the simulation algorithm of Section 2.4
we may need to evaluate the eigenfunctions at several different locations to generate
each point of the simulation, and the need for numerical approximation at each step
can be computationally costly. On the other hand, the Fourier approximation (4.6)
given below is very easy to apply. This requires that the spectral density associated
to C0 is available, which is the case for the examples given in Sections 3.3-3.4.

Throughout this section, S = [−1/2, 1/2]d, S/2 = [−1/4, 1/4]d, 2S = [−1, 1]d,
and we discuss approximations of the kernel C and the DPP X restricted to S or
sometimes to S/2 or a more general rectangular set depending on the circumstances.
Section 4.1 concentrates on approximations of the kernel, Sections 4.2-4.3 on how to
simulate an approximation of the DPP, and Section 4.4 on how to approximate the
density of the DPP. We consider the orthonormal Fourier basis of L2(S) given by

φk(x) = e2πik·x, k ∈ Zd, x ∈ S, (4.1)

where Z denotes the set of integers. For u ∈ S, the Fourier expansion of C0(u) is

C0(u) =
∑
k∈Zd

αke
2πik·u

where

αk =

∫
S

C0(t)e
−2πik·t dt. (4.2)

Note that for (x, y) ∈ S × S,

C(x, y) =
∑
k∈Zd

αke
2πik·(x−y) =

∑
k∈Zd

αkφk(x)φk(y) if x− y ∈ S

but since this expansion is not in general true when x − y 6∈ S, it is not a spectral
representation for C restricted to S × S.
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4.1 Approximation of the kernel C

Substituting the finite integral in (4.2) by the infinite integral

ϕ(k) =

∫
C0(t)e

−2πik·t dt (4.3)

leads us to approximate C0 on S by

C0(u) ≈ Capp,0(u), u ∈ S, (4.4)

where
Capp,0(u) =

∑
k∈Zd

ϕ(k)e2πik·u, u ∈ S.

Since x− y ∈ S if x, y ∈ S/2, we then obtain the approximation

C(x, y) ≈ Capp(x, y), x, y ∈ S/2, (4.5)

where Capp(x, y) = Capp,0(x− y), x, y ∈ S/2.
Comparing (4.2) and (4.3) we see that the error of the approximations (4.4) and

(4.5) is expected to be small if C0(t) ≈ 0 for t ∈ Rd \S. In particular, for covariance
functions with finite range δ < 1/2 (see (3.5)), C0(t) = 0 for t ∈ Rd \ S, and so
C0(u) = Capp,0(u) for u ∈ S, i.e. the approximations (4.4) and (4.5) are then exact.
For instance, considering the circular covariance function (3.6) and the existence
condition (3.7), we have δ < 1/2 if ρ > 16/π, which indeed is not a restrictive
requirement in practice.

Appendix J studies the accuracy of the approximation C0(u) ≈ Capp,0(u), u ∈ S,
for the Whittle-Matérn model introduced in Section 3.3, and show that the error is
small provided the intensity ρ is not too small. Furthermore, Figure 3 in Section 3.3
indicates that the approximation is accurate for the examples in the figure as the
approximate pair correlation functions marked by circles in the plot are very close
to the true curves.

For later purpose, we consider the periodic kernel defined on S × S as

Cper(x, y) = Cper
0 (x− y), x, y ∈ S,

where Cper
0 is the periodic extension of C0 from S to 2S defined by

Cper
0 (u) =

∑
k∈Zd

αke
2πik·u, u ∈ 2S.

Evaluating Cper(x, y) for x, y ∈ S corresponds to wrapping [−1/2, 1/2]d on a torus
and evaluating C(x(t), y(t)), where x(t) and y(t) are the points on the torus corre-
sponding to x and y.

Finally, following (4.4), we use the approximation Cper
0 (u) ≈ Cper

app,0(u), u ∈ 2S,
where Cper

app,0(u) =
∑

k∈Zd ϕ(k)e2πik·u, u ∈ 2S, which leads to the approximation of
Cper on S × S : Cper(x, y) ≈ Cper

app(x, y) where

Cper
app(x, y) =

∑
k∈Zd

ϕ(k)φk(x)φk(y), x, y ∈ S. (4.6)

Note that for x, y ∈ S/2, Cper(x, y) = C(x, y) and Cper
app(x, y) = Capp(x, y).
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4.2 The border method for simulation

Consider Xper ∼ DPPS(Cper
app), which is well-defined since ϕ ≤ 1. We can think

of Xper as a DPP on the torus with a kernel approximately corresponding to C
on the torus. Furthermore, we can approximate XS/2 ∼ DPP(C;S/2) by Xapp

S/2 =

Xper ∩ S/2 ∼ DPPS(Cper
app;S/2). Thus to approximately simulate XS/2 we need to

be able to simulate Xper, which is straightforward since (4.6) is of the form required
for the simulation algorithm of Section 2.4. Recall that for finite range covariance
functions with δ < 1/2 (see (3.5)), the simulation is exact (or perfect) as XS/2 and
Xapp
S/2 are identically distributed.

More generally suppose we want to simulate XR where R ⊂ Rd is a rectangular
set. We then define an affine transformation T (x) = Ax+ b such that T (R) = S/2.
Then Y = T (X) is a stationary DPP, with kernel given by (3.2) and spectral density
ϕY (x) = ϕ(ATx). Let Y per be the DPP on S with kernel (4.6) where ϕ is replaced by
ϕY . Then we simulate Y per and return T−1(Y per∩S/2) as an approximate simulation
of XR. We refer to this simulation procedure as the border method for simulating
XR.

4.3 The periodic method for simulation

From our practical experience it appears that DPPS(Cper
app) is also a good approxima-

tion of DPP(C;S), which may be harder to understand from a purely mathematical
point of view. Intuitively, this is due to the fact that the periodic behaviour of
Cper

app,0 mimics the influence of points outside S. To illustrate this, Figure 6(a) shows
the acceptance probability for a uniformly distributed proposal (used for rejection
sampling when simulating from one of the densities pi, see Remark E.3) when Xper

is simulated by the algorithm in Section 2.4. The qualitative behavior of the process
in S and in the interior region S/2 are similar e.g. in the sense that there are regions
at the borders where the acceptance probability is low. For the process on S/2, this
is due to the influence of points outside S/2. For the process on S, this is created
artificially by points at the opposite border.

This approximation gives us an alternative way of approximately simulating
XR where R ⊂ Rd is a rectangular set as follows. We simply redefine the affine
transformation above such that T (R) = S. Then Y = T (X) is again a stationary
DPP with spectral density ϕY (x) = ϕ(ATx), and T−1(Y per

S ) is an approximate
simulation of XR. We call this the periodic method for simulating XR.

The advantage of the periodic method is that we on average only need to generate
ρ|R| points, whereas the border method requires us to generate 4ρ|R| points on
average. To increase the efficiency of the border method we could of course use
a modified affine transformation such that T (R) = S ′ with S/2 ⊂ S ′ ⊂ S, but
we will not go into the details of this, since it is our experience that the periodic
method works very well. In particular we have compared the two methods for
simulating DPPs with kernels given by circular covariance functions. In this case the
border method involves no approximation and comparison of plots of the empirical
distribution of various summary statistics revealed almost no difference between the
two methods (these plots are omitted to save space).
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Figure 6: (a) Acceptance probability for a uniformly distributed proposal at an
intermediate step of Algorithm 1 (Section 2.4) when simulating a realization of
Xper on S = [−1/2, 1/2]d. The interior box is the region S/2 = [−1/4, 1/4]d. The
black points represent previously generated points, and the acceptance probability is
zero at these points. (b) Empirical means and 2.5% and 97.5% pointwise quantiles
of L(r) − r using either the periodic method (gray lines) or the border method
(black lines), and based on 1000 realizations of a Gaussian model with ρ = 100 and
α = 0.05. The dashed line corresponds to the theoretical L(r)− r function for this
Gaussian model.
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For a Gaussian covariance function, Figure 6(b) shows empirical means and
2.5% and 97.5% pointwise quantiles of L(r) − r using either the periodic method
(gray lines) or the border method (black lines), and based on 1000 realizations of
a Gaussian model with ρ = 100 and α = 0.05. The corresponding curves for the
two methods are in close agreement, which suggests that the two methods generate
realizations of nearly the same DPPs. This was also concluded when considering
other covariance functions and functional summary statistics (plots not shown here).
In Figure 6(b) the empirical means of L(r)− r are close to the theoretical L(r)− r
function for the Gaussian model, indicating that the two approximations of the
Gaussian model are appropriate.

The computational efficiency of the periodic method makes it our preferred
method of simulation. The 1000 realizations used in Figure 6(b) were generated
in approximately three minutes on a laptop with a dual core processor.

4.4 Approximation of the density f

First, consider the density f for XS as specified in Theorem 2.9 (so we assume
ϕ < 1). We use the approximation f ≈ fper, where fper denotes the density of Xper.
Letting

ϕ̃(u) = ϕ(u)/(1− ϕ(u)), u ∈ S, (4.7)

C̃per
app(x, y) = C̃per

app,0(x− y) =
∑
k∈Zd

ϕ̃(k)e2πik·(x−y), x, y ∈ S, (4.8)

and
Dper

app =
∑
k∈Zd

log (1 + ϕ̃(k)) (4.9)

we have

fper({x1, . . . , xn}) = exp(|S| −Dper
app) det[C̃per

app](x1, . . . , xn), {x1, . . . , xn} ⊂ S.
(4.10)

This density can be approximated in practice by truncating the infinite sums defining
C̃per

app and Dper
app. Furthermore, the speed of calculation can be increased by using a

fast Fourier transform (FFT) to evaluate C̃per
app,0. The details of the truncation and

use of FFT are given in Section 5.1.
Second, consider the density of XR, where R ⊂ Rd is rectangular. Then we use

the affine transformation from above with T (R) = S to define Y = T (X). If fper
Y

denotes the approximate density of Y as specified by the right hand side of (4.10),
we can approximate the density of XR by

fper({x1, . . . , xn}) = |R|−n exp(|R| − |S|)fper
Y (T ({x1, . . . , xn})), {x1, . . . , xn} ⊂ R.

We call fper the periodic approximation of f . The simulation study in Section 5
shows that likelihood inference based on fper works well in practice for the examples
in this paper. Appendix K introduces a convolution approximation of the density
which in some cases may be computationally faster to evaluate. However, as dis-
cussed in Appendix K, this approximation appears to be poor in some situations
and in general we prefer the periodic approximation.

27



5 Inference procedures

In this section, we discuss how to estimate parameters of parametric DPP models
and how to do model comparison. Section 5.1 focuses on maximum likelihood based
inference, Section 5.2 considers alternative ways of performing inference, and Sec-
tion 5.3 discusses a simulation study of the approaches of Sections 5.1-5.2. Examples
of the estimation and model comparison procedures when modelling real datasets
are given in Section 6 where we also discuss model checking. Furthermore, in Sec-
tions 5.1.1 and 5.3, we discuss the commonly used non-parametric intensity estimate
ρ̂ = n/|S| in comparison to the maximum likelihood estimate (MLE) of ρ.

For simplicity we assume that X is a stationary DPP, so the kernel C0 could e.g.
be given by one of the parametric covariance models described in Sections 3.3-3.4.
The inhomogeneous case will be discussed in Section 6.5. Further, C0 is assumed to
be parametrized by the intensity ρ and an additional parameter θ for the correlation
function R0,θ corresponding to C0, i.e. C0(x) = ρR0,θ(x). Recall that ρ introduces a
bound on the parameter space for θ, since (using an obvious notation) ρmax(θ) ≥ ρ,
cf. Sections 3.3-3.4. Given ρ, we denote Θρ the parameter space of θ. Furthermore,
we let x = {x1, . . . , xn} denote a realization of XS, where S is a bounded rectangular
region and we refer to x as the data.

5.1 Maximum likelihood based inference

In order to perform maximum likelihood based inference, we approximate the like-
lihood function with respect to θ by the density fper of Section 4, where we use
truncation and FFT to evaluate fper. This is described in more detail in the follow-
ing.

For a given integer N > 0 (the choice of N is discussed below), let ZN =
{−N,−N + 1, . . . , N − 1, N} and define truncated versions of (4.8) and (4.9) by

DN =
∑
k∈ZdN

log(1 + ϕ̃(k)) (5.1)

and
C̃N(u) =

∑
k∈ZdN

ϕ̃(k)e2πik·u, u ∈ Rd. (5.2)

Here ϕ̃ is given by (4.7) and we suppress in the notation that ϕ̃ depends on (ρ, θ)
where ρ is replaced by ρ̂ = n/|S|. The (approximate) MLE is the value of θ which
maximizes the (approximate) log-likelihood

`N(θ) = log det[C̃N ](x1, . . . , xn)−DN , θ ∈ Θρ̂,

where [C̃N ](x1, . . . , xn) is the n × n matrix with (i, j)’th element C̃N(xi − xj). If θ
is one dimensional, the maximum of `N(θ) can be determined by a simple search
algorithm, otherwise the simplex algorithm by Nelder and Mead (1965) can be used.
Note that these methods do not require explicit knowledge of the derivatives of `N(θ).

While it is feasible to evaluate (5.1) for large values of N , the evaluation of (5.2)
is more problematic since it needs to be carried out for every pair of points in x. For
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moderate N (few hundreds) direct calculation of (5.2) can be used. In this case and
if C0 is a real function, we can exploit the fact that ϕ̃ is an even function such that
all imaginary parts in (5.2) cancel. This allows to reduce the number of terms in
the sum by a factor 2d, which speeds up calculations considerably when evaluating
the periodic density. For large N (hundreds or thousands) we use the FFT of ϕ̃.
The FFT yields values of C̃N at a discrete grid of values and we simply approximate
C̃N(xi − xj) by the value at the closest grid point.

Concerning the choice of N , note that the sum

SN =
∑
k∈ZdN

ϕ(k)

tends to ρ from below as N tends to infinity. Hence, for any value of θ, one criterion
for choosing N may be to require e.g. SN > 0.99ρ̂. However, this may be insufficient
as N also determines the grid resolution when FFT is used, and a high resolution
may be required to obtain a good approximation of the likelihood. Therefore, we
use increasing values of N until the approximate MLE stabilizes.

When comparing several different models fitted to the same dataset (e.g. Gauss,
Whittle-Matérn, and Cauchy), we prefer the model with the largest value of `N(θ).
The comparison of `N(θ) between different model classes is valid, since the domi-
nating measure is the same for all the models.

5.1.1 MLE for the intensity

Rather than fixing the estimate of the intensity to ρ̂ = n/|S|, we may estimate both
ρ and θ by maximum likelihood. This has been done for the simulated Gaussian
model given in Section 5.3, where we observed that the MLE of ρ is very close to
n/|S|. This has further been done for each DPP model fitted to the real datasets in
Section 6, where the largest relative difference between the non-parametric estimate
and the MLE of ρ was 4%.

When ρ is not too close to ρmax, the fact that the MLE appears to be close
to n/|S| may be understood in the following way. By applying the convolution
approximation in Appendix K.1, rough approximations C̃(x, y) ≈ C0(x − y) and
D ≈ |S|ρ are obtained by considering only the first terms in (K.1) and (K.3). Hence
a rough approximation of the log-likelihood is

`(ρ, θ; {x1, . . . , xn}) ≈ −|S|ρ+ n log ρ+ log det[C†](x1, . . . , xn)

where C†(x, y) = C0(x− y)/ρ depends only on θ and not on ρ. The maximum point
of this approximate log-likelihood has ρ = n/|S|.

On the other hand, for very repulsive DPPs, the number of points has a small
variance, and so we may expect the intensity to be close to the observed n/|S|. In
particular, the most repulsive DPP is a determinantal projection process and the
intensity is then non-random.

5.2 Alternative approaches for inference

Given a parametric DPP model there are several feasible approaches for inference
which are not based on maximum likelihood. For example, parameter estimation can
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be based on composite likelihood, Palm likelihood, generalized estimating equations,
or minimum contrast methods. See Møller and Waagepetersen (2007), Prokes̆ová
and Jensen (2013), and the references therein. Here we only briefly recall how the
minimum contrast estimate (MCE) (Diggle and Gratton, 1984) is calculated.

Let s(r; θ), r ≥ 0, denote a functional summary statistic for which we have a
closed form expression, where θ ∈ Θρ̂ and ρ̂ = n/|S|. In our examples, this will be
either the pair correlation function g or the K-function. Further, let ŝ(r) be a non-
parametric estimate of s based on the data x. The MCE based on the functional
summary statistic s is the value of θ which minimizes

D(θ) =

∫ ru

rl

|ŝ(r)q − s(r; θ)q|p dr

where the limits of integration rl < ru and the exponents p > 0 and q > 0 are
user-specified parameters. Following the recommendations in Diggle (2003), we let
q = 1/2, p = 2, and ru be one quarter of the minimal side length of S. It is
customary to use rl = 0 and we do this when the MCE is based on the K-function.
However, when the MCE is based on g, we let rl be one percent of the minimal side
length of S, since in our simulation experiments it turned out to be a better choice.
To minimize D(θ) we use the same method as was used for maximizing `N(θ) in
Section 5.1, which avoids the use of derivatives of D(θ).

Finally, when several different models are fitted to the same dataset, the one
with minimal value of D(θ) is preferred.

5.3 Simulation study

We have generated 500 realizations in the unit square of the following five models:
Gaussian, Whittle-Matérn with ν = 0.5, Whittle-Matérn with ν = 1, Cauchy with
ν = 0.5, and Cauchy with ν = 1. For all models, ρ = 200 and α = αmax/2, where
αmax is given by (3.24). In our experience it is difficult to identify the parameters ν
and α simultaneously, which is a well-known issue for the Whittle-Matérn covariance
function (see e.g. Lindgren et al., 2011). Here we consider ν known such that the
remaining parameter to estimate is one dimensional, i.e. θ = α.

Table 1 provides the empirical means and standard deviations of the MCE based
on K, the MCE based on g, and the MLE, where for each model, the MLE is
calculated for several different values of N . In general, we see that as long as the
truncation is sufficiently large the MLE outperforms the MCE since the former has
smaller biases and smaller standard deviations.

The quality of the likelihood approximation is closely related to the decay rate
of the spectral density of the model, or equivalently to the rate of convergence of
SN . Figure 7 shows SN for different values of N for each of the five models. It is
clear that the two Whittle-Matérn models approach the theoretical limit ρ = 200 at
a slower rate than the other models, and this makes the likelihood approximation
inaccurate for small N leading to bias in the estimates shown in Table 1.

For the Gaussian model above, we have tried to include ρ as a freely varying
parameter when maximizing the likelihood with N = 2048. For each realization
the MLE of ρ was very close to the non-parametric estimate n/|W |, and the largest
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Table 1: Empirical means and standard deviations (in parentheses) of parameter
estimates based on 500 simulated datasets for each of 5 different models with in-
tensity ρ = 200. Model 1: Gauss; Model 2: Whittle-Matérn (ν = 0.5); Model 3:
Whittle-Matérn (ν = 1); Model 4: Cauchy (ν = 0.5); Model 5: Cauchy (ν = 1). The
columns from left to right are: The true value of α, MCE based on the K-function,
MCE based on g, MLE with N = 256, MLE with N = 512, MLE with N = 1024,
and MLE with N = 2048. All entries are multiplied by 100 to make the table more
compact.

α K g MLE256 MLE512 MLE1024 MLE2048
1 2.00 2.05 (0.58) 1.99 (0.51) 1.42 (0.25) 2.01 (0.43) 2.01 (0.43) 2.01 (0.43)
2 1.40 1.59 (0.88) 1.48 (0.92) 1.77 (0.11) 1.62 (0.56) 1.55 (0.63) 1.52 (0.67)
3 1.00 1.02 (0.46) 0.95 (0.54) 0.97 (0.18) 1.00 (0.36) 1.00 (0.37) 1.00 (0.37)
4 1.40 1.48 (0.68) 1.30 (0.87) 1.39 (0.23) 1.37 (0.54) 1.38 (0.54) 1.38 (0.55)
5 2.00 2.07 (0.83) 1.91 (0.97) 1.69 (0.29) 2.01 (0.61) 2.01 (0.62) 2.02 (0.61)
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Figure 7: SN as a function of N .

relative difference between the two estimates of ρ for the 500 realizations was 0.3%.
This fits well with Section 5.1.1 where heuristic arguments suggest that the MLE
for ρ is close to n/|W |.

6 Real data examples

In this section, we analyse the six datasets presented in Figure 1 using the parametric
DPP models of Sections 3.3-3.4, namely the Gaussian, Whittle-Matérn, Cauchy, and
power exponential spectral models—for short we refer to these as the four parametric
classes of DPPs. Except for Section 6.5, we use the computationally simple intensity
estimate ρ̂ = n/|S| and the approximate MLE for θ ∈ Θρ̂, cf. Section 5.
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6.1 Spanish towns dataset

The Spanish towns dataset displayed in Figure 1(a) was first analysed in Glass and
Tobler (1971). In a subsequent analysis Ripley (1988) recommended using a Strauss
hard-core model, with four parameters: A hard-core distance h, an interaction dis-
tance R, an abundance parameter β and an interaction parameter γ. The MLE
for h is the minimal observed distance, rmin, but more commonly nrmin

n+1
is used. Es-

timation of R is typically based on an ad-hoc method such as maximum profile
pseudo-likelihood (see e.g. Møller and Waagepetersen (2004)). Conditionally on h
and R, the parameters β and γ can e.g. be estimated by the maximum pseudo-
likelihood method or much more computationally demanding Markov chain Monte
Carlo methods to approximate the likelihood can be used. Following an analysis
in Illian et al. (2008), we use their estimates ĥ = 0.83 and R̂ = 3.5. Further, we
estimate β and γ using the approximate likelihood method of Huang and Ogata
(1999) available in spatstat. The estimates are β̂ = 0.11 and γ̂ = 0.85.

Figure 8 is used to assess the goodness of fit for the Strauss hard-core model.
It shows non-parametric estimates of L(r) − r, the nearest neighbour distribution
function G(r), the empty space function F (r), and J(r) = (1 − G(r))/(1 − F (r)),
together with 2.5% and 97.5% pointwise quantiles (gray lines) for these summary
statistics based on 400 simulations of the fitted Strauss hard-core model (for defi-
nitions of F and G, see e.g. Møller and Waagepetersen (2004)). Overall the model
appears to provide an acceptable fit, but the characteristic cusp of the envelopes
of L(r) − r at r = R̂ = 3.5 seem to be a somewhat artificial model effect that the
dataset does not exhibit.

As an alternative to the Strauss hard-core model, we now consider the four
parametric classes of DPP models. The intensity estimate is ρ̂ = n/|W | = 0.043,
and the fitted Whittle-Matérn model (with ν̂ = 2.7 and α̂ = 0.819) has the highest
value of the likelihood and it is therefore preferred over the Cauchy and power
exponential spectral models which also have three parameters. As the Gaussian
model has only two parameters and is a (limiting) special case of the Whittle-Matérn
model, we carry out a simulation based likelihood-ratio test as follows. Using 400
simulated realizations under the fitted Gaussian model (with α̂ = 2.7), we fit both
the Gaussian model and the (alternative) Whittle-Matérn model. Then, for each
sample, we evaluate D = −2 log(Q) where Q is the ratio of the Gaussian and the
Whittle-Matérn likelihoods. We finally compare the distribution of D over the 400
simulated realizations with the observed value of D for the dataset. The resulting p-
value is 0.03 and we reject the Gaussian model in favor of the Whittle-Matérn model.
Again Figure 8 is used to assess the goodness of fit which appears to be quite good
as none of the non-parametric estimates exit the 95% pointwise envelopes obtained
from simulations under the fitted model.

In summary the Whittle-Matérn model both has less parameters and arguably
provides a better fit than the Strauss hard-core model. Furthermore, we have direct
access to the moments of the Whittle-Matérn model such as the intensity and the
pair correlation function which can only be obtained by simulation for the Strauss
hard-core model.
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Figure 8: Clockwise from top left: Non-parametric estimate of L(r)− r, G(r), J(r),
and F (r) for the Spanish towns dataset. All four plots contain simulation based
2.5% and 97.5% pointwise quantiles for both the fitted Strauss hard-core model
(gray lines) and the fitted Whittle-Matérn model (black lines). For both models the
quantiles are based on 400 simulated realizations.
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6.2 Hamster cells dataset

Figure 1(b) shows a plot of the locations of 303 cells of two types in a 0.25 mm by
0.25 mm region of a histological section of the kidney of a hamster. The data has
been rescaled to a unit square and there are 226 dividing (living) cells marked by
circles and 77 pyknotic (dying) cells marked by pluses. The dataset was analysed
in (Diggle, 2003, Section 6.4.1) where it was concluded to be in agreement with
independent labelling of a simple sequential inhibition (SSI) process with hardcore
distance δ = 0.0012. As noted by Diggle, this model is not strictly valid, since there
are a few pairs of data points violating the hardcore condition. However, Diggle
considered the good overall fit as an indication that the SSI model, together with
random labelling of cell types, provides a reasonable approximate description of the
data.

Under the assumption of random labelling, the two sub-point patterns consisting
of respectively the dividing and the pyknotic cells correspond to respectively the
retained and thinned points of an independent thinning of the full unmarked point
pattern. Using a stationary DPP model with kernel C0 for the full unmarked point
pattern, this implies that each individual sub-point pattern should follow the same
type of DPP model with different values of ρ1 and ρ2 for the intensities (with ρ =
ρ1 + ρ2), and kernels (ρ1/ρ)C0 and (ρ2/ρ)C0, cf. Proposition A.2. We may exploit
this to test the hypothesis of random labelling: first we fit a parametric class of DPP
models to the full unmarked point pattern, second we fit the same model class to
each of the sub-point patterns. If random labelling is true, all fitted models should
coincide, up to the intensity.

For the full unmarked point pattern, all four of the parametric classes of DPPs fit
well with very similar values of the approximate likelihood. Simulation based like-
lihood ratio tests cannot reject the null hypothesis of the Gaussian model against
alternatives given by either the Whittle-Matérn, Cauchy, or power exponential spec-
tral model. We therefore use the simpler fitted Gaussian model with estimates
(ρ̂, α̂) = (303, 0.0181) for the full unmarked point pattern, (ρ̂1, α̂1) = (226, 0.0188)
for the dividing cells, and (ρ̂2, α̂2) = (77, 0.00816) for the pyknotic cells. The relevant
hypotheses to check for random labelling, based on the thinning characterization ex-
plained above, is thus

• H0: α1 = α2 = α against H1: α1 6= α or α2 6= α

Several test statistics can be proposed to perform this test. We choose to base our
decision on Π = |α̂ − α̂1||α̂ − α̂2|. The distribution of Π under H0 is evaluated
from 400 realizations of a Gaussian DPP model with (ρ, α) = (303, 0.0181). On one
hand, we fit a Gaussian DPP model to each realization to get an estimate of α, and
on the other hand, we apply an independent thinning with retention probability
ρ̂1/ρ̂ = 0.75 and fit a Gaussian DPP model to both the retained points and the
thinned points to obtain estimates of both α1 and α2. The distribution of Π over
the 400 simulations is compared to the empirical value of Π for the dataset. The
resulting p-value is 0.62 and there is no reason to reject the null hypothesis.
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6.3 Oak and beech trees dataset

Figure 1(c) shows a plot of the locations of 244 trees of the species oak and beech.
The dataset originates from Pommerening (2002) and was analysed in Mecke and
Stoyan (2005) and Illian et al. (2008). In the following analysis we ignore the species
type. In this case Mecke and Stoyan (2005) noted that only powerful tests can reject
the null hypothesis of a homogeneous Poisson model.

Among the four parametric classes of DPPs, the Whittle-Matérn model with
ρ̂ = n/|W | = 0.038, ν̂ = 0.4, and α̂ = 2.28 has the highest likelihood and shows a
reasonable fit, cf. Figure 9. The estimate ν̂ = 0.4 could indicate that we are close to
the Poisson model. However, when we performed a simulation based likelihood-ratio
test similar to the one in Section 6.1, all 400 simulated values of the test statistic
were below the observed value, so the null hypothesis of a homogeneous Poisson
model is clearly rejected.
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Figure 9: Clockwise from top left: Non-parametric estimate of L(r)− r, G(r), J(r),
and F (r) for the oak and beech dataset. All four plots contain simulation based
2.5% and 97.5% pointwise quantiles obtained from 400 simulated realizations of the
fitted Whittle-Matérn model.

6.4 Termite mounds dataset

Figure 1(d) shows a plot of the locations of 48 termite mounds. The full dataset also
contains an associated pattern of palm tree locations which is omitted here. The
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dataset was analysed in Illian et al. (2008) where the focus was on the interaction
between palms and termite mounds. The palm locations were modelled conditional
on the mound locations assuming that the palm locations constitute a cluster process
with the mounds as cluster centers. It may therefore be interesting to model and
analyse the locations of the mounds separately to know which process generated the
cluster centers.

When we fit the four parametric classes of DPPs, the power exponential spectral
DPP model has the highest likelihood and an estimate (ρ̂, α̂, ν̂) = (0.00128, 48, 15).
This is on the border of the parameter space and the fitted model is close to the
jinc-like DPP with kernel (3.28). The fitted model is judged to provide a good fit,
see Figure 10. The figure also indicates that the Gaussian model cannot be used for
this strength of repulsion.
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Figure 10: Clockwise from top left: Non-parametric estimate of L(r) − r, G(r),
J(r), and F (r) for the termites dataset. All four plots contain simulation based
2.5% and 97.5% pointwise quantiles for both the fitted Gaussian model and the
fitted power exponential spectral model. For both models the quantiles are based
on 400 simulated realizations.

6.5 Mucous membrane dataset

The mucous membrane dataset shown in Figure 1(e) consists of the most abundant
type of cell in a bivariate point pattern analysed in Møller and Waagepetersen (2004).
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We use this point pattern to illustrate how an inhomogeneous DPP can be fitted to
a real dataset. We shall exploit that when the kernel C of a DPP is a covariance
function it can be written as

C(x, y) =
√
ρ(x)R(x, y)

√
ρ(y) (6.1)

where ρ is the intensity and R is the corresponding correlation function to C.
One way of constructing an inhomogeneous DPP model is to assume that ρ is

spatially varying while R is invariant by translation. This is equivalent to assume
second-order intensity-reweighted stationarity (Baddeley et al., 2000). A parametric
model can then be constructed using the models of Sections 3.3 and 3.4 for R
and specifying a parametric model for ρ possibly depending on spatial covariates.
Our approximation of the likelihood presented in Section 4.4 is not adapted to this
non-stationary setting, but e.g. a minimum contrast procedure as in Section 5.2
may be used to estimate all parameters of the model. However, we do not use
this approach for the present dataset, because a comparison (not reported here) of
the pair correlation function estimated from the bottom-half and from the top-half
of the window indicates that the dataset is not second-order intensity-reweighted
stationary.

Instead we propose another way of handling inhomogeneity in a DPP model.
Assume X is a planar DPP with kernel C and observed within a rectangular window
W = [0, A] × [0, B], where A > 0 and B > 0. Suppose XW has a separable
intensity function: ρ(x1, x2) = ρ1(x1)ρ2(x2), where ρ1 (resp. ρ2) is positive and
integrable on [0, A] (resp. on [0, B]). Let T1(x1) =

∫ x1
0
ρ1(u) du, 0 ≤ x1 ≤ A,

and T2(x2) =
∫ x2
0
ρ2(u) du, 0 ≤ x2 ≤ B. Define T (x1, x2) = (T1(x1), T2(x2)) for

(x1, x2) ∈ W . The transformed point process Y = T (XW ) is a DPP defined on
T (W ) = [0, T1(A)]× [0, T2(B)] and its kernel CY is deduced from Proposition A.1:

CY (x, y) = R(T−1(x), T−1(y)), x, y ∈ T (W ), (6.2)

withR as in (6.1). Note that for x ∈ W , Y has intensity CY (x, x) = R(T−1(x), T−1(x)) =
1, since R is a correlation function. Now, assume that Y corresponds to the re-
striction of a stationary DPP Z to T (W ), i.e. Y = ZT (W ) and for x, y ∈ R2,
CY (x, y) = CY,0(y − x). Thus by (6.2), for x, y ∈ W , R(x, y) = CY,0(T (y) − T (x))
and the kernel of XW follows from (6.1):

C(x, y) =
√
ρ(x) CY,0(T (y)− T (x))

√
ρ(y), x, y ∈ W. (6.3)

Note that XW has pair correlation function g(x, y) = 1− |CY (T (y)− T (x))|2. This
implies in particular that X is not second-order intensity-reweighted stationary,
which is in agreement with our remark above.

In summary we fit an inhomogeneous DPP XW with separable intensity as fol-
lows.

• Fit the intensity function ρ restricted to W (e.g. by the Poisson maximum
likelihood estimator, see Schoenberg (2005)).

• Apply the transformation T introduced above to obtain Y = T (XW ).
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• Fit a stationary DPP model for Z based on Y = ZT (W ), and use (6.3) to obtain
the kernel of XW .

We apply this procedure to the mucous membrane dataset, where A = 1 and
B = 0.81. Considering Figure 1(e) it seems reasonable to assume horizontal homo-
geneity, i.e. ρ(x1, x2) = ρ1ρ2(x2) with ρ1 a positive constant. We simply model ρ2
as piecewise constant on the nine intervals [0.09(i − 1), 0.09i), i = 1, . . . , 9 (though
ρ is then not continuous, XW becomes a DPP according to Definition 2.1). Thus
T1 is linear and T2 is piecewise linear making the transformation T very simple.
Note that we can choose any positive value for ρ1 as this choice just amounts to
rescaling ρ2. We fix ρ̂1 =

√
n/A, where n = 876 is the number of points, whereby

T1 is determined. If T2 determined by an estimate of ρ2 satisfies T1(A)T2(B) = n,
then T (W ) = [0,

√
n]2. We therefore estimate ρ2 on each interval by the frequency

of points with first coordinate in the interval divided by 0.09
√
n. This gives the es-

timates 34, 59, 46, 39, 34, 36, 32, 34, 16. Figure 11(a) shows the fitted piecewise con-
stant intensity ρ̂. The dataset transformed by T is shown in Figure 12(a) and is
modelled as the restriction of a stationary DPP using each of the four parametric
classes of DPPs.
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Figure 11: Mucous membrane dataset: (a) Fitted piecewise constant intensity func-
tion ρ̂. (b) Fitted pair correlation function with x2 along the abscissa, y2 along the
ordinate, and y1 − x1 = 0 (see the text).

The fitted power exponential spectral model has the highest likelihood of the four
models, but the likelihood value is only slightly larger than for the Gaussian model.
The simulated 95% envelopes in Figure 12(b) indicate that these two models are very
close in terms of the considered functional summary statistics. A simulation based
likelihood-ratio test comparing the Gaussian null model with the power exponential
spectral model yielded a p-value of 0.10, and we thus prefer the Gaussian model for Z
with fitted parameter α̂ = 0.48 (and intensity one as imposed by the transformation
T ).
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Figure 12: (a) Mucous membrane dataset in [0,
√
n]2 after transformation; (b) Clock-

wise from top left: Non-parametric estimate of L(r) − r, G(r), J(r), and F (r) for
the transformed mucous membrane dataset. All four plots contain simulation based
2.5% and 97.5% pointwise quantiles for both the power exponential spectral model
(black lines) and the Gaussian model (grey lines). For both models the quantiles
are based on 400 simulated realizations.

According to the third step of the procedure, we deduce the fitted kernel (6.3)
of the mucous dataset and in particular its fitted pair correlation function. The
latter is hard to visualize since it is not invariant by translation and depends on two
two-dimensional vectors x = (x1, x2) and y = (y1, y2). However, in our case it only
depends on y1 − x1, x2, and y2 because T1 is linear. Figure 11(b) shows the fitted
pair correlation function as a function of (x2, y2) when y1 − x1 = 0.

6.6 Insect cells dataset

The dataset displayed in Figure 1(f) shows the locations of the centres of 42 cells in
a histological section of an insect. These data were analysed in Crick and Lawrence
(1975), and presented in Ripley (1977) and Diggle (2003) as an example of a very
regular point pattern.

Among the four parametric classes of DPPs the power exponential spectral model
has the highest likelihood and estimates ρ̂ = 42, ν̂ = 10, and α̂ = αmax = 0.26. For
numerical stability the estimation of ν is in fact confined to be≤ 10, in which case the
power exponential spectral model looks like the ’most repulsive possible stationary
DPP’, that is the jinc-like model (see Section 3.5). Thus the fitted DPP model can
be viewed as the jinc-like model with ρ̂ = 42. This is confirmed in Figure 13, which
shows 95% envelopes of summary statistics for the fitted power exponential spectral
model and the fitted jinc-like model. The empirical values computed from the cells
data and compared with these envelopes indicate that this dataset is too regular to
be fitted by a DPP.
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Figure 13: Clockwise from top left: Non-parametric estimate of L(r) − r, G(r),
J(r), and F (r) for the cells dataset. All four plots contain simulation based 2.5%
and 97.5% pointwise quantiles for both the power exponential spectral model fitted
via MLE and the jinc-like DPP (grey lines). For both models the quantiles are based
on 400 simulated realizations.
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7 Concluding remarks

In this paper we have introduced several stationary parametric models for DPPs
and discussed to which degree they can model repulsiveness. In analogy with a
zero-mean Gaussian process, the law of a DPP is determined by a function, viz. the
kernel (or covariance function) C, which as illustrated in our examples of applications
can be chosen in many ways. We have also derived approximations which allow
us in practice to deal with likelihoods and simulation for DPP models, and we
have demonstrated how likelihood and moment based inference procedures work for
simulated and real point pattern datasets. In comparison to general Gibbs point
processes, DPPs are much easier to handle.

We do not think of a DPP as a mechanistic model, i.e. a model which describes
a physical process generating a spatial point process dataset. Rather our overall
purpose of fitting DPP models is to provide empirical models with a parsimonious
parametrization, where we can compare different spatial point pattern datasets by
comparing their estimated DPP model parameters, their maximized likelihoods,
their intensities and pair correlation functions as well as other summaries. This is
also possible when fitting parametric Poisson process models, Poisson cluster process
models, and Cox process models (see e.g. Møller and Waagepetersen (2007) and
the references therein), however, these are not models for repulsion (or regularity
or inhibition) but rather for no interaction in the Poisson case and clustering or
aggregation in the other cases. Moreover, as mentioned, for Gibbs point processes
it is in general more complicated to use a maximum likelihood approach and it is
not possible to find the intensity, the pair correlation function or other moment
properties except by using time consuming simulations.

At several places we discussed repulsiveness of DPPs and realized that a wide
range of soft-core cases and to some extent more repulsive cases are well covered
by the DPP models introduced in Section 3. However, there is a trade-off between
how large the intensity and how repulsive a stationary DPP can be, cf. Section 3.3.
In Section 3.5 we suggested the quantity µ in (3.25) as a rough way of quantifying
repulsiveness for stationary point processes with a pair correlation function not
greater than one, but it may be worthwhile to consider other ways of quantifying
repulsiveness in DPPs. In particular, we have characterized the ’most repulsive
stationary DPP’ with fixed intensity ρ, the kernel of which is a jinc-like function in
the planar case, see (3.28).

DPPs cannot be as repulsive as Gibbs hard-core point processes, and this limita-
tion has been demonstrated with the cells dataset of Section 6.6. Nevertheless, the
jinc-like DPP model exhibits strong repulsiveness as seen in Figure 2(c) and allows
us to fit quite regular datasets such as the termite mounds dataset, see Section 6.4.
For comparison consider a Strauss process (Strauss, 1975; Kelly and Ripley, 1976)
which is a standard example of a repulsive Gibbs point process. Ignoring edge ef-
fects, the Strauss process restricted to a bounded window has a density with respect
to the unit rate Poisson process which is proportional to βn(x)γsR(x), where β > 0,
0 ≤ γ ≤ 1, R > 0, n(x) is the number of points in x, and sR(x) is the number
of (unordered) R-close pairs of points in x. The Strauss process fitted by maxi-
mum pseudo-likelihood to the termite mounds dataset (Section 6.4) gives R̂ = 23.4,
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β̂ = 0.019, and γ̂ = 0.18. The fitted range of repulsion (R̂ = 23.4) is in agreement
with the practical range of repulsion of the jinc-like DPP, which roughly corresponds
to 0.96/

√
ρ—see Figure 5(b) where r0 = 0.96/

√
ρ is the first r-value such that for the

jinc-like DPP, g0(r) = 0.99—that is, r̂0 = 0.96/
√
ρ̂ = 26.8 for the termite mounds

data when the estimate ρ̂ = n/|S| is used. Comparing the fitted Strauss process
with the fitted jinc-like DPP, not only the moments of the jinc-like DPP can be ex-
pressible in closed form, unlike the Strauss model, but it turns out that simulation
of this jinc-like DPP is very fast, while long Markov chain Monte Carlo simulations
are needed for this Strauss process.

Whittle-Matérn and Cauchy models with low values of ν (e.g. ν < 0.5) are
very close to Poisson, and in our experience it requires a rather large point pattern
dataset before the null hypothesis of Poisson is rejected by a likelihood ratio test.
Such models (close to Poisson) are difficult to estimate and simulate, since very large
values of N will be needed in the truncations discussed in Section 5.1 in order to
obtain satisfactory approximations of C and C̃.

In general there is an inverse relationship between the range of correlation and
the spread of the spectral density: if C0 decays rapidly then ϕ decays slowly, and
if C0 decays slowly then ϕ decays rapidly. This is in line with the following fact:
the (generalized) Fourier transform of the Dirac delta function (over Rd) is one and
vice versa, and the Dirac function is the kernel of the Poisson process. From an
‘end user’ point of view this is very important: everything works well and is fast
for DPPs except in the less interesting cases which are close to Poisson. In such
cases very weakly repulsive Gibbs point processes (e.g. a Strauss process with γ
close to one) become interesting competitors to DPPs, unless some other and more
efficient approximations of C and C̃ are developed (we leave this problem for future
research).

We have mainly considered the stationary case of DPPs, and though this is a
natural starting point for the present paper, and stationarity is often assumed in
the spatial point process literature, inhomogeneity (or non-stationarity) is a topic of
much recent interest (see e.g. Møller and Waagepetersen (2007) and Gelfand et al.
(2010)). We have only discussed the inhomogeneous case in Section 6.5, where we
exploited that the inhomogeneity is along one of the axes of the rectangular obser-
vation window, and hence after a simple transformation we could view the situation
as if we were in the stationary case. In other more complicated cases of inhomogene-
ity, there is a need for developing non-stationary covariance models, and we expect
that estimation procedures based on the intensity function and the pair correlation
function (e.g. composite likelihoods based on these functions) should play a role.
In this connection second-order intensity-reweighted stationarity (Baddeley et al.,
2000) could be a useful property, as briefly discussed in Section 6.5. Furthermore, an
independent thinning of a DPP is a DPP (Proposition A.2), and this could possibly
be exploited for model checking in the inhomogeneous case. For instance, by using
thinning probabilities such that homogeneity is obtained, and then applying model
checking techniques for the stationary case (see e.g. Section 6).

In Section 4 we discussed useful approximations of C and C̃ restricted to R×R
when R ⊂ Rd is rectangular. Frequently in the spatial point process literature,
including the present paper, spatial point pattern datasets observed within a rect-
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angular region are considered. However, applications with non-rectangular observa-
tion windows are not uncommon, see e.g. Harkness and Isham (1983). It remains to
clarify how such cases should be handled when fitting DPP models. We could embed
a non-rectangular observation window W into a rectangular region R and consider
the situation as a missing data problem, since we are missing the events in R \W ,
and at least the ‘complete likelihood’ can be handled. In our opinion this seems a
difficult approach for maximum likelihood. However, minimum contrast estimation
and other simple alternatives to maximum likelihood as discussed in Section 5.2 will
easily apply.

Generalizations of DPPs to weighted DPPs, which also are models for repulsion,
and to the closely related permanental and weighted permanental point processes,
which are models for attraction, are studied in Shirai and Takahashi (2003) and
McCullagh and Møller (2006). Since determinants have a geometric meaning, are
multiplicative, and there are algorithms for fast computations, DPPs are much easier
to deal with, not at least from a statistical and computational perspective. The
approximations of C and C̃ using a Fourier basis approach (Section 4) apply as well
for weighted DPPs and weighted permanental point processes, but the practical
usefulness of the approximations is yet unexplored in these cases.

Though a DPP is broadly speaking a special case of a Gibbs point process,
we are not aware of a simple Hammersley-Clifford-Ripley-Kelly representation (see
Ripley and Kelly (1977)) in terms of a product of interaction functions (or, using
the terminology of statistical physics, a sum of potentials). Gibbsianness of DPPs
has been studied in Georgii and Yoo (2005), see Remark G.2. In our opinion the
Markovian properties of DPPs is still an interesting area of research.

Another open research problem is the development of determinantal space-time
point process models. In the continuous time case, formally we are then just dealing
with a DPP defined on R × Rd (where R is considered to be the time axis), but
the natural direction on the time axis should be taken into consideration when
developing parametric families of space-time covariance functions and understanding
how they can be used for modelling repulsion between events in time or space or
both time and space. Also the development of statistical inference procedures for
such models is a challenge. Recently, in a discrete time setting, Affandi et al. (2012)
have constructed a Markov chain of DPPs with a finite state space. It would be
interesting to study a similar Markov chain construction for our case with state
space Rd.
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Appendices

A Smooth transformations and independent thin-

ning of DPPs

Proposition A.1. Let U ⊆ Rd be an open set and T : Rd → U a diffeomorphism
such that its inverse T−1 has a non-zero Jacobian determinant JT−1(x) for all x ∈ U .
If X1 ∼ DPP(C1) and X2 = T (X1), then X2 ∼ DPPU(C2) with

C2(x, y) = |JT−1(x)|1/2C1(T
−1(x), T−1(y))|JT−1(y)|1/2. (A.1)

Proof. Follows immediately from (2.1) and (2.2).

Proposition A.2. If X1 ∼ DPP(C1) and X2 is obtained as an independent thinning
of X1 with retention probabilities p(x), x ∈ Rd, then X2 ∼ DPP(C2) with C2(x, y) =√
p(x)C1(x, y)

√
p(y).

Proof. Let U = {U(x) : x ∈ Rd} be a random field of independent Bernoulli variables
where P(U(x) = 1) = p(x) and U is independent of X1. Then X2 is distributed as
{x ∈ X1 : U(x) = 1}, so from (2.1) and (2.2) it is clear that X2 ∼ DPP(C2).

B Proof of Theorem 2.3

Let the situation be as in Theorem 2.3 (a slightly different result where the eigen-
values are strictly less than one was first given in Theorem 12 of Macchi (1975)).
Recall that C is of local trace class if

trS(C) =
∞∑
k=1

|λSk | <∞ for all compact S ⊂ Rd.

We apply Theorem 4.5.5 in Hough et al. (2009), where C : Rd × Rd → C is Her-
mitian, locally square integrable, of local trace class, and, as (2.5) may not hold
on a Lebesgue nullset, that C is simply given by (2.5). Then existence of DPP(C)
is equivalent to that for all compact S ⊂ Rd, 0 ≤ λSk ≤ 1, k = 1, 2, . . .. When
C is continuous, this nullset vanishes and local square integrability is satisfied.
When C is Hermitian and non-negative definite, the eigenvalues are non-negative,
and so continuity of C implies the local trace class assumption, since the trace∑∞

k=1 |λSk | =
∑∞

k=1 λ
S
k =

∫
S
C(x, x) dx is finite. Thereby Theorem 2.3 follows.

C Reduced Palm distributions for DPPs

Recall that for any simple locally finite spatial point process Y on Rd with intensity
function ρ, there exist unique reduced Palm distributions P!

x for Lebesgue almost
all x ∈ Rd with ρ(x) > 0, which are determined by that

E
∑
x∈Y

h(x, Y \ {x}) =

∫ ∫
ρ(x)h(x,x) dP!

x(x) dx
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for any non-negative Borel function h, where x denotes a locally finite subset of Rd.
See e.g. Stoyan et al. (1995) and Appendix C.2 in Møller and Waagepetersen (2004).
Intuitively, P!

x is the conditional distribution of Y \{x} given that Y has an event at
x. When all n’th order product density functions ρ(n) of Y exist, n = 1, 2, . . ., then
for Lebesgue almost all x ∈ Rd with ρ(x) > 0, P!

x has n’th order product density
function

ρ(n)x (x1, . . . , xn) = ρ(n+1)(x, x1, . . . , xn)/ρ(x) (C.1)

and otherwise we can take ρ
(n)
x (x1, . . . , xn) = 0. See e.g. Lemma 6.4 in Shirai and

Takahashi (2003).
For X ∼ DPP(C), using (2.2) it can be shown that for all x ∈ Rd with C(x, x) >

0, we can take P!
x = DPP(C !

x) where

C !
x(u, v) = det[C](u, x; v, x)/C(x, x), u, v ∈ Rd,

and where [C](x1, x2; y1, y2) is the 2×2 matrix with entries C(xi, yj), i, j = 1, 2. See
Theorem 6.5 in Shirai and Takahashi (2003) (where their condition A is implied by
the conditions in our Theorem 2.4). Moreover, (C.1) holds whenever C(x, x) > 0.

D Simulation of M

Let the situation be as in Section 2.4.1. For m = 0, 1, 2, . . ., let

pm = P (M = m) = λm
∏
i>m

(1− λi).

Note that m′ = sup{k ≥ 0 : λk = 1} is finite, and pm = 0 whenever m < m′. For
m ≥ m′, the pm’s can be computed using the recursion

pm′ =
∞∏

k=m′+1

(1− λk), pm+1 =
λm+1

λm(1− λm+1)
pm, m = m′,m′ + 1, . . .

The calculation of pm′ may involve numerical methods. Let F denote the distribution
function of M and introduce

qm = F (m) = P(M ≤ m) =
m∑
k=0

pk.

The inversion method for simulation of M is based on the fact that F−(U) =
min{m : qm ≥ U} is distributed as M if U is uniformly distributed on (0, 1).

E Proof of Theorem 2.8 and related remarks

Let the situation be as in Theorem 2.8. In the sequel, for ease of presentation, we
ignore null sets.

We start by proving by induction that for i = n, . . . , 1, (2.11) is a probability
density and v(Xn), . . . ,v(Xi) are linearly independent (considering complex scalars).
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For i = n and x ∈ S, we have pn(x) = ‖v(x)‖2/n ≥ 0 for all x ∈ S, and∫
S

pn(x) dx =
1

n

∫
S

‖v(x)‖2 dx =
1

n

∫
S

n∑
k=1

|φk(x)|2 dx = 1.

Hence pn is a probability density. Clearly, pn(x) = 0 whenever v(x) = 0, so as Xn

is generated from pn, v(Xn) 6= 0 (almost surely). Thus the induction hypothesis is
verified for i = n.

Suppose 1 ≤ i < n. By the induction hypothesis, Hi as defined by (E.4) has
dimension n − i. Let Pi be the matrix of the orthogonal projection from Cn onto
H⊥i . By (E.5), for all x ∈ S, pi(x) = ‖Piv(x)‖2/i ≥ 0 and

pi(x) = 0 whenever v(x) ∈ Hi. (E.1)

By the spectral theorem, Pi = UΛiU
∗, where U is unitary and Λi is diagonal with

the first i diagonal elements equal to one and the rest zero. Let ukj denote the
(k, j)’th entry of U . Then

pi(x) =
1

i
v(x)∗UΛiU

∗v(x) =
1

i
‖ΛiU

∗v(x)‖2

where the j’th entry of ΛiU
∗v(x) is

∑n
k=1 ukjφk(x) if j ≤ i, and 0 otherwise, so∫

S

pi(x) dx =
1

i

∫
S

i∑
j=1

n∑
k=1

n∑
l=1

ukjφk(x)uljφl(x) dx

=
1

i

i∑
j=1

n∑
k=1

n∑
l=1

ukjulj

∫
S

φk(x)φl(x) dx =
1

i

i∑
j=1

n∑
k=1

|ukj|2
∫
S

|φk(x)|2 dx = 1.

Thus pi is a probability density. Finally, it follows immediately from (E.1) and the
induction hypothesis that v(Xn), . . . ,v(Xi+1),v(Xi) are linearly independent with
probability one.

Hence, the induction hypothesis is verified for all i = n, . . . , 1.
Now, for iteration i < n, write Pi = Pi(Xn, . . . , Xi+1) andH⊥i = H⊥i (Xn, . . . , Xi+1)

to emphasize the dependence on the previously generated variables. For i = n, set
Pi(Xn, . . . , Xi+1) = In and H⊥i (Xn, . . . , Xi+1) = Cn. Let

Ω = {(x1, . . . , xn) ∈ Sn : v(x1), . . . ,v(xn) are linearly independent}

be the support of (X1, . . . , Xn). Since pi(x) = ‖Piv(x)‖2/i, (X1, . . . , Xn) has density

p(x1, . . . , xn) =
1

n!

n∏
i=1

‖Pi(xn, . . . , xi+1)v(xi)‖2, (x1, . . . , xn) ∈ Ω.

This product is exactly the square of the volume of the parallelepiped determined
by the vectors v(x1), . . . ,v(xn), which is equal to the determinant of the n × n
Gram matrix with (i, j)’th entry v(xi)

∗v(xj), which in turn is equal to the matrix
[K](x1, . . . , xn). Thus, for (x1, . . . , xn) ∈ Ω,

p(x1, . . . , xn) =
1

n!
det[K](x1, . . . , xn). (E.2)
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Moreover, if (x1, . . . , xn) ∈ Sn \ Ω, det[K](x1, . . . , xn) = | det[v(x1) . . .v(xn)]|2 = 0.
Hence (E.2) is valid for all (x1, . . . , xn) ∈ Sn.

Viewing {X1, . . . , Xn} as a point process, the number of points is fixed and equal
to n, and hence by definition of ρ(n) for {X1, . . . , Xn},

ρ(n)(x1, . . . , xn) = n!p(x1, . . . , xn) = det[K](x1, . . . , xn), (x1, . . . , xn) ∈ Sn. (E.3)

This completes the proof of Theorem 2.8.

Remark E.1. Let n > 0, and define Hn = {0} and for i = n− 1, . . . , 1,

Hi = spanC{v(Xn), . . . ,v(Xi+1)} =

{
n∑

j=i+1

αjv(Xj) : αj ∈ C

}
. (E.4)

With probability one, v(Xn), . . . ,v(Xi) are linearly independent, cf. the proof above.
Thus, almost surely, Hi is a subspace of Cn of dimension n − i. For i = n −
1, . . . , 1, by the Gram-Schmidt procedure employed in Algorithm 1, e1, . . . , en−i is
an orthonormal basis of Hi. Further, for i = n, . . . , 1, ipi(x) is the square norm of
the orthogonal projection of v(x) onto H⊥i (the orthogonal complement to Hi).

Remark E.2. According to the previous remark,

ipi(x) = ‖Piv(x)‖2 (E.5)

where Pi is the matrix of the orthogonal projection from Cn onto H⊥i . Denoting by
In the n× n identity matrix, we have for i < n,

Pi =
i+1∏
k=n

(
In −

v(xk)v(xk)
∗

K(xk, xk)

)
. (E.6)

This provides an alternative way to calculate the density pi(x), where Pi is obtained
recursively. This idea was used in Scardicchio et al. (2009) but, as noticed there, the
successive multiplication of matrices leads to numerical instabilities. Some correc-
tions must then be applied at each step to make Pi a proper projection matrix when
n− i is large. In contrast, the calculation of pi(x) in Algorithm 1 is straightforward
and numerically stable.

Remark E.3. Note that for x such that v(x) ∈ H⊥i , pi(x) = ‖v(x)‖2/i. Thus for
small values of i, simulation of Xi by rejection sampling with respect to a uniform
density may be inefficient. However, the computation of pi(x) is fast, so this is not a
major drawback in practice. For the examples in this paper, we have just been using
rejection sampling with a uniform instrumental distribution. Appendix F discusses
other choices of the instrumental distribution.

F Close upper bounds on the conditional distri-

butions of Algorithm 1

In Remark E.3 we discussed rejection sampling from the densities pi, i = n, . . . , 1,
using uniform instrumental distributions. For intensive simulations purposes, for
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each i, it is desirable to construct an unnormalized instrumental density which is
larger than and close to pi as well as easy to simulate from.

To find such an unnormalized density, we first notice the following. It follows
from Remark E.2 that ipi(x) is the norm of a vector obtained after n− i successive
orthogonal projections of v(x). These projections commute, so that ipi(x) is lower
than the norm of any projection of v(x) of a lower order. By (E.5) and (E.6), if
i+ 1 ≤ k ≤ n, then

pi(x) ≤ 1

i

∥∥∥∥(In − v(xk)v(xk)
∗

K(xk, xk)

)
v(x)

∥∥∥∥2
and so by (2.10),

pi(x) ≤ 1

i
min

i+1≤k≤n

(
K(x, x)− |K(x, xk)|2

K(xk, xk)

)
, i < n. (F.1)

Here the right hand side is an unnormalized density, since it is a continuous function
of x ∈ S where S is compact.

The proof of the following lemma uses (F.1) to derive an explicit upper bound in
the specific setting of Section 3, i.e. in the stationary case, when S = [−1/2, 1/2]d,
and when the eigenfunctions are Fourier basis functions as in (4.1). Let x =
(x(1), . . . , x(d)) ∈ Rd and y = (y(1), . . . , y(d)) ∈ Rd, and suppose that

{φ1, . . . , φn} = {ϕj1,...,jd : j1 ∈ J1(n1), . . . , jd ∈ Jd(nd)}

where ϕj1,...,jd(x) = exp
(

2πi
∑d

k=1 jkx(k)
)

and for q = 1, . . . , d, Jq(nq) denotes some

finite subset of Z with nq elements, such that n =
∏d

q=1 nq. Then the projection
kernel (2.10) becomes

K(x, y) =
d∏
q=1

∑
jq∈Jq(nq)

e2πijq(x(q)−y(q)). (F.2)

Moreover, for any r ∈ N, denote Sq(r) =
∑

jq∈Jq(nq) j
r
q , and for any number a, define

a+ = max(a, 0).

Lemma F.1. Let K be the projection kernel (F.2). For step i = n − 1, . . . , 1 of
Algorithm 1, given the n−i previous points xk = (xk(1), . . . , xk(d)), k = i+1, . . . , n,
we have

pi(x) ≤ n

i

(
1− max

i+1≤k≤n

d∏
q=1

(
1− 2π

nq
|x(q)− xk(q)|

√
nqSq(2)− S2

q (1)

)
+

)
. (F.3)

Proof. For x, y ∈ R, let Kq(x, y) =
∑

jq∈Jq(nq) e2πijq(x−y). An analytic expansion of

|Kq(x, y)|2 leads to

|Kq(x, y)|2 =
∞∑
p=0

(−1)p(x− y)2p(2π)2p
2p∑
l=0

(−1)l

l!(2p− l)!
Sq(2p− l)Sq(l).
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Note that

2p∑
l=0

(−1)l

l!(2p− l)!
Sq(2p− l)Sq(l) =

1

(2p)!

∑
(i,j)∈J2

q (nq)

(j − i)2p ≥ 0.

Therefore, the function x→ |Kq(x, y)|2 can be expanded into an alternate series. In
particular, for any x, y ∈ R, since Sq(0) = nq,

|Kq(x, y)|2 ≥ n2
q − 4π2(x− y)2(nqSq(2)− S2

q (1)).

This lower bound is a concave function of |x− y| when

|x− y| ≤ nq

2π
√
nqSq(2)− S2

q (1)

and so

|Kq(x, y)|2

Kq(y, y)
=
|Kq(x, y)|2

nq
≥
(
nq − 2π|x− y|

√
nqSq(2)− S2

q (1)
)
+
.

Combining this with (F.1), we obtain (F.3).

The upper bound in (F.3) provides an unnormalized instrumental density close
to pi. When d = 1, this instrumental density is a stepwise linear function, and hence
it is very easy to make simulations under the instrumental density. When d = 2,
the instrumental density provided by (F.3) is a stepwise polynomial function. One
strategy is then to provide a further upper-bound making rejection sampling feasible.
In our experience this is not so hard for the DPP models we have considered, but
since it depends much on the points xi+1, . . . , xn and the particular model, it seems
not easy to state a general result.

G Proof of Theorem 2.9 and related remarks

Theorem 2.9 was first verified in Macchi (1975). Note that the right hand side in
(2.14) is not depending on the ordering of the events. Equation (2.14) follows from
a longer but in principle straightforward calculation, using (2.8), (E.3), and the fact
that if Y follows the homogeneous Poisson process on S with unit intensity, then

ρ(n)(x1, . . . , xn) = Ef(Y ∪ {x1, . . . , xn}).

See Shirai and Takahashi (2003) and McCullagh and Møller (2006).

Remark G.1. It is possible to express C̃ and D in terms of C without any direct
reference to the spectral representations (2.5) and (2.13): Let

C1
S(x, y) = CS(x, y), Ck

S(x, y) =

∫
S

Ck−1
S (x, z)CS(z, y) dz, x, y ∈ S, k = 2, 3, . . . .

(G.1)
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Then

D =
∞∑
k=1

trS(Ck
S)/k (G.2)

and

C̃(x, y) =
∞∑
k=1

Ck
S(x, y), x, y ∈ S. (G.3)

Also, as noticed in Macchi (1975), C̃ is the unique solution to the integral equation

C̃(x, y)−
∫
S

C̃(x, z)C(z, y) dz = C(x, y), x, y ∈ S.

Remark G.2. The density (2.14) is hereditary in the sense that f({x1, . . . , xn}) > 0
whenever f({x1, . . . , xn+1}) > 0. This allows us to define the Papangelou conditional
intensity for all finite point configurations x = {x1, . . . , xn} ⊂ S and points u ∈ S\x
by

λ(u;x) = f(x ∪ {u})/f(x) = det[C̃](x1, . . . , xn, u)/det[C̃](x1, . . . , xn)

(taking 0/0 = 0). Georgii and Yoo (2005) use this to study the link to Gibbs point
processes, and establish the following result of statistical interest: for any finite
point configurations x ⊂ S and y ⊂ S,

λ(u;x) ≥ λ(u;y) whenever x ⊂ y (G.4)

and for any point u ∈ S \ x,

λ(u;x) ≤ C̃(u, u) (G.5)

(Theorem 3.1 in Georgii and Yoo (2005)). The monotonicity property (G.4) is once
again confirming the repulsiveness of a DPP, and (G.5) means that XS is locally
stable.

Hence XS can be coupled with a Poisson process YS on S with intensity function
given by C̃(u, u), u ∈ S, such that XS ⊆ YS (see Kendall and Møller (2000) and
Møller and Waagepetersen (2004)). This coupling is such that XS is obtained by a
dependent thinning of YS as detailed in the abovementioned references. By consider-
ing a sequence S1 ⊂ S2 ⊂ . . . of compact sets such that Rd = ∪nSn (e.g. a sequence of
increasing balls whose diameters converge to infinity), and a corresponding sequence
of processes Xn ∼ DPP(C;Sn) which are coupled with a Poisson process Y on Rd

with intensity function given by C̃(u, u), u ∈ Rd, such that X1 ⊆ X2 ⊂ . . . ⊆ Y ,
we obtain that ∪nXn ⊆ Y follows DPP(C). In other words, X can be realized as a
dependent thinning of the Poisson process Y .

Imposing certain conditions concerning a finite range assumption on an extended
version of C̃ to Rd and requiring C to be small enough, it is possible to extend
the Papangelou conditional intensity for XS to a global Papangelou conditional
intensity for X and hence to derive the reduced Palm distribution of X (for details,
see Proposition 3.9 in Georgii and Yoo (2005)). Unfortunately, these conditions are
rather restrictive, in particular when d ≥ 2.
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H Proof of Proposition 3.1

For any compact set S ⊂ Rd, define the integral operator TS : L2(S)→ L2(S) by

TS(h)(x) =

∫
S

C(x, y)h(y) dy, h ∈ L2(S), x ∈ S. (H.1)

The {λk}’s and {φk}’s involved in (2.5) correspond to the eigenvalues and eigen-
functions of TS, i.e. for all k,

TS(φk) = λkφk. (H.2)

For h ∈ L2(S), define hS ∈ L2(Rd) by hS(x) = h(x) if x ∈ S and hS(x) = 0
otherwise. From (3.1), the integral operator TS in (H.1) becomes the convolution
operator given by

TS(h)(x) = C0 ? hS(x) =

∫
S

C0(x− y)h(y) dy, x ∈ S.

Recall that the spectrum of TS consists of all λ ∈ C such that the operator
TS − λIS is not invertible or it is invertible and unbounded (with respect to the
usual operator norm), where IS denotes the identity operator on L2(S).

Consider the multiplicative operatorQϕ on L2(Rd) associated to ϕ, i.e.Qϕ(h)(x) =
ϕ(x)h(x) for h ∈ L2(Rd). Its restriction to L2(S) is given by Qϕ,S(h) = QϕS(hS)
for h ∈ L2(S). Note that TS(h) = F−1QϕF(hS) for h ∈ L2(S). Since the Fourier
operator is a unitary operator (as FF−1 = F−1F = I where I denotes the identity
operator on L2(Rd)), the spectrum of TS is equal to the spectrum of QϕS , which
in turn is equal to ess-im(ϕS) (the essential image of ϕS), see (12) in Section 8.4.3
in Birman and Solomjak (1987). In our case, ess-im(ϕS) is the closure of ϕ(S).
Consequently, (C2) is equivalent to ϕ ≤ 1.

I Proof of Corollary 3.3

Assume (i) in Corollary 3.3. Then 0 ≤ ϕ ≤ 1 implies that
∫
|ϕ(x)|2 dx ≤

∫
|ϕ(x)|dx <

∞, i.e. ϕ ∈ L2(Rd), and so by Parseval’s identity C0 ∈ L2(Rd). Further, C0 =
F−1(ϕ) with ϕ ∈ L1(Rd), so C0 is continuous. By Bochner’s theorem, the continu-
ity of C0 and the non-negativity of ϕ imply that C0 is positive-definite, and so (C1)
follows from (5.1). Moreover, (C2) holds by Proposition 5.1. Hence (i) implies (ii).

Conversely, assume (ii). Combining Bochner’s theorem and the fact that C0 is
continuous and C0 ∈ L2(Rd), we deduce that there exists ϕ ∈ L1(Rd) such that
C0 = F−1(ϕ) (see also page 104 in Yaglom (1987)). By (C1), we have that ϕ ≥ 0.
The fact that ϕ ≤ 1 follows from Proposition 5.1. Hence (ii) implies (i).

J Fourier approximation of the Whittle-Matérn

covariance function

Consider the Whittle-Matérn covariance function C0 given by (3.10). This appendix
begins with some preliminary results on Kν (the Bessel function of the second kind)
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which appears in (3.10). Next the quality of the Fourier approximation of C0 given
in Section 4 is discussed.

There are several equivalent ways to define Kν . By Equation 8.432 in Gradshteyn
and Ryzhik (2007), for all x > 0 and all ν > 0,

Kν(x) =

√
π

Γ(ν + 1
2
)

(x
2

)ν ∫ ∞
1

e−xt(t2 − 1)ν−
1
2 dt. (J.1)

As x→ 0, then xνKν(x)→ 2ν−1Γ(ν). Hence by (3.10), C0(0) = ρ.
The following lemma provides an upper bound and gives an idea of the decay

rate for Kν . The inequality reduces to an equality for ν = 1/2. Moreover, according
to various plots (omitted in this article), the bound seems sharp when ν > 1/2. We
denote γ = Γ(1 + 2ν)−1/2ν .

Lemma J.1. For all x > 0,

Kν(x) ≤ 2ν−1Γ(ν)x−ν
(
1− (1− e−γx)2ν

)
if ν ≥ 1/2 (J.2)

and
Kν(x) ≤ K1/2(x) =

√
π/(2x) e−x if ν ≤ 1/2. (J.3)

Proof. When ν ≥ 1/2, from (J.1),

Kν(x) ≤
√
π

Γ(ν + 1
2
)

(x
2

)ν ∫ ∞
1

e−xtt2ν−1 dt =
2−ν
√
π

Γ(ν + 1
2
)
x−νΓ(2ν, x)

where Γ(2ν, ·) denotes the incomplete Gamma function with parameter 2ν:

Γ(2ν, x) =

∫ ∞
x

t2ν−1e−t dt.

From Alzer (1997) we deduce that

Γ(2ν, x) ≤
(

1−
(
1− e−γx

)2ν)
Γ(1 + 2ν)/ (2ν)

whenever x > 0, ν ≥ 1/2, and 0 ≤ γ ≤ Γ(1 + 2ν)−1/2ν . Hence (J.2) follows by using
the relations Γ(2ν + 1) = 2νΓ(2ν) and Γ(ν)Γ(ν + 1/2) = 21−2ν√πΓ(2ν).

When ν < 1/2, using (J.1) and the fact that t2 − 1 > 2t − 2 when t > 1, we
obtain

Kν(x) ≤
√
π

2

1

Γ(ν + 1
2
)
xν
∫ ∞
1

e−xt(t− 1)ν−
1
2 dt.

Finally, making the change of variables u = x(t− 1), we obtain (J.3).

For the Whittle-Matérn model, the following Proposition J.2 provides an error
bound for the approximation (4.4) of C0(u) by Capp,0(u) when u ∈ [−1/2, 1/2]d. We
let

β =
(
α
√
d (Γ(1 + 2ν)1/2ν ∨ 1)

)−1
c(ρ, ν, α, d) =

{
(4α)1−2νρ2πd/Γ(ν)2 if ν ≤ 1

2

4ν2ρ2d if ν ≥ 1
2

(J.4)
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ε(ν, α, 1) =
e−β

β
+

2e−β

1− e−β

(
e−β

β
+

1

1− e−β
− 1

)
(J.5)

and for d ≥ 2,

ε(ν, α, d) = e−β
(

1

β
+

2

(1− e−β)2
− 1

2

)(
1

β
+

2e−β

1− e−β

(
1

β
+

1

1− e−β

))d−1
. (J.6)

Proposition J.2. Let C0 be the Whittle-Matérn covariance function given by (3.10)
and let Capp,0 be the approximation (4.4) of C0 on [−1/2, 1/2]d. If 0 ≤ ρ ≤ ρmax

where ρmax is given by (3.11), then∫
[−1/2,1/2]d

|C0(x)− Capp,0(x)|2dx ≤ c(ρ, ν, α, d)ε(ν, α, d). (J.7)

Proof. We have∫
[−1/2,1/2]d

|C0(x)− Capp,0(x)|2 dx =

∫
[−1/2,1/2]d

∣∣∣∣∣∑
k∈Zd

(αk − ϕ(k))e2πix·k

∣∣∣∣∣
2

dx

=
∑
k∈Zd

(αk − ϕ(k))2

with

ϕ(k)− αk =

∫
Rd\[−1/2,1/2]d

C0(y)e−2πik·y dy.

Defining h(y) = C0(y)(1− 11[−1/2,1/2]d(y)), we have ϕ(k)− αk = F(h)(k) and∑
k∈Zd

(αk − ϕ(k))2 =
∑
k∈Zd

(F(h)(k))2 =
∑
k∈Zd
F(h ? h)(k).

The Poisson summation formula on a lattice (see Stein and Weiss (1971), Chap-
ter VII, Corollary 2.6) gives∑

k∈Zd
F(h ? h)(k) =

∑
k∈Zd

h ? h(k).

When ν ≥ 1/2, we have 1− (1− e−γx)2ν ≤ 2νe−γx for all x > 0, so from (3.10) and
(J.2),

h ? h(x) =

∫
D
C0(y)C0(x− y) dy ≤ 4ρ2ν2

∫
D

e−
γ
α
(‖y‖+‖x−y‖) dy, x ∈ Rd, (J.8)

where D = D(x) = {y ∈ Rd : ‖x− y‖∞ > 1/2, ‖y‖∞ > 1/2} and ‖ · ‖∞ denotes the
uniform norm.

Suppose that ν ≥ 1/2. When d = 1, the latest integral in (J.8) can be computed
easily to get ∫

|y|> 1
2
,|x−y|> 1

2

e−
γ
α
(|y|+|x−y|)dy = e−

γ
α
|x|
(
α

γ
e−

γ
α + |x| − 1

)
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if |x| ≥ 1, and the value of the integral at x = 0 is α
γ
e−

γ
α . Thereby, when d = 1,

∑
k∈Zd

(αk − ϕ(k))2 =
∑
k∈Zd

h ? h(k) ≤ 4ρ2ν2

[
α

γ
e−

γ
α + 2

∞∑
k=1

e−
γ
α
k

(
α

γ
e−

γ
α + k − 1

)]
and (J.7), which involves the terms (J.4) (for ν ≥ 1/2) and (J.5), follows from the
expansion

∞∑
k=1

(a+ k)qk =
q

1− q

(
a+

1

1− q

)
for any a ∈ R and |q| < 1.

When d ≥ 2, the integral in (J.8) is more difficult to compute and we therefore
establish an upper bound as follows. Since ‖y‖ ≥ (|y1|+ · · ·+ |yd|)/

√
d,

h ? h(x) ≤ 4ρ2ν2
∫
D

d∏
j=1

e
− γ

α
√
d
(|yj |+|xj−yj |) dyj

≤ 4ρ2ν2d

∫
|y1−x1|> 1

2

e
− γ

α
√
d
(|y1|+|x1−y1|) dy1

d∏
j=2

∫
R

e
− γ

α
√
d
(|y|+|xj−y|) dy.

These integrals are computable: for any β > 0,∫
|y1−x1|> 1

2

e−β(|y|+|x1−y|) dy =

{
e−β

β
cosh(βx1) if |x1| ≤ 1

2
,

e−β|x1|
(

1−e−β
2β

+ |x1| − 1
2

)
if |x1| ≥ 1

2

and ∫
R

e−β(|y|+|xj−y|) dy = e−β|xj |
(
|xj|+

1

β

)
.

Therefore, when d ≥ 2, setting β = γ/(α
√
d),∑

k∈Zd
(αk − ϕ(k))2

≤ 4ρ2ν2d

(
e−β

β
+ 2

∞∑
k=1

e−βk
(

1− e−β

2β
+ k − 1

2

))(∑
k∈Z

e−β|k|
(
|k|+ 1

β

))d−1

and the bound (J.7), which involves the term (J.6), follows after a straightforward
calculation.

Suppose that ν ≤ 1/2. From (J.3) we deduce

h ? h(x) ≤ ρ2

Γ(ν)2
22−2ν π

2

∫
D
‖y/α‖ν−

1
2‖(x− y)/α‖ν−

1
2 e−

1
α
(‖y‖+‖x−y‖)dy.

If ‖x‖∞ > 1/2, then ‖x‖ > 1/2, and so ‖x‖ν−1/2 < 21/2−ν and

h ? h(x) ≤ ρ2

Γ(ν)2
22−4να1−2νπ

∫
D

e−
1
α
(‖y‖+‖x−y‖) dy.

The latter integral may be bounded similarly as the one in (J.8), and thereby (J.7),
which involves the term (J.4), follows.
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Note that the inequality (J.7) reduces to an equality in the particular case d = 1
and ν = 1/2. Finally, the plots in Figure 14 confirm that for reasonable values of ρ,
ν, and α satisfying (3.11), the error bound (J.7) is small.
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Figure 14: Error-bound (J.7) in terms of α for different values of ρ and ν, when d = 2.

The dotted line represents the maximal possible value of α following from (3.11).

K Alternative approximation of the density

Let S ⊂ Rd be compact. In this appendix, in addition to Assumption 3.2, we
assume the slightly stronger condition that the spectral density ϕ is strictly less
than 1. This ensures that all eigenvalues λk are strictly less than 1 for all index k so
that the density f in Theorem 2.9 is well-defined. Recall that f is given in terms of C̃
and D, cf. (2.14). Below we introduce computationally convenient approximations
of C̃ and D which can be used with (2.14) to obtain an approximation of f .

K.1 Convolution approximation of f

We start by showing that C̃app,0 given by

C̃app,0(u) =
∞∑
k=1

C?k
0 (u), u ∈ Rd, (K.1)
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is well-defined, where

C?1
0 (u) = C0(u), C?k

0 (u) =

∫
C
?(k−1)
0 (x)C0(u− x) dx, u ∈ Rd, k = 2, 3, . . . .

(K.2)
Since 0 ≤ ϕ < 1 and ϕ ∈ L1(Rd), for all p ∈ [1,∞], we have ϕ ∈ Lp(Rd). Define
ϕ̃ = ϕ/(1− ϕ). For any u ∈ Rd, ϕ(u) = limn→∞ ϕ̃n(u), where ϕ̃n(u) =

∑n
k=1 ϕ(u)k.

We see that ϕ̃ ∈ L1(Rd) since

‖ϕ̃‖1 =

∫
ϕ̃(u) du =

∞∑
k=1

∫
ϕ(u)k du ≤

∞∑
k=1

‖ϕ‖k−1∞
∫
ϕ(u) du =

‖ϕ‖1
1− ‖ϕ‖∞

<∞

using the monotone convergence theorem to swap summation and integration to
obtain the second identity. Therefore F−1ϕ̃ is well-defined. Using the dominated
convergence theorem and similar arguments as above, we see that (F−1ϕ̃) (u) is
equal to the right hand side of (K.1).

For x, y ∈ S, we define C̃app(x, y) = C̃app,0(x − y) and use the approximation
C̃(x, y) ≈ C̃app(x, y). The expansion (K.1) corresponds to (G.3) with Ck

S(x, y) sub-
stituted by C?k

0 (x− y).
Using the same substitution in (G.2) leads us to approximate D by

Dapp = |S|
∞∑
k=1

C?k
0 (0)/k. (K.3)

Since C?k
0 (0) =

∫
ϕ(u)k du, we obtain an alternative expression for Dapp by applying

the monotone convergence theorem,

Dapp = |S|
∫
− log(1− ϕ(u)) du = |S|

∫
log(1 + ϕ̃(u)) du.

Then the convolution approximation of f is defined by

fapp({x1, . . . , xn}) = exp(|S| −Dapp) det[C̃app](x1, . . . , xn). (K.4)

As mentioned above, the approximations C̃app and Dapp involve approximating
Ck
S(x, y) by C?k

0 (u), where u = x − y. In fact the approximations provide upper
bounds, since Ck

S(x, y) ≤ C?k
0 (u) for all x, y and k. Heuristically, when approximat-

ing Ck
S(x, y) by C?k

0 (u), we expect that the relative error increases as k grows, since
the approximation is applied iteratively, cf. (G.1) and (K.2). However, the final
approximations C̃ ≈ C̃app and D ≈ Dapp involve sums of Ck

S(x, y) and C?k
0 (u), and

the terms with a large relative error may only have a small effect if C?k
0 (u) tends

to zero sufficiently fast for k → ∞. Since C?k
0 is a covariance function, we have

C?k
0 (u) ≤ C?k

0 (0) for all k = 1, 2, . . .. Consequently, we expect that the accuracy of
approximating f by fapp depends on how fast C?k

0 (0) tends to zero. This is further
discussed in the examples below.
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K.2 Examples

To use the density approximation fapp in practice we truncate the sums in (K.1)
and (K.3), i.e.

C̃app,0(u) ≈
N∑
k=1

C?k
0 (u) and Dapp ≈ |S|

N∑
k=1

C?k
0 (0)/k

where N is a positive integer. Furthermore, we need closed form expressions for
C?k

0 (u). For the normal variance mixture models presented in Section 3.3, we have
C?k

0 (u) = (ρ/ρmax)
kh?k(u), and so it suffices to find closed form expressions for h?k.

For the Gaussian model,

h?k(u) = (kπα2)−d/2 exp(−‖u/α‖2/k), u ∈ Rd,

while for the Whittle-Matérn model,

h?k(u) =
‖u/α‖ν′Kν′(‖u/α‖)

2ν′−1(
√
πα)dΓ(ν ′ + d/2)

, u ∈ Rd,

where ν ′ = k(ν + d/2) − d/2. We have no closed form expression for the Cauchy
model.

For both the Gaussian and the Whittle-Matérn covariance function, h?k(0) de-
cays as k−d/2 when k → ∞, and therefore the rate of convergence of C̃app,0(0) =∑∞

k=1(ρ/ρmax)
kh?k(0) depends crucially on d and ρ. For d < 3, the series only

converges if ρ < ρmax, and the series converges slowly when ρ is close to ρmax.
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Figure 15: Comparison of using the convolution and periodic density approximations
to approximate the log-likelihood of the Gaussian model as a function of α based
on a simulated dataset in the unit square with ρ = 200 and α = 0.02.

Based on a simulated point pattern in the unit square, Figure 15 compares the
approximations obtained using the convolution and periodic density approxima-
tions to approximate the log-likelihood for the Gaussian model with ρ = 200 and
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α = 0.02. The simulated point pattern has ρ̂ = 213 points. In the likelihood calcu-
lations, ρ = ρ̂ is fixed such that the only varying parameter is α ∈ (0, αmax), where
αmax = 1/

√
πρ̂ = 0.39. For both approximations, the truncation N was increased

until almost no change appeared in the approximations. In this example, N = 256
for the convolution approximation and N = 512 for the periodic approximation. As
in the simulation study in Section 5.3, the periodic approximation is giving effec-
tively unbiased estimates. However, similar simulation studies (not reported here)
using the convolution approximation yielded estimates of α which were positively
biased, which is in agreement with Figure 15. In particular using the convolution
approximation we get a large proportion of estimates with α̂ = αmax. For smaller
values of α, α < αmax/2 say, the two approximations are very similar, and in this
case ρ/ρmax < 1/2, so the convolution approximation converges rapidly, and in this
range of α-values, a truncation of N = 10 is sufficient to obtain stable results. This is
computationally much faster than using the periodic approximation with N = 512,
and therefore the convolution approximation is appealing when ρ/ρmax is small.
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